
International Journal of Database Theory and Application

Vol.7, No.1 (2014), pp.11-24

http://dx.doi.org/10.14257/ijdta.2014.7.1.02

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2014 SERSC

An Intelligent Method for Test Data Generation Based on Optimized

Interval Arithmetic

Ying Xing
1,2

, Yun-Zhan Gong
1
, Ya-Wen Wang

1,3
 and Xu-Zhou Zhang

1

1
State Key Laboratory of Networking and Switching Technology, Beijing University of

Posts and Telecommunications, Beijing, 100876, China
2
Liaoning Technical University, Huludao, 125105, China

3
State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, 100190, China

Abstract

Path-oriented test data generation is in essence a Constraint Satisfaction Problem solved

by search strategies, among which backtracking algorithms are widely used. In this paper,

the backtracking algorithm Branch & Bound is introduced to generate path-oriented test data

automatically. A model based on state space search is proposed to construct the search tree

dynamically. Aiming at the programs containing constraints of strongly related variables

even equalities, the static analysis technique interval arithmetic is optimized for the precise

judgment of the assignment to each variable. The analysis on conflict is made accurate via

distance for further domain reduction, thus ensuring the precise direction of the next search

step. Experiments show that the proposed method outperformed other methods used in static

test data generation. Specifically, it produces excellent results when variables are strongly

related even when they are in equalities, and generation time increases stably and linearly

with the increment of number of expressions including both equalities and inequalities.

Keywords: test data generation; Constraint Satisfaction Problem; Branch & Bound; state

space search; interval arithmetic

1. Introduction

Software testing plays an irreplaceable role in the process of software development,

because it is an important stage to guarantee software reliability [1, 2]. And as the most

important coverage testing [3], the automation of path-oriented test data generation is crucial

in the testing process [4]. It can be solved by many methods [5-16], wherein the static method

[5-9] is an important branch. Due to its utilization of static analysis techniques including

symbolic execution [17, 18] and interval arithmetic [19, 20] without actually executing the

program under test (PUT), the process of generating test data is definite with relatively less

cost. It abstracts the constraints to be satisfied, and propagates and solves these constraints to

obtain the test data. When the variables in the constraints are weakly related, test data can be

generated rather well [21]. But when the variables are strongly related especially in equalities

[22], the constraints become difficult to solve, which in turn poses problems in generating test
data for PUTs containing this kind of constraints.

In this paper, we propose a new method for static test data generation based on our previous

work, which tests programs written in C programming language with complex data structure.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

12 Copyright ⓒ 2014 SERSC

Solving the constraints containing strongly related variables even equalities is our focus. The
main contribution of this paper is as follows.

1) The problem of path-oriented test data generation is defined as a Constraint Satisfaction

Problem(CSP), the solution space is represented as state space, and the backtracking

algorithm Branch & Bound (BB) is introduced to solve the constraints.

2) Aiming at the difficulty in solving the constraints containing strongly related variables

including equalities, interval arithmetic is enhanced to judge the assignment to each

variable more precisely. The analysis on conflict is made accurate via distance for the
further domain reduction in the next search step.

The rest of this paper is organized as follows. Section 2 provides the background underlying

our research. Section 3 illustrates the proposed search algorithm in detail. Optimized interval

arithmetic is described in Section 4 with a case study. Experimental analyses and empirical

evaluations on the proposed algorithm are presented in Section 5. Section 6 concludes this
paper and highlights directions for future research.

2. Background

Many forms of static test data generation make reference to the control flow graph (CFG) of

the PUT [23]. In this paper, a CFG for a program P is a directed graph G=(N, E, i, o), where N

is a set of nodes, E is a set of edges, and i and o are respective unique entry and exit nodes to

the graph. Each node n∈N is a statement in the program, with each edge e=(nr, nt)∈E

representing a transfer of control from node nr to node nt. Nodes corresponding to decision

statements such as if statements are branching nodes. Outgoing edges from these nodes are

referred to as branches. A path through a CFG is a sequence p=(n1,n2,…,nq), such that for all r,

1≤r<q, (nr,nr+1)∈E.

