
International Journal of Database Theory and Application 

Vol.7, No.1 (2014), pp.93-102 

http://dx.doi.org/10.14257/ijdta.2014.7.1.09 

 

 

ISSN: 2005-4270 IJDTA  

Copyright ⓒ 2014 SERSC  

Discovering Database Replication Techniques in RDBMS 
 

 

Anees Hussain and M. N. A. Khan 

Shaheed Zulifikar Ali Bhutto Institute of Science and Technology (SZABIST), 

Islamabad, Pakistan 

anees.fastian@gmail.com, mnak2010@gmail.com 

Abstract 

Data replication is a key factor to achieve scalability and fault tolerance in databases as it 

maintains several clones of data objects. A change made in data automatically triggers 

carrying out similar changes in each of the replica. A number of data replication techniques 

have been proposed in the contemporary literature due to its large scale application in the 

real world like astronomy, high energy physics and biology. In this study we provide a 

critical analysis of these techniques. 
 

Keywords: Database Replication, Database Replication Strategies, Database 

Transactions, Replica Control, Snapshot Isolation, Scalability, Fault-tolerance, Performance 
 

1. Introduction 

Digital data is considered as the more valuable asset of an organization, and the 

organizations assign more significance to it than the software and hardware assets. 

Database systems are computer-based record keeping systems, which have been 

developed to store data for efficient retrieval and processing [1].  

Data replication is a process in which duplicated data objects are created and 

maintained in a distributed database systems scattered on different locations. 

Replication techniques provide fast and reliable data access and ascertain the 

availability of application from the alternate data access options even if one site 

becomes unavailable. Before forwarding database changes to the remote locations, they 

are captured and stored locally. Replication technique provide access to the local 

database objects instead of remote server which minimizes network traffic and make 

sure fast access to the data. In case of system failure, data replication is much more 

needed because it still works due to the availability of the secondary copy of data and 

user can still continue to query or update the remaining locations. A replication service 

is needed in order to make sure data consistency across the disparate environments. 

Proper data distribution is also very important because it reduces cost of query access 

across the network and application consistency and availability [2].  

Types of Replication 

In distributed databases, there are three types of database replications [3]: 

 

(a) Snapshot Replication:  

This form of replication takes snapshot of data on one server and moves it to another 

server. This technique simply distributes the data as it appears and does not cater for updating 

the data. This method of replication is best suited to the environments where data changes 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

94   Copyright ⓒ 2014 SERSC 
 

rarely occur. Entire database snapshot is created and delivered to subscriber when 

synchronization occurs. Based on the scheduled specified, the entire synchronization snapshot 

is refreshed in published tables periodically through replication. In case of setting-up database 

or its maintenance, it is the easiest way of replication because a table is refreshed each time 

when it requires copying all data. 

 

(b) Transactional replication 

Transactional replication copies data from publisher to subscriber and whenever a 

transaction is made at publisher side, it is delivered to the subscriber. This type of technique is 

useful in server-to-server replication and is known as dynamic replication as it results in 

automated periodic changes in databases. In this case, when data changes occur at the 

publisher side then all the individual transactions made at publisher side are propagated to the 

subscriber. Such applications should require minimal latency i.e., time of the data changes 

made at publisher and arrival of those changes at subscriber end should be low. Changes 

made at subscriber are made read only because they are not updated back to publisher. 

(c) Merge replication 

In the technique of merge replication, data is distributed from publisher to subscriber 

which allows for both the entities to update data whether they are connected or not. However 

when they are connected, updates are merged between the two sites. In merge replication at 

various times multiple subscribers might be updating the same data in server to client 

environment. Changes made at the subscriber end are propagated to the publisher and other 

subscribers receiving data make changes offline and synchronize changes later on. The 

conflict occurrences are resolved by the users for which every subscriber needs different 

partition of data. 

