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Abstract 

To improve the accuracy of memory based recommendation while keeping the low time 

cost, an expected item bias (EIA) based similarity computation is proposed. And a hybrid 

approach (HA) integrating the global rating information and local rating information is also 

proposed. The features of two classical datasets MovieLens and Netflix for recommendation 

system benchmarking are anglicized. The experiments on MovieLens and Netflix show that 

both EIA and HA could improve the performance alone. A combinational use of them will 

lead even better results on the two benchmark datasets. 

 

Keywords: Recommendation System, Hybrid Approach, Personized Service, Collaborative 

Filtering 

 

1. Introduction 

Recommendation system is widely used in various e-business systems such as Netflix [1], 

CDNow [2] and Amazon [3]. The goals of application of recommendation system are: (i) 

increase the chance of being visited for a specified commodity; (ii) increase the time the users 

surf the sites; (iii) help users to discover interesting commodities. Different recommendation 

techniques are used to lead users to their preferable products. They are basically classified 

into three categories:  

(i) Recommendation according to the properties of commodities such as brand, price and 

available season. For example, recommend shampoo of another brand to users buy shampoo 

frequently; recommend commodities of a brand to users buy commodities of the same brand 

frequently. This is the basic approach: although it is commonly used, the accuracy still needs 

improvement.  

(ii) Recommendation according to users’ ratings and their shopping list. For example, 

commodities with good ratings for most users are really good and is worthy of being 

recommended; recommend commodities bought by a user to another user with same ratings 
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on the same commodities. This requires users’ ratings and cannot work everywhere. Douban 

[4] and Digg [5] are of this type. 

(iii) Recommendation according to users’ surfing history. For example, if many users visit 

commodities A, C and E, A, C and E should be a recommendation commodity for each other 

respectively; recommendation according to a user’s current visiting action and its surfing 

history. This method could work anywhere and could improve users’ experience.   

MovieLens[6] and Netflix[1] are two classical datasets for the research of recommendation 

system. MovieLens is from project named GroupLens while Netflix is from the world’s 

biggest DVD renter. GroupLens is one of the most famous groups in the field of 

recommendation system. It roughly adopts an ensemble approach combining both 

collaborative filtering and association rules. 

In this paper, an expected items bias based approach is proposed to compute the similarity 

between user/item pair, no matter the pair has common items/users. Also a hybrid approach 

integrating the global and local rating information is proposed to improve the accuracy while 

keeping the time speed. The experiments show the availability of the proposed approaches.  

The rest of the paper is organized as follows. Section 2 summarizes on some related work. 

Section 3 analyzes the sparsity of data and the strategies to conquer it. Section 4 proposes an 

expected item bias based similarity computation. Section 5 proposed hybrid approach for 

recommendation. Section 6 evaluates the proposed methods on MovieLens and Netflix. 

Section 7 concludes the paper. 

 

2. Related Work 

The research on recommendation system could be traced back to cognitive science [7] and 

approximation theory [8]. Until 1990s, recommendation system began to be an independent 

branch as the focus of research. In general, recommendation system picks one or several 

potential user preferable items from a set of candidate items and recommends them to users to 

make decisions. The detail definition of recommendation system is given in [9]. The 

description below is simplified. 

Let u be an active user, i be an item (commodity), in order to recommend one item to u, a 

measure function utility(u, i) is needed to score the utility of i to u; Let ISubSet be a set of 

items (commodities), in order to recommend several items to u, a measure function utility(u, 

ISubSet) is needed to score the utility of  ISubSet to u. To be formally, Adomavicius etc 

describes recommendation system recommending one item as a maximization problem: [10] 

)),((maxarg', iuutilityiUu
Ii

  

And the description on recommendation system recommending several items is quite 

the same:   

)),((maxarg, ISubSetuutilityISubSetUu
Ii

  

When the size of ISubSet is 1, formula 1 is equal to formula 2. 

Recommendation system with measure function is classified into three categories 

according to how the measure function computes scores: 

(i)   Content based recommendation [11]. If user likes item i, recommend an item with 

same taste with i. For example, in movie recommendation, same taste refers to the 

theme, actor and director of the movies.  Since there is no unified model to 
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describe items of different types, no generalized content based methods exist right 

now. 