A path p is regarded as feasible if there exists a program input for which p is traversed,

otherwise p is regarded as infeasible. The path-oriented test data generation problem can be

reformulated as a CSP [24]. X is a set of variables {x1, x2,…, xn}, D={D1, D2,…, Dn} is a set of

domains[25,26] (a domain is composed of one or more intervals and an interval is a continuous

range of values), and Di∈D (i=1,2,…,n) is a finite set of possible values for xi. For each path, D

is defined based on the variables’ acceptable ranges. One solution to the problem is a set of

values to instantiate each variable inside its domain denoted as  , ,...,1 1 2 2 n nx V x V x V ,

Vi∈Di to make path p feasible. To be specific, each constraint defined by the PUT along p

should be satisfied. In static analysis, the feasibility of a path is judged by the result of interval

arithmetic. To be more exact, the path is feasible only when all the constraints along the path

are satisfied, which is the very reason why we optimize interval arithmetic to be more precise.

To better illustrate path-oriented test data generation, a simple example with a program test1

and its corresponding CFG are shown in Figure 1, where if_out_4, if_out_5, and exit_6 are

dummy nodes. Adopting statement coverage, there is one path to be traversed, which is Path

1:0→1→2→3→4→5→6 as shown in bold．The numbers along the paths denote nodes rather

than edges of the CFG. To cover Path 1, we need to select V={V1,V2} from {D1,D2} for x1 and

x2, so that when executing test1 using {V1,V2 } as an input, the path traversed is Path1. There

are two branching nodes if_head_1 and if_head_2 along Path1, and two corresponding

branches T_1 and T_2 containing the constraints to be satisfied.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 13

entry_0

if_head_1

if_head_2

if_out_4

exit_6

stmt_3

if_out_5

 void test1(int x1, int x2)

1{ if(x1+x2==100)

2 if(x1-x2==20)

3 printf("Solved! ");

 }

0

T_1

T_2 F_4 F_6

5

3

7

Figure 1. Program test1 and its corresponding CFG

A CSP is generally solved by search strategies, among which backtracking algorithms [27]

are widely used. In this paper, the process of exploring the solution space is represented by

state space search [28] in artificial intelligence. This representation will facilitate the

implementation of the search methods. With the aid of intelligent rules for selecting nodes to

explore and pruning those that do not lead to a solution, the complexity of the search can be

drastically reduced as compared to that of an exhaustive or enumerative search.

BB [29] is introduced to tackle the problem mentioned above, which is an efficient

backtracking algorithm for searching the solution space of a problem. Considering that one

solution is enough for path-oriented test data generation, Best-First-Search is our first choice.

To find the 'Best', permutation of variables is required for branching to prune the branches

stretching out from unneeded variables. Besides, as the domain of a variable is a finite set of

possible values which may be quite large, bounding is necessary to cut the unneeded or

infeasible solutions. Bounding is the focus of this paper and we propose Best-First-Search

Branch and Bound (BFS-BB) to generate the test data automatically.

All the variables involved in BFS-BB are symbolic variables. During the search process,

variables are divided into three sets: past variables (short for PV, already instantiated), current

variable (now being instantiated), and future variables (short for FV, not yet instantiated). In

addition, although the experiments were carried out on programs of different data types,

integer variables are used as example in the following algorithms in order to simplify the

explanations.

3. The Search Algorithm

3.1 State space search

The state space is a quadruple(S, A, I, F), where S is a set of states, A is a set of arcs or

connections between the states that correspond to the steps or operations of the search at

different states, I is a non-empty subset of S denoting the initial state of the problem, and F is a

non-empty subset of S denoting the final state of the problem.

