
International Journal of Database Theory and Application

Vol.7, No.2 (2014), pp.131-140

http://dx.doi.org/10.14257/ijdta.2014.7.2.13

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Expected Item Bias based Hybrid Approach for

Recommendation System
1

Kaikuo Xu
1
, Changan Yuan

2*
, Fan Li

3
and Xianbin Liu

4

1
College of Computer Science, Chengdu University of Information Technology,

ChengDu, 610225, China
2
Guangxi Teachers Education University, Nanning 530001, Chinas

3
Cloud Computing Open Laboratory, Chengdu University of Information Technology,

ChengDu, 610225, China
4
School of Computer Science, Sichuan University

1
kaikuoxu@gmail.com,

2
yca@gxtc.edu.cn

Abstract

To improve the accuracy of memory based recommendation while keeping the low time

cost, an expected item bias (EIA) based similarity computation is proposed. And a hybrid

approach (HA) integrating the global rating information and local rating information is also

proposed. The features of two classical datasets MovieLens and Netflix for recommendation

system benchmarking are anglicized. The experiments on MovieLens and Netflix show that

both EIA and HA could improve the performance alone. A combinational use of them will

lead even better results on the two benchmark datasets.

Keywords: Recommendation System, Hybrid Approach, Personized Service, Collaborative

Filtering

1. Introduction

Recommendation system is widely used in various e-business systems such as Netflix [1],

CDNow [2] and Amazon [3]. The goals of application of recommendation system are: (i)

increase the chance of being visited for a specified commodity; (ii) increase the time the users

surf the sites; (iii) help users to discover interesting commodities. Different recommendation

techniques are used to lead users to their preferable products. They are basically classified

into three categories:

(i) Recommendation according to the properties of commodities such as brand, price and

available season. For example, recommend shampoo of another brand to users buy shampoo

frequently; recommend commodities of a brand to users buy commodities of the same brand

frequently. This is the basic approach: although it is commonly used, the accuracy still needs

improvement.

(ii) Recommendation according to users’ ratings and their shopping list. For example,

commodities with good ratings for most users are really good and is worthy of being

recommended; recommend commodities bought by a user to another user with same ratings

1 This work was supported the Natural Science Key Foundation of Guangxi under Grant

No.2011GXNSFD018025, the Development Foundation of CUIT under grant No. KYTZ201108, the Natural

Science Foundation under Grant No. 61363037 and Haikou city key science and technology program (2012-027).
* Corresponding Author

mailto:kaikuoxu@gmail.com
mailto:2yca@gxtc.edu.cn

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

132 Copyright ⓒ 2014 SERSC

on the same commodities. This requires users’ ratings and cannot work everywhere. Douban

[4] and Digg [5] are of this type.

(iii) Recommendation according to users’ surfing history. For example, if many users visit

commodities A, C and E, A, C and E should be a recommendation commodity for each other

respectively; recommendation according to a user’s current visiting action and its surfing

history. This method could work anywhere and could improve users’ experience.

MovieLens[6] and Netflix[1] are two classical datasets for the research of recommendation

system. MovieLens is from project named GroupLens while Netflix is from the world’s

biggest DVD renter. GroupLens is one of the most famous groups in the field of

recommendation system. It roughly adopts an ensemble approach combining both

collaborative filtering and association rules.

In this paper, an expected items bias based approach is proposed to compute the similarity

between user/item pair, no matter the pair has common items/users. Also a hybrid approach

integrating the global and local rating information is proposed to improve the accuracy while

keeping the time speed. The experiments show the availability of the proposed approaches.

The rest of the paper is organized as follows. Section 2 summarizes on some related work.

Section 3 analyzes the sparsity of data and the strategies to conquer it. Section 4 proposes an

expected item bias based similarity computation. Section 5 proposed hybrid approach for

recommendation. Section 6 evaluates the proposed methods on MovieLens and Netflix.

Section 7 concludes the paper.

2. Related Work

The research on recommendation system could be traced back to cognitive science [7] and

approximation theory [8]. Until 1990s, recommendation system began to be an independent

branch as the focus of research. In general, recommendation system picks one or several

potential user preferable items from a set of candidate items and recommends them to users to

make decisions. The detail definition of recommendation system is given in [9]. The

description below is simplified.