(ii)   Collaborative recommendation [12]. According to [13], collaborative recommendation is 

classified into two categories: memory based method and model based method. The 

focus of this paper is memory based method since model based method doesn’t fit for 

online processing. Memory based method judges the degree a user likes an item based 

on the ratings the user gives to other items. Let Ru, i  be an unknown rating for u and i, it 

is computed according to the aggregation of the ratings of top n similar users with u: 

Usetu

iuiu
raggrR





'

,',
)(  

        Here Uset is the set of top n similar users with u having rated i. The simplest way of 

aggregation is computing the average rating. The most significant flaw for collaborative 

filtering is that the accuracy is affected by the sparsity of the data seriously, which will 

be discussed in section 3. 

(iii) Hybrid approach. It combines both content based recommendation and 

collaborative filtering. It is classified into four categories according to the way of 

the combination. (a) Combine the results of the two methods; (b) Integrate the 

former to the latter; (c) Integrate the latter into the former; (d) merge the two into a 

unified one. The study in [14-16] shows that hybrid approach could improve the 

accuracy dramatically. 

 

3. Analysis on the Sparsity of Data 

Definition 1 (Sparsity). Let n be the cardinality of users, m be the cardinality of items, p 

be the cardinality of ratings, the sparsity of the rating matrix is 1-(p/(n*m)). 

Example 1. Let us take MovieLens as an example. The values for n, m and p are 3900, 6040 

and 1000209 respectively. Thus the sparsity of MovieLens is 1- 1000209/(3900*6040)=1-

0.0042 =0.9958. It indicates that the ratings for MovieLens is really sparse. 

As a matter of fact, the ratings for most real datasets are sparse. To produce accurate results 

from highly sparse data is difficult. Two strategies are used to conquer this problem. The first 

strategy is filling the missing values. The work in [17] filled each missing value with 

permanent score and the result shows that the accuracy of recommendation is improved. The 

work in [18, 19] filled each missing value with computed score and it leads better results than 

those in [17]. The problem is that even the filling result is affected by the sparsity of the data. 

And the similarity computation between item pair is time cost. The work in [19] further 

adopted the iteration scheme and clustering algorithm and gets even better improvement. The 

problem is that iteration scheme and clustering are both time cost. Also clustering algorithm 

is of accuracy problem. The second strategy is recursive prediction [12]. It improves the 

accuracy more or less. However, the time cost increases sharply with the recursive depth. 

To improve the accuracy of recommendation and tackle the problem in [18, 19], the 

expected item bias is used to filling the missing values, which will be described in the next 

section in detail. Before further description, the symbols are described in Table 1. 
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Table 1. List of Symbols 

Symbol Definition 

u, Ru A single user in U, the item subset 

rated by u 

U The user set 

i, j Two single items in I 

I The item set 

ru, i The rating score of u on i 

i
r ,

j
r  The average rating score for all users 

on i, j respectively.  

PRu, i The predicted rating score of u on i   

  The global average rating score 

sim(u1, u2) The similarity between u1 and u2 

sim(i1, i2) The similarity between i1 and i2 

Si, j The user subset rating both i and j, i.e.  

Si, j = {u U | ru, i   & ru, j    } 

 

4. Similarity Computation 

Similarity computation is an essential step for memory based method. The most 

commonly used similarity computation formulas are Pearson coefficient, cosine 

similarity and adjust cosine similarity. Here Pearson coefficient is adopted for 

improvement. Our method also works for other similarly computation formulas. 
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The Pearson coefficient for computing the similarity between items is shown in 

formula 4. Our improved computation process is shown in algorithm 1.  Algorithm 1 

calls algorithm 2 and algorithm 2 calls algorithm 3. They will be explained one by one 

in reverse order. 

In algorithm 3, dev is used to record the expected item bias between items and the 

number of users having rated both items. The rows of trainRatingMatrix represent items 

while the columns represent users. trainRatingMatrix[j.itemID][k] != 0 indicates that 

user k has rated item j. 

Proposition 1. Let n be the number of users, the time complexity of algorithm 3 is O(n). 

In algorithm 2, MaxRatingNumberOfItem indicates the number of items. urm records 

the ratings for each user. 