 

2. Literature Review 

Wahid et al., [2] discuss distribution problem of replicated databases and its 

optimization in a computer network. As replication enables data availability in case of 

any site failure and also provides local access of data. This paper presents a bio -

inspired replication management approach which is based on swarm intelligence. It is 

decentralized and suitable. Based on the state of stored data objects, each node has the 

authority to start a redistribution process at any time. In redistribution a node can 

create, update, replicate, delete and move any data object  from one node to other on the 

network. Redistribution process runs in the background with lower priority and it 

dynamically balance the load. The replication model which is introduced in this paper 

has n nodes and each data object is replicated to different nodes. Data objects are 

dynamically created at each node and accessed frequently which reduces response time 

and inter node communication. Each data object is deleted if it is not being used for a 

long time and allocation of these replication are not known to others, or each node has 

knowledge of only its local state and don’t know about its replica. This system is 

decentralized and each node trigger event if any transaction (query or update) occurs 

and these events modify the internal state (accessed data object). If any update is made 

to the replicated databases then these must be synchronized. During replication 

mechanism updates are propagated in the background by swarms of specialized pogo 

ants. System described in this paper tells that each event runs in background and results 

in dynamic load balancing. But this approach faces the challenge of diverging replicas 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

Copyright ⓒ 2014 SERSC   95 
 

and conflicts between concurrent operations and it is thus applicable for those 

applications that tolerate occasional conflicts and inconsistent data. 

Chen et al., [3] discuss structure for grid databases replication. As database 

replication enables data availability, fault tolerance and minimal access time in grids. 

Most systems that use grid replication now-a-days deals with only read files. Some of 

the relational database products offer transaction based replication but these tools 

cannot cope with the grid issues. The approach discussed in this paper provides 

metadata registry using grid mechanism and also makes replicas of data resources. The 

transaction based replication is managed by high level APIs. A framework named 

OGSADAI manages replication running across multiple domains. This paper presents 

transaction based grid (database replication) framework in which registration of Meta 

data mechanism is employed which helps in finding data resources and their existing 

replicas. The consistency which is achieved between the data source and its replica in 

RDBMS is achieved by a unified API. It also handles the changes made to data. So grid 

replication model and relational databases replication model is integrated into each 

other. In GDRM (Grid Database Replication Model) replication control services 

manages the replication actions which are also grid services. Whereas the meta -data 

information of data and their replicas are stored in metadata registry and grid transfer 

mechanism is handled by transfer services. Various mechanism of relational database 

replication like DB2, Oracle, MS SQL Server as a plugin can be used in the model 

which will monitor replication process and synchronizes if data updates. This model 

will help users to select favorable replication mechanism according to their replication 

requirements and concrete operational conditions. 

According to Correia et al., [4] databases do not provide enough support for third 

party replication, therefore, it compels either to modify or develop a server in 

middleware (server wrapper) that will capture client demands. But it is quite difficult to 

modify server and port it because server source code is not available to a normal user or 

developers. If the middleware wrapper works then it can easily redirect the client 

requests to its designated underlying RDBMS which results in performance overhead 

because it introduces an additional communication step and it also needs a large 

development effort. This problem is addressed by GAPI (GORDA application 

programming interface) which helps in the implementation of different replication 

strategies and deploy them in RDBMS. It is cost effective and enables reuse of 

replication protocols and components and it also allows close coupling with RDBMS 

intervals. This paper addresses the issues and proposes an interface and architecture 

(reflective), which represents transaction processing that by external replication 

protocol that can be modified and observed. It also tells how different replication 

algorithms are suitable to proposed Model. Secondly it also discusses that the interface 

is implemented on the architecture (Apache Derby, Sequoia server wrapper and 

Postgress SQL), which shows how cost effective and viable this approach is. Finally the 

Postgress SQL prototype is benchmarked using TPC-W industry standard and results 

shows that still it gives better results though the server architecture is different and 

miss-match. 