Let u be an active user, i be an item (commodity), in order to recommend one item to u, a

measure function utility(u, i) is needed to score the utility of i to u; Let ISubSet be a set of

items (commodities), in order to recommend several items to u, a measure function utility(u,

ISubSet) is needed to score the utility of ISubSet to u. To be formally, Adomavicius etc

describes recommendation system recommending one item as a maximization problem: [10]

)),((maxarg', iuutilityiUu
Ii

  

And the description on recommendation system recommending several items is quite

the same:

)),((maxarg, ISubSetuutilityISubSetUu
Ii

  

When the size of ISubSet is 1, formula 1 is equal to formula 2.

Recommendation system with measure function is classified into three categories

according to how the measure function computes scores:

(i) Content based recommendation [11]. If user likes item i, recommend an item with

same taste with i. For example, in movie recommendation, same taste refers to the

theme, actor and director of the movies. Since there is no unified model to

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 133

describe items of different types, no generalized content based methods exist right

now.

(ii) Collaborative recommendation [12]. According to [13], collaborative recommendation is

classified into two categories: memory based method and model based method. The

focus of this paper is memory based method since model based method doesn’t fit for

online processing. Memory based method judges the degree a user likes an item based

on the ratings the user gives to other items. Let Ru, i be an unknown rating for u and i, it

is computed according to the aggregation of the ratings of top n similar users with u:

Usetu

iuiu
raggrR





'

,',
)( 

 Here Uset is the set of top n similar users with u having rated i. The simplest way of

aggregation is computing the average rating. The most significant flaw for collaborative

filtering is that the accuracy is affected by the sparsity of the data seriously, which will

be discussed in section 3.

(iii) Hybrid approach. It combines both content based recommendation and

collaborative filtering. It is classified into four categories according to the way of

the combination. (a) Combine the results of the two methods; (b) Integrate the

former to the latter; (c) Integrate the latter into the former; (d) merge the two into a

unified one. The study in [14-16] shows that hybrid approach could improve the

accuracy dramatically.

3. Analysis on the Sparsity of Data

Definition 1 (Sparsity). Let n be the cardinality of users, m be the cardinality of items, p

be the cardinality of ratings, the sparsity of the rating matrix is 1-(p/(n*m)).

Example 1. Let us take MovieLens as an example. The values for n, m and p are 3900, 6040

and 1000209 respectively. Thus the sparsity of MovieLens is 1- 1000209/(3900*6040)=1-

0.0042 =0.9958. It indicates that the ratings for MovieLens is really sparse.

As a matter of fact, the ratings for most real datasets are sparse. To produce accurate results

from highly sparse data is difficult. Two strategies are used to conquer this problem. The first

strategy is filling the missing values. The work in [17] filled each missing value with

permanent score and the result shows that the accuracy of recommendation is improved. The

work in [18, 19] filled each missing value with computed score and it leads better results than

those in [17]. The problem is that even the filling result is affected by the sparsity of the data.

And the similarity computation between item pair is time cost. The work in [19] further

adopted the iteration scheme and clustering algorithm and gets even better improvement. The

problem is that iteration scheme and clustering are both time cost. Also clustering algorithm

is of accuracy problem. The second strategy is recursive prediction [12]. It improves the

accuracy more or less. However, the time cost increases sharply with the recursive depth.

To improve the accuracy of recommendation and tackle the problem in [18, 19], the

expected item bias is used to filling the missing values, which will be described in the next

section in detail. Before further description, the symbols are described in Table 1.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

134 Copyright ⓒ 2014 SERSC

Table 1. List of Symbols

Symbol Definition

u, Ru A single user in U, the item subset

rated by u

U The user set

i, j Two single items in I

I The item set

ru, i The rating score of u on i

i
r ,

j
r The average rating score for all users

on i, j respectively.

PRu, i The predicted rating score of u on i

 The global average rating score

sim(u1, u2) The similarity between u1 and u2

sim(i1, i2) The similarity between i1 and i2

Si, j The user subset rating both i and j, i.e.

Si, j = {u U | ru, i   & ru, j   }

4. Similarity Computation

Similarity computation is an essential step for memory based method. The most

commonly used similarity computation formulas are Pearson coefficient, cosine

similarity and adjust cosine similarity. Here Pearson coefficient is adopted for

improvement. Our method also works for other similarly computation formulas.