Proposition 2. Let m be the number of items u has rated, the time complexity of algorithm 2 

is O(m). 

Observation 1. In most datasets, |Ru∩Rv|/|RuURv| < 1/10. 

Proposition 3. Let n be |Ru∩Rv|, m be max(|Ru|, |Rv|), the time complexity of algorithm 1 is 

O(nm). 
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Proof: According to observation 1,  algorithm 1 needs to predicts the rating score for 1/10 of  

|RuURv|. Since the time complexity of algorithm 2 is O(m), therefore the time complexity of  

Algorithm 1：UserCorrelation 

Input：    u, v 

Output： correlation 

1. float sum = 0; 

2. float sumSquareX = 0; 

3. float sumSquareY = 0; 

4. int count = 0; 

5. for(item i in (Ru U Rv)) 

6. {  

7.     float meanU1 = getMeanOfUser(u); 

8.     float meanU2 = getMeanOfUser(v); 

9.     if(user u has rated item i but user v has not ) 

10.     {  

11.         ratingMatrix[v][i]  = predict(v, item); 

12.     } 

13.     else if(u has not rated i but v  has rated i) 

14.     { 

15.         ratingMatrix[u][i] = predict(u, item);   

16.     } 

17.    float x = (ratingMatrix[u.userID][i] - meanU1); 

18.     float y = (ratingMatrix[v.userID][i] - meanU2); 

19.     sum += x*y; 

20.     sumSquareX += x*x; 

21.     sumSquareY += y*y; 

22. } 

23. correlation =  sum/ (sumSquareX*sumSquareY); 

24. return correlation; 

Algorithm 2：Predict 

Input：    u, i 

Output： ratingscore 

1. float rating = 0; 

2. float sumDev = 0; 

3. for(int k = 0; k <MaxRatingNumberOfItem;k++) 

4. {  

5.     if(urm[u.userID][9] != null) 

6.     {  

7.         int id= urm[u.userID][9].item.itemID; 

8.         if(i.itemID !=  id) 

9.         {   

10.             rating += (dev[i.itemID][id].dev +                             

urm[u.userID][9].rating*dev[i.itemID][id].count); 

11.             sumDev += dev[i.itemID][id].count; 

12.          } 

13.      } 

14.      else 

15.      { 
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16.            break; 

17.      }  

18. } 

19. ratingscore = rating/sumDev; 

20. return ratingscore; 

algorithm1 is n/10+9n/10*O(m). For simplicity, it is denoted as O(nm). 

Algorithm 3：calculateDev 

Input：     i, j  

Output： dev 

1. float devTemp = 0; 

2. for(int k = 1; k < NumberOfUser + 1;k++) 

3. { 

4.     if(trainRatingMatrix[i.itemID][k] != 0 &&            

 trainRatingMatrix[j.itemID][k] != 0) 

5.     { 

6.        devTemp = (trainRatingMatrix[i.itemID][k]- 

7.                  trainRatingMatrix[j.itemID][k]); 

8.        dev[i.itemID][j.itemID].addDev(devTemp); 

9.        dev[j.itemID][i.itemID].addDev(-devTemp); 

10.      } 

11. } 

12. return dev; 

Since for some user pair, there are no common rated items, the similarity between them 

cannot be computed with Pearson coefficient or cosine similarity. In most cases, this is not 

true. In reality, even people don’t know each other many have some relationships. The theory 

of Six Degrees of Separation explains this phenomenon [20]. And algorithm 1 could compute 

the similarity between this type of user pair through similarity propagation. Through 

similarity computation, the neighbors of all users could be generated. 

 

5. The Hybrid Approach for Recommendation 

The naïve approach is to recommend according to the neighbor’s preference. 

Formula 5 predicts the degree u likes i based on the neighbors of u. The similarity 

computation could use any formula in Section 4. 
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In general, the average rating of a user reflects whether he/she is picky on the items. 

When the average rating of a user is higher than the global average rating, he/she is 

optimistic; while the average rating of a user is lower than the global average rating, 

he/she is pessimistic. Therefore, we integrate average rating score of the users in our 

method. And this also holds for items.  When the average rating score of an item is 

higher than the global average rating score, it is enjoyed by most users; while the 

average rating score of an item is lower than the global average rating score, it is not 

liked by most users. Also we integrate average rating score of the items in our method. 