In [5], Goel and Buyya state that replication is one of the known phenomena in 

which copies of data are stored at different locations. In a distributed environment 

through replication technique data is accessed efficiently. Replication provides data 

consistency and availability each time without bothering failure of any site because of 

its data replicas. If any request of data access is originated, it finds its closely located 

replica which increases performance of system. In case if the query is  read only then 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

96   Copyright ⓒ 2014 SERSC 
 

replication increases performance but if the query needs some update request process 

then performance is not that much achieved because it also has to maintain consistency 

between the replicas. With the passage of time nature of computing is getting complex 

which creates challenging problems (Replication Environment).  Quorum Based 

replication is also one of the protocol that replication uses. In this case a small subset of 

replica is updated and assigned a vote of non-negative. Vote assigned is based on 

certain threshold on read and write operation. Non quorum has guarantee of at least one 

data item (copy) between the read (quora) and write (quora), which avoids read/write or 

write/write conflicts. Synchronous Replication and Asynchronous Replication are the 

types of replication protocols. In synchronous systems before the transaction commits 

all the replicas are updated. Updates made to server data is similar to the changes made 

at each replica within the same time generating serialize able schedule throughput the 

domain. This paper gathers and discusses multiple replication strategies that play a vital 

role in different architectures. It also helps people working in different domains, to use 

replication strategies discussed in distributed systems. It also presents a comparative 

study of different existing replication theories and shows in a certain domain, which 

theory best suits. 

Daudjee et al., [6] shows how global SI in lazily synchronized replicated databases 

system takes advantage of local snapshot Isolation concurrency control ensures the 

order of update transaction. Start and commit transaction schedule is captured and 

concurrency control of transaction is make sure which took place at one site and these 

updates are installed at the replicated systems. One of the key draw back in global SI is 

that a client cannot see its own updates. Strong snapshot Isolation gives transactional 

guarantee. This paper discuss that a lazy replicated which guarantees global strong SI is 

costly and it cannot stop transaction inversion, whereas strong session SI within the 

client session can prevent transaction inversion but does not across session. In weak SI 

if data is fully replicated on secondary sites. Clients usually connect to the one of 

secondary site and request for a transaction. From the client request it is made clear that 

which transaction is read only and which transactions need to update the data. Those 

transactions which are read only, they are executed at the secondary site and secondary 

site forwards update transactions to the primary site and they executes there. Updating 

made at primary site is forwarded to secondary sites and they update them accordingly. 

Using a simulation model an experiment is conducted to find strong-session-SI 

algorithm effectiveness with respect to transaction response time and throughput. Two 

more algorithms are used to find the comparison between strong SI. Experiment showed 

that algorithm weak snapshot isolation simply forwards the transactions to primary for 

execution which shows global weak snapshot isolation where secondary site executes 

read only transaction. This paper discusses an algorithm and an architecture which in 

lazy replicated systems maintains global weak snapshot isolation by taking advantage 

of local concurrency controls. Strong session SI shows that how it can be used to 

prevent transaction in lazy replicated database systems. 

Sears et al., [7] propose a database replication engines which provides high 

throughput regardless of database size and query content. Three components are 

examined in order to perform lookups. In order to find match it starts from the in 

memory component and it moves to a larger tree (out of date) till match found. Two on 

disk lookups are involved till a merge is going on and there is much more probability of 

three lookups. The first contribution of Rose is the use of compression in order to 

increase throughput (merge). The number of sequential I/O that a merge required is 

reduced by compression techniques and it deals extra computational power for limited 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

Copyright ⓒ 2014 SERSC   97 
 

storage bandwidth. The number of searches which a storage system provides and page 

cache hit ratio determines the lookup performance and page cache effective size is 

increased by Rose’s compression. Secondly, the application of LSM trees reduces 

workload of data replication to a great extent. To take advantage of LSM trees (write 

throughput), replication environment should not compel Rose to get the overwritten 

values pre images. The operations of Rose are concurrent where the readers and writers 

working independently in order to avoid blocking live lock and deadlocks. Tuples are 

stored by Rose in a sorted format which simplifies the compression and offers a 

member of new optimization opportunities. The Rose’s primary bottleneck is  

compression which reduces sequential I/O. This paper has also presented the using of 

snapshot consistency in order to give concurrency control for LSM trees. The new 

approach of database replication discussed in this paper provides strength of LSM-

Trees by avoiding searches of indexes during updates. 