A state is a tuple (Precursor, Variable, Domain, Value, Type, Queue). In a certain stage of

the search process, for current state Scur, Precursor provides a link to the previous state;

Variable=xi∈X(i=1,2,…,n) is the current variable; Domain=Dij  Di∈D, (i=1,2,…,n;

j=1,2,…,m) in the form of [min, max] is the set of possible values that may be selected to

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

14 Copyright ⓒ 2014 SERSC

instantiate Variable, where min and max are the lower and upper bounds respectively;

Value=Vij∈Dij is a value selected from Domain; Type marks the type of state which might be

active, extensive or inactive; and Queue is a sequence of variables corresponding to Scur.

State space search is all about finding one final state in a state space (which may be

extremely large). 'Final' means that every variable has been instantiated with a definite value

and the path to be traversed is proved to be feasible with all these values by interval arithmetic.

At the start of the search Precursor is null, and when Queue is null the search ends. The path

made up of all the extensive nodes in the search tree makes the solution path. The process of

generating test data for path p takes the form of state space search. The state space needs to be

searched to find a solution path from an initial state to a final state. We can decide where to go
by considering the possible moves from the current state Scur and trying to look ahead.

3.2 Details of the proposed algorithm

The idea of our algorithm is to extend partial solutions. At each stage, a variable in FV is

selected and assigned a value from its domain to extend the current partial solution. Interval

arithmetic evaluates whether such an extension may lead to a possible solution of the CSP and

prunes subtrees containing no solutions based on the current partial solution. The algorithm

BFS-BB is expressed by pseudo-code as follows with two stages, which are initialization and

state space search.

Algorithm1. Best-first-search branch and bound

Input p : the path to be traversed

Output result <Variable, Value>: test data making p feasible

Stage 1: Initialization

1: result <Variable, Value> = null;

2: Q1←permutate FV;
3: x1←head (Q1);

4: select V11∈D11 for x1;

5: initial state= (null, x1, D11, V11, active,Q1);
6: Scur= initial state;

Stage 2: State space search

Begin

7: foreach Scur =(Pre, xi, Dij, Vij, active, Qi) do

8:successful=false;

9: call algorithm2. Optimized interval arithmetic;
10: if (successful= =false)

11: if(|Dij|= =1||j>=m)

12: Scur = (Pre,xi, Dij, Vij, inactive, Qi);
13: Pre = Scur;

14: Scur = (Pre, xi, Dij, Vij, active, Qi);

15: remove<xi,Vij> from result;

16: remove xi from PV;

17: else j++;

18: if(distance<0)
19: Dij=[Vij+1, Vij+|distance|];

20: else Dij=[Vij-|distance|,Vij-1];

21: select Vij∈Dij for xi;

22: Scur = (Pre ,xi, Dij, Vij, active, Qi);

23: else Scur = (Pre ,xi, Dij, Vij, extensive, Qi);

24: add < xi, Vij > to result;

24: update FV;

25: Qi←permutate FV;
26: if(Qi!=null)

27: xi←head (Qi);

28: select Vi1∈ Di1 for xi;

29: Pre= Scur;

30: Scur =(Pre ,xi,Di1,Vi1,active, Qi);
31: else Scur =final state;

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 15

32: endfor

33: return result;

End

The first stage is to perform the initialization operations. At first, the table result storing test

data is null. All the relevant variables in FV are permutated to form a queue Q1 and its head x1

is determined to be the best or the first variable to be instantiated. The initial value V11 is

selected from the domain D11. With all these, the initial state is constructed as (null, x1, D11, V11,
active, Q1), which is also the current state Scur.

The second stage implements state space search. On constructing each state, Type is active,

Queue=Qi, and Variable= xi is the head of Qi. To each current state (Pre, xi, Dij, Vij, active, Qi),

optimized interval arithmetic is carried out to determine the direction of the next search step. If

it succeeds, Type becomes extensive, variables in FV will be permutated to get Queue= Qi, Scur

becomes Precursor, and the head of Qi will be Variable of next state. With all these, a new

state can be constructed for which to continue interval arithmetic. If after the conduction of

interval arithmetic, no variable needs to be permutated, then all the variables have been
assigned the right values to make p feasible. result is returned as the test data .

