
International Journal of Database Theory and Application

Vol.7, No.2 (2014), pp.121-130

http://dx.doi.org/10.14257/ijdta.2014.7.2.12

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Improved Approach to Reconciling Multiple Ontology Change

Sequences

Ke Zhao
1
, Changxian Li

2
 and Yannan Sun

2

1
School of Electronics and Information Engineering, Dalian Jiaotong University,

Dalian 116028, China
2
 School of Motor car Operation and Maintenance Engineering, Dalian Jiaotong

University, Dalian 116028, China

Kezhao1978@163.com

Abstract

Ontology evolution in collateral environments mainly features that multiple users modify

the same ontology. All of the ontology change sequences submitted by the users may not be

done to the ontology because there are conflicts between them. Unlike previous approach that

some ontology change sequences must be removed, this paper focuses on the relationship

between ontology changes rather than ontology change sequences. We defined a dependence

relationship between two ontology changes and searched all the dependences from different

ontology change sequences. We constructed a direct graph for ontology changes with the

dependences set. On this basis, we proposed an algorithm based on Traveling Salesmen

Problem to find a suitable evolution path. A prototype is implemented and the experiment

showed that our approach could keep more ontology changing.

Keywords: Ontology Change; Ontology Evolution; Traveling Salesmen Problem

1. Introduction

Ontology Evolution is a timely adaptation of an ontology to the arisen changes and the

consistent propagation of these changes to dependent artifacts. It focuses on exploring some

methods and technologies to modify ontology on the assumption that the ontology

consistency is not broken. But the process of ontology evolution in the collateral

environments is quite different from that in the centralized environments. In the collateral

environments, many users could modify the same ontology simultaneously, so the ontology

change sequences submitted by users may conflict with another, causing ontology evolution

dangling. The key of ontology evolution is to resolve those unseen conflicts between ontology

change sequences and to find a suitable evolution solution for keeping consistency and

aggregating the preferences of multiple users as much as possible. In literature [15], we

proposed an approach to reconciling multiple ontology change sequences. But in course of

resolving the conflict, a distinct shortcoming is that some ontology change sequences will be

discarded, which leads to loss of some useful ontology change made by the discarded ones.

So In this paper, we tried to reconcile multiple ontology change sequences rather than to

discard them. In addition, we proposed a novel evolution strategy for ontology change

sequences to keep ontology changes as more as possible.

This paper is organized as follows. An introductory example for clarifying our problem is

shown in Section 2. And the related definitions are shown in Section 3. The whole scheme of

ontology evolution and evolution algorithms in collateral environments is given in Section 4.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

122 Copyright ⓒ 2014 SERSC

A prototype system is introduced in Section 5. The related works are mentioned in Section 6

and conclusion and the next work are arranged in the last section.

2. An Example

An abstract ontology is shown in Figure 1, where ellipse nodes are concepts, and every

arrow links two concepts – from subconcept to superconcept. Assume thatan engineer E1

made changes to the ontology in steps: (1) add a concept new c1 to the subconcepts of c11; (2)

delete c12 and set every subconcept of c12 as the subconcepts of c0. The ontology after E1's

changes is shown in Figure 2. Also another engineer E2 changed the ontology in this way: (3)

add a concept newc2 to the subconcepts of c12; (4) delete c11 and set every subconcept of c11 as

the subconcepts of c0. The ontology made by E2’s changes is shown in Figure 3.

Unfortunately, care should be taken since, the ontology changes requested by E1 and those by

E2 can’t be performed, regardless of order, to the initial ontology. If E1 changed the ontology

before E2, the operation (3) could not be done because c12 had been removed by E1. If E2

changed the ontology before E1, the operation (1) could not be done because c22 had been

removed by E2. If we changed the ontology in the order of (1)(3)(2)(4) rather than

(1)(2)(3)(4) or (3)(4)(1)(2), all operations (1)-(4) could be done consistently

and the resulting ontology is illustrated in Fig.4.