Agrawal et al., [8] discuss the mechanism of implementing view and indexes used in 

large scale distributed databases. In web applications one of the critical issues is 

minimizing the update latency for which proper maintenance of views and updates is 

very important. Keeping in mind and examining the design space, two types of 

implementation views are proposed and those are RVTs (Remote View Tables) and 

LVT (Local View Tables) which provides tradeoff between throughputs of system and 

minimizing view moldiness. This paper also discusses how to make such efficient table 

view, selection views, equijoin view and group by aggregate views. A model is also 

introduced in this paper which analyzes the consistency and it also helps developers to 

efficiently maintain views, and how these views helps in improving the evaluation cost 

of complex queries. The approach discussed is to defer expensive maintained of view 

till the completion of base updates and clients on their updates experience low latency. 

But maintenance of deferred view also introduces some challenges which are i) A 

scalable architecture must be developed in order to maintain querying views and store 

ii) It is not possible to abort already committed transactions  of client which has updated 

the base table iii) Views must provide consistency guarantees that might be out of date 

in complex ways iv) As data is replicated to different data centers, so there is also need 

of efficiently replication of views. One of the benefits of PNUTS architecture is that of 

scalability and according to the need more servers are added. It discusses maintenance 

of an asynchronous view in a very large scale distributed database which is horizontally 

partitioned. The contribution made is as under; for the maintenance of deferred views, 

two mechanisms are introduced which are local tables and remote view tables. Secondly 

different kind of characters of such indexes and views are maintained by the 

mechanism. A consistent model is made for view which can maintain it asynchronously. 

Then experimental cost is evaluated about the local and remote view and for their 

maintenance and the benefits in query optimization. 

Calvin (a fast distributed transaction system) proposed by Thomson et al., [9] 

schedules the transaction. It is also a data replication layer that generates the ordering 

which prohibits content cost in distributed transactions. Calvin also supports like disc 

based storage, scales nearly and it also does not have single point of failure . Calvin also 

supports consistency levels (multiple) by replicating the inputs of transactions. It also 

supports consistency to the distant replicas which are located far away geographically 

and transaction throughput remains the same. Calvin is designed to provide full ACID 

(Atomicity Consistency Isolation Durability) transactions. It runs alongside a storage 

system which is non-transactional that shares nothing and it is near linearly, which 

provides high availability. Calvin provides a layer which is above storage system and 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

98   Copyright ⓒ 2014 SERSC 
 

distributed transactions are scheduled by this layer. This layer also does the network 

communication and replication in the system. One of the major contributions of this 

paper is the design of layer which schedules the transactions and data replication. This 

layer transforms non transactional system (storage) into shared nothing database system 

(near linearly scalable) which provides strong consistency, high availability and ACID 

(full) transactions. Secondly the concurrency control protocol (deterministic) which is 

more scalable as compared to the previous approaches and it has data pre -fetching 

mechanism which plans before the transaction executes, that allows operation of 

transaction on disk residing data. Calvin determinism along with the fast check pointing 

scheme guarantees complete removal of physical redo logging and the overhead 

associated with it. In case if any hardware failure occurs, Calvin handles it by 

recovering the crashed machine from its most recent complete snapshot and replies to 

the most recent transaction. 