If the interval arithmetic for a certain state meets a conflict, then Type remains active,

analysis on the conflict information is utilized to reduce Dij, where Value is reselected for xi. In

that case, the search will expand to a state with a different value for the same variable. If all

values within its domain for the same variable are tried out or the number of interval arithmetic

has reached the upper bound m (the threshold used to control the breadth of the search tree),

then<xi,Vij> is removed from result and xi from PV, and Type becomes inactive, so the search

will have to backtrack to Precursor at the higher level of the search tree.

4. Optimized Interval Arithmetic

4.1 The design of the algorithm

It has been previously studied that interval arithmetic works well on a single path

[21]. On

this base, we optimize interval arithmetic by dividing the path to be traversed into its basic

constituents, in our case, the constraints, or the branching conditions (see Definition 3)，which

are then considered in the sequence according to their ordering on the path．The domain of the

current variable xi (Dij) is involved in interval arithmetic as part of the domain of all variables

(D). The optimization is primarily used to solve the strong constraints between variables

especially equalities. They are stricter than inequalities in test data generation，because the

values assigned to variables affect each other when trying to satisfy the constraints defined by

equalities．Besides, a library of inverse functions is added in case of the occurrences of library

functions in the PUT.

Definition 3. Let B be the set of boolean values{true, false}, D be the domain of all

variables(ij ij i
V D D D  ), the branching condition Br(nq,nq+1): D→B where nq is a branching

node is defined as the following formula:

 1

1

, if is traversed with

, otherwi se
(,) {

q q

q q

true n ,n D

false
Br n n



  (1)

Hence, for the k branching nodes along the path, all k branching conditions should be true to

make the path feasible if p is traversed with D. But if less than k branching conditions are

satisfied, then the branch with false branching condition should be spotted and the conflict

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

16 Copyright ⓒ 2014 SERSC

information should be analyzed, so as to reduce the domain of current variable xi(Dij). The

value of the branching condition Br(nqa,nqa+1)(a∈[1,k]) depends on two factors: 1) aD ,which

is the domain of all variables that satisfies all the a-1 branching conditions ahead and will be

used as input for the calculation of the ath branching condition; 2) aD , which is the result when

calculating Br(nqa,nqa+1) with aD and satisfies the ath branching condition. a aD D 

means that a aD D satisfies both all the a-1 branching conditions ahead and the ath

branching condition, ensuring that interval arithmetic can continue to calculate the remaining

branching conditions．

The calculating process of optimized interval arithmetic is shown in Figure 2. There is no

conflict in (a), and all the k branching conditions are satisfied, so the permutation of the

remaining variables follows in the search algorithm. On the contrary, there is a conflict in (b),

and the hth (1≤h≤k) branching condition is not satisfied, so the analysis on the conflict follows

in the search algorithm. The calculating process of optimized interval arithmetic is shown by

pseudo-code as follows.

Algorithm 2. Optimized interval arithmetic

Input D1:the domain of all variables; Br(nqa,nqa+1)(a∈ [1,k]): branching conditions along the path

Output Dk+1: the reduced domain of all variables; distance: the value used for the reduction of Dij after a conflict

Begin

1: for a→1:k

2: Br(nqa,nqa+1)=false;

3:
aD ←calculate Br(nqa,nqa+1) with Da;

4: if (
a aD D )

5: Br(nqa,nqa+1)=true;

6: 1a a aD D D  ;

7: else distance= ' '()a
ij ij ijV V V D  ;

8: return distance;
9: endfor

10:successful=true;

11:return Dk+1;

End

Br(nq1,nq1+1)