This example illustrates sequences of changes made to an ontology may lead to

conflicts. In the paper [15], we proposed an algorithm seperating the initial set of the

ontology change sequences into multiple different subsets not conflicting mutually. In

this approach, one or more ontology change sequences are removed in order to solve the

conflicts between all the ontology change sequences. Unlike the previous work, we

expect to reconcile multiple ontology change sequences rather than discard t hem to

keep consistency. In addition, we also favor a novel evolution strategy for keeping most

of the consistent ontology changes while aggregating the preferences of multiple users,

the more, the better.

c12

c0

c21

Figure 3. Ontology after
E2’s Changes

c22

c23 c24 newc2

c11 c12

c0

c21

Figure 1. Initial Abstract
Ontology

c22 c23 c24

c11

c0

c21 c22

c23

newc1

Figure 2. Ontology after
E1’s Changes

c24

c0

c23

c24

newc2

c21

c22

newc1

Figure 4. Ontology after Changed in order

of (1)(3)(2)(4)

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 123

3. Formal Description of Ontology Change

According to Stojanovic
[13]

, an ontology change oh is defined as oh={name, args,

preconditions, postconditions}, where name is the identifier of this change c, args is a list of

one or more change arguments, preconditions denotes a set of assertions that the assertions

must be true before the change applied, postconditions comprise a set of assertions that it

must be true after the change applied. Stojanovic categorizes all the ontology changes into the

“Add” ontology changes and the “Remove” ontology changes respectively. Moreover, he

pointed out that all the complex ontology changes may be decomposed into a group of “Add”

ontology changes and “Remove” ontology changes. To highlight the different type of changes

made to a different object, we redefine the ontology change.

Convention 1: the parameter of children(c) is a set composed of all the subconcepts of the

concept c.

Convention 2: the parameter of father(c) is a set composed of all the superconcepts of the

concept c.

Definition 2: expression exp(), O.C, is defined as

 c is an expression, c;

 the parameter , children(c), is an expression, c;

 the parameter , father(c), is an expression, c;

 if E is an expression, O.C-E is an expression;

 if E1 and E2 are expressions, E1E2 is an expression;

 if E1 and E2 are expressions, E1E2 is an expression.

Definition 3: an addition ontology change oh is defined as

oh={objects, supcons, subcons}.

where:

 objects, supcons, subcons O.C.

 cobjects, pcsupcons, bcsubcons, c will become the subconcept of pc and the

superconcept of bc after oh is done.

Definition 4: a remove ontology change oh is defined as

oh={objects, exp()}.

where:

 objectsO.C are concepts to be removed;

 objects is the value of exp().

 Definition 5: For two ontology change oh1 and oh2, oh1 precedes oh2 and is represented as

oh1oh2 iff oh1 must be executed ahead of oh2。.

Definition 6: The expression of ohs=|oh1,oh2,…,ohn| is an ontology change sequence iff

the expression of oh1oh2oh2oh3 ohn-1ohn holds.

Definition 7: For an addition ontology change of aoh and a remove ontology change of roh,

aoh depends on roh , which is represented as aoh<roh iff the formula of

(aoh.supconsaoh.subcons) roh.objects) holds.

4. Description of Our Approach

Our approach includes two steps as illustrated in Figure 5.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

124 Copyright ⓒ 2014 SERSC

Step 1: Given a group of ontology change sequences, we represent them as a directed

graph, recognize all the dependences by Definition 7, and refine the directed graph.

Step 2: Solution method for a TSP(Traveling Salesmen Problem)

[14] is adopted to

compute an evolution path, which maximally and consistently covers all change

sequences. By representing an evolution problem as a directed graph, we will observe

that an evolution path is analogous to the solution of a TSP. So evolution problem is in

nature a variance of the TSP, some previous approaches for solving TSP can be applied

to solve the problem of our interest.

4.1. Algorithm for Extracting all Dependences

Algorithm 1 is used to find all the dependences from a group of ontology change

sequences OHS. By algorithm 1, all the dependences about that example in section 2 are

DEP={oh11<oh12, oh12<oh13, oh13<oh14, oh14<oh15, oh21<oh22, oh22<oh23, oh23<oh24,

oh24<oh25, oh11<oh22, oh21<oh12}.