Serrano et al., [10] discuss the performance gain which is achieved by partial 

replication configurations is analyzed analytically, like the configuration of all sites 

which does not store all data. A partial replication protocol is also derived which 

provides 1-copy snapshot isolation, which is correctness criteria. Research done tries to 

overcome the limitations of scalability. 1-copy-serializability is the correct criterion 

that provides full database replication. Read/write conflicts occur in optimistic 

replication protocol which results in transaction abort whereas low concurrency is 

resulted by suspicious protocols. Snapshot Isolation controls the multi version 

concurrency and when the transaction starts a snapshot is generated. The solution 

provided by this paper helps in increasing the scalability (replication) issues. An 

analytical model presented helps in increasing the number of replicas in partially 

replicated databases. For partially replicated databases an eager replication protocol is 

proposed which is based on snapshot isolation. In this protocol different transactions at 

different sites are executed and protocols handle distributed transactions efficiently.  

A partial replication protocol is introduced by Armendáriz et al., [11] that provides a 

view (consistent) of database that provides adaptive replication technique which 

supports failures and recovery of replicas. Distributed databases provide services to a 

great number of users and become an attractive approach. A certification based 

technique is discussed in which each site itself determines whether the delivered 

transaction should be committed or aborted. If there does not exist any concurrent 

conflict in the system then the transaction is committed. It also discusses and algorithm 

for partial replication which is called SIPRe which provides Generalized Snapshot 

Isolation (GSI). Execution of distributed transactions is supported by SIPRe algorithm. 

Some operations of transactions are submitted to other replicas because partitioning is 

not done flawlessly accordingly. 

A new workload aware approach for database replication and partitioning is 

presented by Curino et al., [12] which improves scalability in shared-nothing databases 

(distributed). In OLTP (Online Transaction Processing) settings as distributed 

transactions are quite costly. The partitioner discussed in this paper reduces number of 

transactions in distributed systems which results in balanced partitioning. Schism has 

two phases. The first one is workload driven which is a graph based replication phase. 

It creates a graph (with a node per tuple) and between nodes there are edges through 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

Copyright ⓒ 2014 SERSC   99 
 

which the transaction accesses nodes and a balance partitioning is done by the 

partitioner which results in less number of cross partition transactions. The second 

phase is validation and explanation phase which uses machine learning techniques to 

find partitioning strategy explanation. Schism present in this paper is a partitioning 

system which is graph based and it does partitioning depending on the transactional 

workload. Graph presents database and workload where nodes represents tuples and 

edges represent transaction and graph partitioning algorithm is applied to find balanced 

partitioning. Schism also shows that it can also create replicas of records that are 

frequently updated, so in other words a portion of tables is also replicated by this 

approach. It does partitioning well if data sets are large and partitioning of millions of 

tuples is done in minutes. 

Garcia et al., [13] talk about BFT (Byzantine fault tolerance) database replication 

middleware (Byzantium) which gives semantics of snapshot isolation. BFT is the first 

database system which allows concurrent execution of transactions without relying on 

centralized component which provides better performance as well as robustness. Though this 

replication protocol gives moderate results on read-write workload but in case of read-only 

workload it gives much better results compared to a non-replicated database. This approach 

also works well in finding software bugs and tackles malicious attacks very responsibly. 

Another benefit is the concurrent execution of transactions without relying on the primary 

storage. In Byzantium there are different design features which are useful beyond database 

replication like snapshot isolation, replication based on middleware, execution of optimistic 

group of operations and striping with BFT replication. It also allows different vendors to 

implement their techniques in database replication environment without affecting or 

modifying them, which further improves the security checks. After evaluating Byzantium 

results it is showed that it gives 90% better results in read only workload compared to the 

database systems that does not provide replication. 

Digital forensics also requires support for databases which need to be replicated for data 

integrity. Khan et al., [14, 15] proposed a machine learning approaches for post-event 

timeline reconstruction. The proposed techniques however are based on static analysis of the 

data enclosures. Khan [16] suggests that Bayesian techniques are more promising than other 

conventional machine learning techniques for timeline reconstruction. Rafique and Khan [17] 

explored various methods, practices and tools being used for static and live digital forensics. 