 



 









ji ji

ij

Su Si

jjuiiu

Su

jjuiiu

rrrr

rrrr

jisim

, ,

2

,

2

,

,,

)()(

))((

),( 

The Pearson coefficient for computing the similarity between items is shown in

formula 4. Our improved computation process is shown in algorithm 1. Algorithm 1

calls algorithm 2 and algorithm 2 calls algorithm 3. They will be explained one by one

in reverse order.

In algorithm 3, dev is used to record the expected item bias between items and the

number of users having rated both items. The rows of trainRatingMatrix represent items

while the columns represent users. trainRatingMatrix[j.itemID][k] != 0 indicates that

user k has rated item j.

Proposition 1. Let n be the number of users, the time complexity of algorithm 3 is O(n).

In algorithm 2, MaxRatingNumberOfItem indicates the number of items. urm records

the ratings for each user.

Proposition 2. Let m be the number of items u has rated, the time complexity of algorithm 2

is O(m).

Observation 1. In most datasets, |Ru∩Rv|/|RuURv| < 1/10.

Proposition 3. Let n be |Ru∩Rv|, m be max(|Ru|, |Rv|), the time complexity of algorithm 1 is

O(nm).

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 135

Proof: According to observation 1, algorithm 1 needs to predicts the rating score for 1/10 of

|RuURv|. Since the time complexity of algorithm 2 is O(m), therefore the time complexity of

Algorithm 1：UserCorrelation

Input： u, v

Output： correlation

1. float sum = 0;

2. float sumSquareX = 0;

3. float sumSquareY = 0;

4. int count = 0;

5. for(item i in (Ru U Rv))

6. {

7. float meanU1 = getMeanOfUser(u);

8. float meanU2 = getMeanOfUser(v);

9. if(user u has rated item i but user v has not)

10. {

11. ratingMatrix[v][i] = predict(v, item);

12. }

13. else if(u has not rated i but v has rated i)

14. {

15. ratingMatrix[u][i] = predict(u, item);

16. }

17. float x = (ratingMatrix[u.userID][i] - meanU1);

18. float y = (ratingMatrix[v.userID][i] - meanU2);

19. sum += x*y;

20. sumSquareX += x*x;

21. sumSquareY += y*y;

22. }

23. correlation = sum/ (sumSquareX*sumSquareY);

24. return correlation;

Algorithm 2：Predict

Input： u, i

Output： ratingscore

1. float rating = 0;

2. float sumDev = 0;

3. for(int k = 0; k <MaxRatingNumberOfItem;k++)

4. {

5. if(urm[u.userID][9] != null)

6. {

7. int id= urm[u.userID][9].item.itemID;

8. if(i.itemID != id)

9. {

10. rating += (dev[i.itemID][id].dev +

urm[u.userID][9].rating*dev[i.itemID][id].count);

11. sumDev += dev[i.itemID][id].count;

12. }

13. }

14. else

15. {

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

136 Copyright ⓒ 2014 SERSC

16. break;

17. }

18. }

19. ratingscore = rating/sumDev;

20. return ratingscore;

algorithm1 is n/10+9n/10*O(m). For simplicity, it is denoted as O(nm).

Algorithm 3：calculateDev

Input： i, j

Output： dev

1. float devTemp = 0;

2. for(int k = 1; k < NumberOfUser + 1;k++)

3. {

4. if(trainRatingMatrix[i.itemID][k] != 0 &&

 trainRatingMatrix[j.itemID][k] != 0)

5. {

6. devTemp = (trainRatingMatrix[i.itemID][k]-

7. trainRatingMatrix[j.itemID][k]);

8. dev[i.itemID][j.itemID].addDev(devTemp);

9. dev[j.itemID][i.itemID].addDev(-devTemp);

10. }

11. }

12. return dev;

Since for some user pair, there are no common rated items, the similarity between them

cannot be computed with Pearson coefficient or cosine similarity. In most cases, this is not

true. In reality, even people don’t know each other many have some relationships. The theory

of Six Degrees of Separation explains this phenomenon [20]. And algorithm 1 could compute

the similarity between this type of user pair through similarity propagation. Through

similarity computation, the neighbors of all users could be generated.