4.2. Algorithm for Finding Evolution Path

DEP contains all the dependences between two ontology changes. All the ontology

changes in a group of ontology change sequences are not performed unless any one of

DEP is met. So, we should find an evolution path, which covers all the ontology

Figure 5. The Whole Scheme of our Approach

Algorithm for Finding

Evolution Path
Algorithm for Extracting

all Dependences

d1

d2

……

Initial Ontology

 Change Sequences

Set

Dependences

Set

Evolution

Path

 ohs1

ohs2

……

Algorithm 1:findDependencs (OHS)

Input: OHS, a group of ontology change sequences OHS={ohs1,ohs2,,ohsn}

Output: DEP, a group of constraints

1. DEP←;

2. i←1;

3. WHILE(i<=n)

4. Let ohsi be |oh1,oh2,…,ohm|;

5. j←1;

6. WHILE(j<=m-1)

7. DEP←DEP{ohj<ohj+1};

8. k←1;

9. WHILE(k<=n)

10. IF ki and ohohsk, ohj<oh

11. DEP←DEP{ohj<oh};

12. k←k+1;

13. j←j+1;

14. i←i+1;

15. RETURN DEP

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 125

changes while every dependence of DEP is met. In nature, to find an evolution path is

to find the solution of a TSP [14]. Next we briefly introduce the TSP.

4.2.1. TSP(Traveling Salesmen Problem)

Let G=(V,E) be a weighted directed graph, where V ={v1,v2,,vn} is a set of all the vertices

and E={ei,j|vi,vjV, ij} is a set of all the edges, represented by a nn matrix. Let di,j be the

distance between vi and vj, where di,j>0 and di,j and di,j =dj,i holds. A TSP is to find a path in

G such that

 

i j

jiji
xdz

,,
min (1)

Where










path ngoptimalizi on thenot is 0

path ngoptimalizi on the is 1

,

,

,

ji

ji

ji

e

e

x (2)

 njx

n

i

ji
,,2,1,1

1

,




 (3)

 nix

n

j

ji
,,2,1,1

1

,




 (4)

 22,1

,

,




nSSx

n

Sji

ji
 (5)

Formula (1) is an object function of the TSP. Formulas (2), (3) and (4) demand that

every vertex has only one incoming edge and only one outgoing edge, too. Formula (5)

demands that every vertex is visited only once and no cycle is included in the final path.

TSP is a classic problem and there are many approaches to solve it [14].

4.2.2. TSP for Finding Evolution Path

In order to find the evolution path for our problem, we should rephrase the problem of

ontology evolution as a TSP by build a directed graph upon ontology change sequences and

their dependences, and the TSP also needs to be revised.

Firstly, we introduce the construction of the directed graph G=(V,E), which is done

by Algorithm 2 below. The graph of our running example created by the algorithm is

shown in Figure 6.

Algorithm 2: buildGraph(OHS, DEP)

Input: OHS, a group of ontology change sequences; DEP, a group of dependences.

Output: G(V,E), a directed graph of ontology changes.

1. V;

2. E;

3. FOR EACH ohs in OHS

4. FOR EACH oh in ohs

5. VV{oh};

6. FOR EACH oh1,oh2 in V

7. IF oh1oh2

8. EE{e1,2}{e2,1};

9. FOR EACH oh1<oh2 in DEP

10. EE-{e2,1};

11. RETURN G(V,E)

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

126 Copyright ⓒ 2014 SERSC

Secondly, TSP is revised as TSP
*

),(
p

EVpath  (6)

Where

 EE
p
 (7) nje

n

i

ji
,,2,1,1

1

,




 ei,jEp (8)

 nje

n

i

ji
,,2,1,1

1

,




 ei,jEp (9) 22,1

,

,




nSSx

n

Sji

ji
 (10)

Formula (6) is an object function of TSP
*
 and it returns an evolution path. Formulas (7), (8)

and (9) demand that every vertex has only one incoming edge and only one outgoing edge.

Formula (10) demands that every vertex is visited only once and no cycle is included in the

evolution path.

In reality, the number of evolution paths can be 0, 1 or more than one. For the

example shown in Section 2, an evolution path from oh11 to oh15 is shown in Figure 7.

In order to find an evolution path as quickly as possible, we applied the hybrid GA–

PSO–ACO algorithm to TSP
*
[14], which was proposed in literature [14].