Bashir and Khan [18] looked into triaging methodologies being used for live digital forensic 

analysis. Shahzad et al., [19] use database support for protection against zero-day 

malware attacks. Khan et al., [20] implemented storage pattern in the OR mapping 

framework, and Ali and Khan [21] proposed an ICT infrastructure framework for 

microfinance institutions. Shehzad and Khan [22] looked into the methods for 

integrating knowledge management with business intelligence processes. Umar and 

Khan [23, 24] suggested a fFramework to separate non-functional requirements. Khan 

and Khan [25] proposed an Internet content regulation framework by using a blacklist 

database. 

 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

100   Copyright ⓒ 2014 SERSC 
 

3. Critical Analysis 

The critical analysis of the data replication techniques of RDBMS is provided in Table I.  

 

Table 1. Summary of Database Replication Techniques in RDBMS 

Research Topic Author (s) Strengths Limitations 

Adaptive Distributed 

Database Replication 

Through Colonies of 

Pogo Ants 

Abdul-

Wahid et al., 

[2] 

It optimizes distribution of 

partially replicated databases in 

network systems which minimizes 

inter node communication and 

gives better response time and 

enables dynamic addition of 

replicas. 

Though it is event driven 

system, but it does not 

synchronizes the learning 

process with events. 

Transaction Based 

Grid Database 

Replication 

Chen et al., 

[3] 

Existing grid mechanism is used 

to provide metadata registry and it 

defines high level APIs which 

manages transaction based 

replication across multiple 

domains and legacy software’s are 

also moved to grid smoothly.  

API of this framework is not 

generic enough to cope with 

systems from different 

vendors and optimization 

related to memory or 

processing is not discussed. 

GORDA: An Open 

Architecture for 

Database Replication 

Correia et 

al., [4] 

It provides third party replication 

introducing a middleware wrapper 

without modifying the database 

server. It does better solutions on 

PostgreSQL. 

Some architecture does not 

provide expected results 

when the middleware 

interface is implemented on 

them like apache derby and 

sequoia. 

Data Replication 

Strategies in wide area 

distributed systems 

Goel & 

Buyya [5] 

It gathers and presents different 

replication strategies in different 

architectural domains and 

recommends its applicability 

depending on the nature of 

domain (distributed, p2p, data 

grid, and www).  

It gives a better replication 

comparison of distributed, 

p2p, data grid and www but 

does not recommend a 

specific technique that gives 

better results. 

Lazy Database 

Replication with 

Snapshot Isolation 

Daudjee et 

al., [6] 

Algorithm and architecture 

discussed in this paper prevents 

transaction inversion in lazy 

replicated database systems. It 

also provides better results on read 

only queries. 

In case of read-write queries 

snapshot isolation takes too 

much time in transaction 

execution. 

Rose: Compressed, log 

structured replication 

Sears et al., 

[7] 

Rose is a database replication 

engines which provides high 

throughput regardless of database 

size and query content.It is 

particularly designed to run real 

time decision support and 

analytical processing queries. 

Compression is the primary 

bottlenecks in Rose which 

reduces sequential I/O that 

results in less number of 

queries executed in a specific 

time. 

Asynchronous View 

Maintenance forVLSD 

Databases 

Agrawal et 

al., [8] 

This mechanism enables better 

Implementation and maintenance 

of views and indexes in massive 

scale databases and solves 

complex queries.  

Maintenance of complex 

views and index requires 

resources (memory and 

processing) and in small 

scale databases it does not 

provide better results. 

Calvin: Fast 

Distributed 

Transactions 

for Partitioned 

Database Systems 

Thomson et 

al., [9] 

It is a data replication and 

transaction scheduling layer that 

works well in distant geographical 

replicas and has no single point of 

failure providing Atomicity, 

Consistency, Isolation and 

As replicas are located at 

distant geographically areas 

so it does not perform well in 

HATs (Highly Available 

Transactions). 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

Copyright ⓒ 2014 SERSC   101 
 

durability to transactions. 

Boosting Database 

Replication Scalability 

through Partial 

Replication and 

1-Copy-Snapshot-

Isolation 

Serrano et 

al., [10] 

This mechanism does better 

configuration of partially 

replicated data bases which gives 

better results providing scalability. 