5. The Hybrid Approach for Recommendation

The naïve approach is to recommend according to the neighbor’s preference.

Formula 5 predicts the degree u likes i based on the neighbors of u. The similarity

computation could use any formula in Section 4.















Uu

Uu

iu

ui

uusim

ruusim

PR

'

'

'

|),'(|

)',(

 

In general, the average rating of a user reflects whether he/she is picky on the items.

When the average rating of a user is higher than the global average rating, he/she is

optimistic; while the average rating of a user is lower than the global average rating,

he/she is pessimistic. Therefore, we integrate average rating score of the users in our

method. And this also holds for items. When the average rating score of an item is

higher than the global average rating score, it is enjoyed by most users; while the

average rating score of an item is lower than the global average rating score, it is not

liked by most users. Also we integrate average rating score of the items in our method.

Our method is a linear combination approach, which is described in formula 5.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 137

 ',

'

'

()

(, ')

 (1)
| (',) |

u i u i

u i

u U

u U

P R r r

s im u u r

s im u u

   






     









 

After simplification, formula 6 is generated.



',

'

'

(, ')

() (1)
| (',) |

u i

u U

u i u i

u U

s im u u r

P R r r
s im u u

  






    




 

Formula 6 will not increase the time cost comparing with formula 4.

There are also some other hybrid approaches like the method in [21]. However, they

are more time cost. The method in [21] uses least square method to learn the

parameters, which is very slow when the dataset is large.

6. Experiments

The experiments are run on an INTEL core 2DuoProcessorE2160 with 2G memory

with Windows XP. The algorithms are implemented with Eclipse Europa and the

program is run on J2SE 5.0.

6.1. Datasets

Both MovieLens and Netflix are used in the experiment. 80% of the data are used as the

training dataset while the left 20% are used as the testing dataset.

Figure 1 and Figure 2 show some characteristics of Netflix [22]. According to Figure 1,

most values fall in [0, 5000]. According to Figure 2, most average rating scores fall around

3.8.

Figure 3 and Figure 4 show some characteristics of MovieLens [6]. In Figure 3, most

values fall in [3.8, 4.1]. And according to Figure 4, most user pair share zero common

item and most common item number is smaller than 100.

6.2. Evaluation

Both MAE (Mean Absoulte Error) and RMSE (Root Mean Squared Error) are chosen as

the evaluation criteria. The methods in [6], [18] and [19] are denoted as T_CF, Fill, Iterator

respectively. The method use the similarity computation in Section 4 is denoted as EIB. The

Figure 1. Number of Ratings per Movie in Netflix

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

138 Copyright ⓒ 2014 SERSC

Figure 2. Num. Users with Avg. Rating of in Netflix

Figuew 3. Num. Users with Avg. Rating of in MovieLens

Figure 4. Num. user pair with Common item number in MovieLens

method using the hybrid approach in Section 5 is denoted as HA. The method using

both of them is denoted as EIB&HA.

6.3. Results

Table 2- Table 5 show the results for all the combinations of MovieLens&Netflix and

MAE&RMSE. According to the four table, both EIB and HA could improve the

accuracy of the algorithm The performance of EIB is better than HA. And the

combination of EIB and HA leads to better results more or less. However, the

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 139

Table 2. MovieLens&MAE

Method k=5 k=10 k = 15 k=20

T_CF 0.925 0.918 0.916 0.912

Fill 0.9 0.86 0.85 0.86

Iterator 0.827 0.806 0.794 -

HA 0.871 0.864 0.866 0.866

EIB 0.775 0.775 0.772 0.773

HA&EIB 0.770 0.771 0.760 0.770

Table 3. MovieLens&RMSE

Method k=5 k=10 k = 15 k=20

T_CF 1.211 1.203 1.203 1.201

HA 1.134 1.136 1.130 1.131

EIB 1.059 1.062 1.062 1.060

HA&EIB 1.054 1.055 1.051 1.052

Table 4. Netflix&MAE

Method k=5 k=10 k = 15 k=20

T_CF 0.828 0.805 0.794 0.797

HA 0.795 0.794 0.789 0.789

EIB 0.744 0.737 0.737 0.736

HA&EIB 0.736 0.732 0.731 0.729

Table 5. Netflix&RMSE

Method k=5 k=10 k = 15 k=20

T_CF 1.13 1.102 1.098 1.092

HA 1.084 1.081 1.079 1.077

EIB 1.019 1.017 1.018 1.016

HA&EIB 1.016 1.014 1.014 1.010

increasing of k doesn’t bring much impact on the results. Sometimes it even makes the

accuracy worse. than HA. And the combination of EIB and HA leads to better results

more or less. However, the increasing of k doesn’t bring much impact on the results.