1D

Br(nq2,nq2+1)

Br(nqk,nqk+1)

Br(nq1,nq1+1)

Br(nq2,nq2+1)

Br(nqh,nqh+1)

1D 1D

2 1 1D D D 

2D 2D

3 2 2D D D 

1 1k k kD D D   1 1h h hD D D  

kD

1k k kD D D  

hD

1h h hD D D  

(a) (b)

2 1 1D D D 

3 2 2D D D 

1D

Figure 2. The calculating process of optimized interval arithmetic
(a) no conflict (b) conflict detected

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 17

Interval arithmetic receives Vij, the value of the current variable, which is part of the domain

of all variables D
1
 and evaluates the branching condition corresponding to the branch (nq1,nq1+1)

where nq1 is the first branching node. The branching condition Br(nq1,nq1+1) is generally not

satisfied for all the values in D
1
 but for values in a certain subset 2 1D D ensuring the traversal

of branch(nq1,nq1+1), i.e., 1 1 1(,)1 2q qBr n n
D D . Next the branching condition Br(nq2,nq2+1) is

evaluated given that the domain of all variables is D
2
. Again, generally Br(nq2,nq2+1)is only

satisfied by a subset 3 2D D , i.e., 2 2 1(,)2 3q qBr n n
D D . This procedure continues along p until all

the k branching conditions are satisfied with the domains of all variables reduced. The

propagation of the constraints made up of the branching conditions along p takes the form of
1 1 1 2 2 1 1(,) (,) (,)1 2 3 1...q q q q qk qkBr n n Br n n Br n nk kD D D D D      , where 1 2 3...D D D  1k kD D   .

If in this process Br(nqh,nqh+1)= false (1≤h≤k), which means a conflict is detected, then

interval arithmetic is aborted and reduction of Dij is carried out according to the result of

interval arithmetic at the branch with the conflict. So we give the following definition.

Definition 4. Let '

ijV be the value of the current variable xi determined by interval

arithmetic to make a branching condition to be true after a conflict occurs, distance is

calculated by the following formula:

distance=
'

ij ijV V (2)

Distance lays the foundation for the reduction of Dij, for it provides both the upper and the

lower bounds of Dij after reduction，determined by the sign and absolute value of distance

respectively．Since the reduction of Dij happens in two opposite directions, the efficiency of the

algorithm is improved greatly. To Scur=(Pre, xi, Dij, Vij, active, Qi), if a conflict is detected by

interval arithmetic, then Dij is reduced where the next value to be assigned to xi is

selected．Hence the constraints made up the branching conditions are propagated in a more and

more precise manner.

4.2 Case study

The program test in Figure 1 is used as a case to illustrate the process of optimized interval

arithmetic．In test1, there are two input variables x1 and x2. The path to be traversed is Path

1:0→1→2→3→4→5→6 that passes the two true branches of the if statements and reaches

stmt3. The true branches T_1 and T_2 make the branching conditions and their corresponding

branch predicates exactly the same，causing the process of test data generation to be in fact

solving an equality set. To put it more exactly, only { 60, 40}x1 x2 satisfies the two

constraints, which is very strict for a PUT with two variables. The initial domains of x1and x2

are both set [0,100]．

Let Scur=(null, x1, [0,100], 50, active, (x1,x2)), which is also the initial state. That is, x1 is

selected to be the first variable to be instantiated，and it is assigned 50 from [0,100]. Optimized

interval arithmetic evaluates whether D
1
= {x1:[50,50]; x2:[0,100]} satisfies the constraints

along the path as shown in Figure 3. It can be seen that after the first constraint x1+x2=100 is

satisfied, the domains of both variables are reduced to D
2
={x1:[50,50]; x2:[50,50]}. But when

evaluating the second constraint x1-x2=20 with D
2
, a conflict is detected for D

3
={x1:[50,50]