Probabilities of data miss at 

specific node increases 

because each systems 

contains partial replica of 

database.  

SIPRe: A Partial 

Database Replication 

Protocol with 

SIReplicas 

Armendáriz-

Inigo et al., 

[11] 

A certification based technique 

enables each site to determine 

whether the delivered transaction 

should be committed oraborted. 

If a site takes wrong decision 

regarding commits or aborts 

then inconsistency creates in 

the entire database. 

Schism: a 

WorkloadDrivenAppr

oach to 

Database Replication 

and Partitioning 

Curino et al., 

[12] 

Schism is a graph based workload 

aware system which does 

partitioning based on transactional 

workload which reduces number 

of transactions in distributed 

systems. 

Setting of schism in OLTP 

(Online transaction 

Processing) is costly and it is 

not effective in large datasets 

for analytical queries. 

Efficient Middleware 

for ByzantineFault 

Tolerant Database 

Replication 

Garcia et al., 

[13] 

BFT (middleware replication) is 

the first database system which 

allows concurrent execution of 

transactions without relying on 

centralized component that 

provides better performance as 

well as robustness. 

This replication protocol 

gives moderate results on 

read-write workload. 

 

4. Future Work 

Most of the contemporary research on database replication highlights different models and 

techniques which are used to improve data replication in different systems. Each technique 

has its own advantages and limitations. As a future dimension to this research, we intended to 

propose a technique for database replication which could overcome performance issues. The 

focus would be to improve data replication in relational database management systems 

especially in distributed systems. 

 

5. Conclusion 

In this paper we have tried to present a review on database replication techniques used in 

RDBMS. This review can be useful to comprehend the pros and cons of the existing 

techniques while implementing a new technique in an effective manner keeping in mind 

limitations of different database replication techniques. Based on their utility and efficiency 

(throughput and response time) the merits of existing techniques are also critically analyzed. 
 

References 
 
[1] M. Khan and M. N. A. Khan, “Exploring Query Optimization Techniques in Relational Databases”, 

International Journal of Database Theory & Application, vol. 6, no. 3, (2013). 

[2] S. Abdul-Wahid, R. Andonie, J. Lemley, J. Schwing and J. Widger, “Adaptive Distributed Database 

Replication Through Colonies of Pogo Ants”, In Parallel and Distributed Processing Symposium, 

2007.IPDPS 2007. IEEE International, (2007) March, pp. 1-8, IEEE. 

[3] Y. Chen, D. Berry and P. Dantressangle, “Transaction based grid database replication”, In Proceedings UK e-

Science All Hands Meeting, (2007) July, pp. 166-173. 

[4] A. Correia, J. Pereira, L. Rodrigues, N. Carvalho, R. Vilaça, R. Oliveira and S. Guedes, “GORDA: An open 

architecture for database replication”, In Network Computing and Applications, 2007 Sixth IEEE 

International Symposium on NCA, (2007) July, pp. 287-290, IEEE. 

[5] S. Goel and R. Buyya, “Data replication strategies in wide area distributed systems”, Enterprise Service 

Computing: From Concept to Deployment, vol. 17, (2006). 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

102   Copyright ⓒ 2014 SERSC 
 

[6] K. Daudjee and K. Salem, “Lazy database replication with snapshot isolation”, In Proceedings of the 32nd 

international conference on Very large data bases, (2006) September, pp. 715-726, VLDB Endowment. 

[7] R. Sears, M. Callaghan and E. Brewer, “Rose: Compressed, log-structured replication”, Proceedings of the 

VLDB Endowment, vol. 1, no. 1, (2008), pp. 526-537. 

[8] P. Agrawal, A. Silberstein, B. F. Cooper, U. Srivastava and R. Ramakrishnan, “Asynchronous view 

maintenance for VLSD databases”, In Proceedings of the 2009 ACM SIGMOD International Conference on 

Management of data, (2009) June, pp. 179-192, ACM. 