5. Implementation of Prototype for our Approach

We implemented a prototype based on the approach described above. The prototype is for

OWL Ontology in JAVA. The architecture of prototype is shown in Figure 8. The whole

system is composed of six components and an OWL ontology. Application GUI is an

interface for users. By Application GUI, multiple users may submit ontology change

sequences to the system. In Checker, the validity of expression is checked. If expression is

not correct, an error report is outputted to Application GUI. Parser is responsible to parse

ontology change sequence into another format, which is fitter for Dependence Search

oh11

Figure 6. Graph of Example in Section 2

oh12 oh14 oh13 oh15

oh21 oh22 oh24 oh23 oh25

oh11

Figure 7. An Evolution Path of the Example in Section 2

oh12 oh14 oh13 oh15

oh21 oh22 oh24 oh23 oh25

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 127

Component. Dependence Search Component is implementation of Algorithm 1. It will output

all the dependences to Evolution Path Finding Component. Evolution Path Finding

Component is implementation of algorithm 2 and GA–PSO–ACO. It will usually output an

evolution path to Evolution Component. If there is no evolution path is found, an error report

is outputted to Application GUI. Evolution Component can apply ontology change sequence

from evolution path to OWL Ontology. The changed Ontology will be shown in Application

GUI.

5.1. Experiments with Prototype

We have tested the current implementation of the prototype system on real ontologies from

different domains. The whole experiment is carried out on a PC with 2Ghz CPU 512 MB

memory under Windows xp.

In the following, we briefly report experiments performed for detecting changes in

the concept hierarchy of the following two ontologies. The first ontology contains about

80 concepts and 60 relations. The second ontology has about 180 classes and around 70

properties. We showed the results of experiment in Table 1. OHS is an abbreviation of

ontology change sequence. OHN is an abbreviation of ontology changes. Ain17 is an

abbreviation of approach in literature [15]. From Table 1, we submit 10 ontology

change sequences to OJKL. There are 45 ontology changes in total. By our approach,

we search 43 dependences and find 11 evolution paths finally. There are at least 2

ontology changes sequences are removed from OHS when we apply the approach in

literature [15] to OJKL. In a similar way, we submit 10 ontology change sequences to

SAIL. There are 52 ontology changes in total. By our approach, we search 50

dependences and find 13 evolution paths finally. There are at least 3 ontology changes

sequences are removed from OHS when we apply the approach in literature [15] to

SAIL.

Table 1. Result of Experiments on Ontologies OJKL and SAIL

Ontologies Concepts OHS OHN Dependences Paths Ain17

OJKL 80 10 45 43 11 2

SAIL 180 10 52 50 13 3

Figure 8. Architecture of Prototype and Screenshot of Input Page

Application

GUI

Parser Dependence Search

Component

OWL

Ontology
Evolution

Component

Checker Evolution Path

Finding Component

app:lj:implementation?ljtype=blng&ljblngcont=0

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

128 Copyright ⓒ 2014 SERSC

6. Related Work

By far, lots of works have been done on ontology change disposal [1-6]. And they may be

classified into some based on machine learning, some based on logical reasoning and others

based on belief revision. Based on lifecycle of ontology evolution, researchers mainly focus

on finding and managing ontology changes.

Finding ontology changes is responsible to diagnose inconsistency of ontology and reason

or compute matching ontology changes which are used to repair ontology. Technologies from

software code refactoring are used to find structure inconsistency [7, 8]. Properties of

concepts are considered as branch sentence fragments. And concepts are considered as the

whole branch sentences. So code refactoring technology is used to find inconsistency of

ontology such as Single Subconcept, Too Many Subconcepts and Concepts having not any

property. In addition, approach based on graph is used to Cycle Concepts [13]. Also,

reasoning technology is used to find inconsistency of certain logical constraint between

concepts
[12]

. Machine learning technology is used to mine some potential inconsistency such

as Unsatisfied Concepts, Concepts Having Too Instances, etc. For example, clustering

algorithm and Formal Concept Analysis [10] are used to find new concepts and new

hierarchies according to distribution of instances.

In order to make ontology reach to consistency, managing ontology changes is responsible

to decide evolution strategy. After found ontology changes are submitted to ontology,

ontology will properly reach to a new inconsistency. Parsia [9] adds axioms to ontology one

by one until a maximum consistent sub-ontology is got. Analogously, he deletes axioms from

ontology until a minimum inconsistent sub-ontology is got. By search maximum consistent

sub-ontology and minimum inconsistent sub-ontology, the extra, but necessary, ontology

changes are found. Based on the similarity between ontology evolution and knowledge-base

update, belief revision are used to compute ontology changes. Because belief revision [4, 11]

is studied for a long time, some related technologies are easily applied to ontology. But the

gap between closed hypothesis, the keystone of belief revision, and open one, the keystone of

ontology evolution, need be filled up.