Our method is a linear combination approach, which is described in formula 5. 
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After simplification, formula 6 is generated. 
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Formula 6 will not increase the time cost comparing with formula 4.  

There are also some other hybrid approaches like the method in [21]. However, they 

are more time cost. The method in [21] uses least square method to learn the 

parameters, which is very slow when the dataset is large. 

 

6. Experiments 

The experiments are run on an INTEL core 2DuoProcessorE2160 with 2G memory 

with Windows XP. The algorithms are implemented with Eclipse Europa and the 

program is run on J2SE 5.0. 

 

6.1. Datasets  

Both MovieLens and Netflix are used in the experiment. 80% of the data are used as the 

training dataset while the left 20% are used as the testing dataset.  

Figure 1 and Figure 2 show some characteristics of Netflix [22]. According to Figure 1, 

most values fall in [0, 5000]. According to Figure 2, most average rating scores fall around 

3.8.  

Figure 3 and Figure 4 show some characteristics of MovieLens [6]. In Figure 3, most 

values fall in [3.8, 4.1]. And according to Figure 4, most user pair share zero common 

item and most common item number is smaller than 100. 

 

6.2. Evaluation 

Both MAE (Mean Absoulte Error) and RMSE (Root Mean Squared Error) are chosen as 

the evaluation criteria. The methods in [6], [18] and [19] are denoted as T_CF, Fill, Iterator 

respectively.  The method use the similarity computation in Section 4 is denoted as EIB. The  

 

 

Figure 1. Number of Ratings per Movie in Netflix 
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Figure 2. Num. Users with Avg. Rating of in Netflix 

 

Figuew 3. Num. Users with Avg. Rating of in MovieLens 

 

Figure 4. Num. user pair with Common item number in MovieLens 

method using the hybrid approach in Section 5 is denoted as HA. The method using 

both of them is denoted as EIB&HA. 

 

6.3. Results 

Table 2- Table 5 show the results for all the combinations of MovieLens&Netflix and 

MAE&RMSE. According to the four table, both EIB and HA could improve the 

accuracy of the algorithm The performance of EIB is better than HA. And the 

combination of EIB and HA leads to better results more or less. However, the  
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Table 2. MovieLens&MAE 

Method k=5 k=10 k = 15 k=20 

T_CF 0.925 0.918 0.916 0.912 

Fill 0.9 0.86 0.85 0.86 

Iterator 0.827 0.806 0.794 - 

HA 0.871 0.864 0.866 0.866 

EIB 0.775 0.775 0.772 0.773 

HA&EIB 0.770 0.771 0.760 0.770 

Table 3. MovieLens&RMSE 

Method k=5 k=10 k = 15 k=20 

T_CF 1.211 1.203 1.203 1.201 

HA 1.134 1.136 1.130 1.131 

EIB 1.059 1.062 1.062 1.060 

HA&EIB 1.054 1.055 1.051 1.052 

Table 4. Netflix&MAE 

Method k=5 k=10 k = 15 k=20 

T_CF 0.828 0.805 0.794 0.797 

HA 0.795 0.794 0.789 0.789 

EIB 0.744 0.737 0.737 0.736 

HA&EIB 0.736 0.732 0.731 0.729 

Table 5. Netflix&RMSE 

Method k=5 k=10 k = 15 k=20 

T_CF 1.13 1.102 1.098 1.092 

HA 1.084 1.081 1.079 1.077 

EIB 1.019 1.017 1.018 1.016 

HA&EIB 1.016 1.014 1.014 1.010 

increasing of k doesn’t bring much impact on the results. Sometimes it even makes the 

accuracy worse. than HA. And the combination of EIB and HA leads to better results 

more or less. However, the increasing of k doesn’t bring much impact on the results. 

Sometimes it even makes the accuracy worse. 

 

7. Conclusions 

In this paper, an expected item bias based method is proposed to compute the similarity 

between users. It could fill the missing values of datasets and could be applied to users having 

no common items. Furthermore, a hybrid approach integrating the global rating information is 

also proposed. Both methods could improve the accuracy of memory based recommendation. 

And a combining use will lead to even better results. 
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