[9] A. Thomson, T. Diamond, S. C. Weng, K. Ren, P. Shao and D. J. Abadi, “Calvin: fast distributed transactions 

for partitioned database systems”, In Proceedings of the 2012 ACM SIGMOD International Conference on 

Management of Data, (2012) May, pp. 1-12, ACM. 

[10] D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris and B. Kemme, “Boosting database replication scalability 

through partial replication and 1-copy-snapshot-isolation”, In Dependable Computing, 2007 13th Pacific Rim 

International Symposium on PRDC, (2007) December, pp. 290-297, IEEE. 

[11] J. E. Armendáriz-Inigo, A. Mauch-Goya, J. R. de Mendívil and F. D. Muñoz-Escoí, “SIPRe: a partial 

database replication protocol with SI replicas”, In Proceedings of the 2008 ACM symposium on Applied 

computing, (2008) March, pp. 2181-2185, ACM. 

[12] C. Curino, E. Jones, Y. Zhang and S. Madden, “Schism: a workload-driven approach to database replication 

and partitioning”, Proceedings of the VLDB Endowment, vol. 3, no. 1-2, (2010), pp. 48-57. 

[13] R. Garcia, R. Rodrigues and N. Preguiça, “Efficient middleware for byzantine fault tolerant database 

replication”, In Proceedings of the sixth conference on Computer systems, (2011) April, pp. 107-122, ACM. 

[14] M. N. A. Khan, C. R. Chatwin and R. C. Young, “A framework for post-event timeline reconstruction using 

neural networks”, digital investigation, vol. 4, no. 3, (2007), pp. 146-157. 

[15] M. N. A. Khan, C. R. Chatwin and R. C. Young, “Extracting Evidence from Filesystem Activity using 

Bayesian Networks”, International journal of Forensic computer science, vol. 1, (2007), pp. 50-63. 

[16] M. N. A. Khan, “Performance analysis of Bayesian networks and neural networks in classification of file 

system activities”, Computers & Security, vol. 31, no. 4, (2012), pp. 391-401. 

[17] M. Rafique and M. N. A. Khan, “Exploring Static and Live Digital Forensics: Methods, Practices and Tools”. 

[18] M. S. Bashir and M. N. A. Khan, “Triage in Live Digital Forensic Analysis”, International journal of Forensic 

Computer Science, vol. 1, (2013), pp. 35-44. 

[19] A. Shahzad, M. Hussain and M. N. A. Khan, “Protecting from Zero-Day Malware Attacks”, Middle-East 

Journal of Scientific Research, vol. 17, no. 4, (2013), pp. 455-464. 

[20] M. N. A. Khan, A. Shahid and S. Shafqat, “Implementing a Storage Pattern in the OR Mapping Framework”, 

International Journal of Grid & Distributed Computing, vol. 6, no. 5, (2013). 

[21] S. S. Ali and M. N. A. Khan, “ICT Infrastructure Framework for Microfinance Institutions and Banks in 

Pakistan: An Optimized Approach”, International Journal of Online Marketing (IJOM), vol. 3, no. 2, (2013), 

pp. 75-86. 

[22] R. Shehzad, A. Khan and M. Naeem, “Integrating Knowledge Management with Business Intelligence 

Processes for Enhanced Organizational Learning”, International Journal of Software Engineering & Its 

Applications, vol. 7, no. 2, (2013). 

[23] M. Umar and n. A. Khan, “Analyzing Non-Functional Requirements (NFRs) for software development”, 

2011 IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS), (2011) 

July, pp. 675-678, IEEE. 

[24] M. Umar and M. N. A. Khan, “A Framework to Separate Non-Functional Requirements for System 

Maintainability”, Kuwait Journal of Science & Engineering, vol. 39, no. 1B, (2012), pp. 211-231. 

[25] A. A. Khan and M. Khan, “Internet Content Regulation Framework”, International Journal of U-& E-Service, 

Science & Technology, vol. 4, no. 3, (2011). 