Sometimes it even makes the accuracy worse.

7. Conclusions

In this paper, an expected item bias based method is proposed to compute the similarity

between users. It could fill the missing values of datasets and could be applied to users having

no common items. Furthermore, a hybrid approach integrating the global rating information is

also proposed. Both methods could improve the accuracy of memory based recommendation.

And a combining use will lead to even better results.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

140 Copyright ⓒ 2014 SERSC

References

[1] https://signup.netflix.com/global.

[2] http://www.cdnow.com.

[3] http://www.amazon.com.

[4] http://www.douban.com.

[5] http://www.digg.com/.

[6] http://www.grouplens.org/node/73.

[7] E. Rich, “User Modeling via Stereotypes”, Cognitive Science, vol. 3, no. 4, (1979).

[8] M. J. D. Powell, “Approximation Theory and Methods”, Cambridge Univ. Press, (1981).

[9] H. Wang, “The design and implementation of commericial recommendation system”,

Doctor thesis, University of Science and Technology of China, (2007).

[10] G. Adomavicius and A. Gupta, “Towards Comprehensive Real-Time Bidder Support in

Iterative Combinatorial Auctions”, Information Systems Research, vol. 16, no. 2, (2005).

[11] P. Melville, R. J. Mooney and R. Nagarajan, “Content-Boosted Collaborative Filtering

for Improved Recommendations”, Proc. 18th Nat’l Conf. Artificial Intelligence, (2002).

[12] J. Zhang and P. Pu, “A recursive prediction algorithm for collaborative filtering

recommender systems”, Proceedings of the 2007 ACM conference on Recommender

systems, Minneapolis, MN, USA, (2007) October 19-20.

[13] J. S. Breese, D. Heckerman and C. Kadie, “Empirical Analysis of Predictive Algorithms

for Collaborative Filtering”, Proc. 14th Conf. Uncertainty in Artificial Intelligence,

(1998).

[14] P. Melville, R. J. Mooney and R. Nagarajan, “Content-Boosted Collaborative Filtering

for Improved Recommendations”, Proc. 18th Nat’l Conf. Artificial Intelligence, (2002).

[15] M. Pazzani, “A Framework for Collaborative, Content-Based, and Demographic

Filtering”, Artificial Intelligence Rev., vol. 13, (1999), pp. 5-6.

[16] I. Soboroff and C. Nicholas, “Combining Content and Collaboration in Text Filtering”,

Proc. Int’l Joint Conf. Artificial Intelligence Workshop: Machine Learning for

Information Filtering, Stockholm, Sweden, (1999) July 31-August 6.

[17] J. Breese, D. Hecherman and C. Kadie, “Empirical analysis of predictive algorithms for

collaborative filtering”, Proceedings of the 14th Conference on Uncertainty in Artificial

Intelligence (UAI’98), (1998).

[18] A. L. Deng, Y. Y. Zhu and B. L. Shi, “A collaborative filtering recommendation

algorithm based on item rating prediction”, Journal of Software, vol. 14, no. 9, (2003).

[19] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-Based collaborative filtering

recommendation algorithms”, Proceedings of the 10th International World Wide Web

Conference, (2001).

[20] M. Newman, A. Barabási and J. W Duncan, “The Structure and Dynamics of Networks”,

Princeton, NJ: Princeton University Press, (2006).

[21] Y. Koren, “Factorization meets the neighborhood: a multifaceted collaborative filtering

model”, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD’08), Las Vegas, Nev, USA, (2008) August.

[22] http://www.igvita.com/2006/10/29/dissecting-the-netflix-dataset.

https://signup.netflix.com/global
http://www.cdnow.com/
http://www.amazon.com/
http://www.douban.com/
http://www.digg.com/
http://www.grouplens.org/node/73