7. Conclusion and Future Work

In order to change an ontology concurrently and accurately with less or even without

intervene of humans, we proposed an approach to reconciling multiple ontology change

sequences in collateral environments. In contrast to previous approach, we introduced

expressions to represent ontology change, which declaratively depicts ontology changes. In

addition, our approach can keep more consistent ontology changes while aggregating the

preferences of multiple users than previous approaches. Also a prototype is implemented to

validate the proposed approach.

References

[1] M. Klein, Academisch Proefschrift, Michel Christiaan, Alexander Klein, and J. M. Akkermans. Change

management for distributed ontologies. Technical report. (2004).

[2] P. Haase, F. Van Harmelen, Z. Huang and H. Stuckenschmidt, “A framework for handling inconsistency in

changing ontologies”, Springer, Proceedings of the 4th international conference on The Semantic Web,

(2005), pp. 353-367.

[3] A. Kalyanpur, B. Parsia, E. Sirin and B. Cuenca Grau, “Repairing unsatisfiable concepts in owl ontologies”,

In 3rd European Semantic Web Conference, (2006), pp. 170-184.

[4] N. Foo, “The Ontology Revision”, Proceedings of the 3rd International Conference on Conceptual

Structures, (2011), pp. 16-31.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

Copyright ⓒ 2014 SERSC 129

[5] L. Stojanovic, “Methods and Tools for Ontology Evolution”, PhD thesis, University of Karlsruhe, Germany,

(2004).

[6] P. Haase and L. Stojanovic, “Consistent evolution of owl ontologies”, 2rd European Semantic Web

Conference, (2005), pp. 182-197.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, “Refactoring: improving the design of existing

code”, (2002).

[8] L. Tokuda and D. Batory, “Automating three modes of evolution for object-oriented software architecture”,

Proceedings of the 5th conference on object oriented technologies and Systems, (2009), pp. 189-202.

[9] B. Parsia, E. Sirin and A. Kalyanpur, “Debugging OWL ontologies”, Proceedings of 14th International

Conference on World Wide Web, (2005), pp. 268-293.

[10] A. Maedche and V. Zacharias, “Clustering ontology-based metadata in the Semantic Web”, Proceeding of

the 6th European conference on principles and practice of knowledge discovery in databases, (2012), pp.

348-360.

[11] G. Flouris, D. Plexousakis and G. Antoniou, “Evolving Ontology Evolution”, Proceedings of SOFSEM10,

(2010), pp. 14-39.

[12] L. Stojanovic, “User-driven Ontology Evolution Management”, Proceedings of European Conference

Knowledge and Management, (2012), pp. 285-300.

[13] L. Stojanovic, A. Maedche, N. Stojanovic and R. Studer, “Ontology Evolution as Reconfiguration-Design

Problem Solving”, Proceedings of the 2nd international conference on knowledge capture, (2003), pp. 162-

171.

[14] W. Deng, R. Chen, B. He, Y. Q. Liu, L. F. Yin and J. H. Guo, “A novel two-stage hybrid swarm intelligence

optimization algorithm and application”, Soft Computing, vol. 16, no. 10, (2012), pp. 1707-1722.

[15] Y. Q. Liu, R. Chen, J. Gao and H. Yang, “A Conflict-Resolving Approach to Ontology Evolution in Open

Environments”, Engineering Intelligent Systems, vol. 18, no. 3-4, (2010), pp. 223-231.

Authors

Ke Zhao, lecturer, received the master degree in Control Theory and

Control Engineering from Inner Mongolia University of Technology,

Hohehot, China, in 2006. The main research directions: Semantic Web,

Ontology, Intelligent Control.

Changxian Li, associate professor, received the doctor degree in

Control Theory and Control Engineering from Zhejiang University,

Hangzhou, China, in 2003. The main research directions: Semantic Web,

Ontology, Network of high-speed EMU control technology.

Yannan Sun, lecturer, received the doctor degree in Control Theory

and Control Engineering from Dalian University of Technology, Dalian,

China, in 2007. The main research directions: Semantic Web, Intelligent

Control.

International Journal of Database Theory and Application

Vol.7, No.2 (2014)

130 Copyright ⓒ 2014 SERSC