∩[70,70]=Ø;x2:[50,50]∩[30,30]=Ø}, where the domain of the current variable x1 is empty.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

18 Copyright ⓒ 2014 SERSC

x1+x2=100 1={ :100-[0,100]=[0,100] ; :100-[50,50]=[50,50]}x1 xD 2

1={ 1:[50,50] ; 2:[0,100]}xD x

2={ :[50,50] [0,100] [50,50] ; :[0,100] [50,50] [50,50]}x1 x2D  

x1-x2=20 2={ :20+[50,50]=[70,70] ; :[50,50]-20=[30,30]}x1 xD 2

3={ :[50,50] [70,70] ; :[50,50] [30,30] }x1 x2D  

Figure 3. The calculating process of interval arithmetic when x1 is assigned 50

Interval arithmetic calculates distance of the current variable x1 on the branch T_2 with the

conflict to be -20 according to formula (2), that is, 50-70=-20. With distance<0 it can be

concluded that 50 for x1 is smaller for the satisfaction of the constraint on T_2，so the next

value to be assigned to x1 should be selected from [51,100] where the lower bound is

determined to be 51. However, not every value in [51,100] will be better for the satisfaction of

the constraint on T_2 than 50. For example, 80 for x1 is too large and is farther from the right

value than 50. Therefore, it is necessary to determine a more suitable upper bound according to

the absolute value of distance, which is 20. And finally the domain of x1 is reduced to

[51,70]．Then 60 from [51,70] is assigned to x1，and the current state Scur changes into (null, x1,

[51,70], 60, active, (x1,x2)). Interval arithmetic evaluates whether D
1
={x1:[60,60]; x2:[0,100]}

satisfies the constraints along the path as shown in Figure 4.

It can be seen that after the first constraint x1+x2=100 is satisfied, the domains of both

variables are reduced to D
2
={x1:[60,60]; x2:[40,40]}. D

2
also satisfies the second branching

condition x1-x2=20，and it is calculated that D
3
 to be {x1:[60,60]; x2:[40,40]}. Since both

constraints are satisfied with 60 for x1，Type is changed into extensive, and BFS-BB will take

the next search step．

x1+x2=100 1={ :100-[0,100]=[0,100] ; :100-[60,60]=[40,40]}x1 xD 2

1={ :[60,60] ; :[0,100]}x1 x2D

2={ :[60,60] [0,100] [60,60] ; :[0,100] [40,40] [40,40]}x1 x2D  

x1-x2=20 2={ :20+[40,40]=[60,60] ; :[60,60]-20=[40,40]}x1 xD 2

3={ :[60,60] [60,60] [60,60] ; :[40,40] [40,40] [40,40]}x1 x2D  

Figure 4. The calculating process of interval arithmetic when x1 is assigned 60

5. Experimental Analyses and Empirical Evaluations

We carried out a large number of experiments in our team, where the PUT is automatically

analyzed, its basic information is abstracted to form the Abstract Syntax Tree (AST), and its

CFG is generated. According to the specified coverage criteria, the paths to be covered are

generated and provided for BFS-BB as input. After test data have been generated by BFS-BB,

the test drive is generated to provide the environment to execute the test case. There are some

auxiliary functions in our team, including coverage observation, display of the covered code

lines as well as the execution results, and the management of test cases for the convenience of

regression testing.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 19

The experiments were performed in the environment of MS Windows 7 with 32-bits,

Pentium 4 with 2.8 GHz and 2 GB memory. The algorithms were implemented in Java and

run on the platform of eclipse. The experiments include three parts. Section 5.1 tests the

performance of BFS-BB using a test bed containing a few commonly used benchmarks.

Section 5.2 presents a performance evaluation of optimized interval arithmetic. Section 5.3

compares BFS-BB with other static methods used in test data generation. The details of the

programs used in the experiments are shown in Table 1.

Table 1. Programs used in the experiments

Program LOC
of

branches

of

variables
Description Source

bonus 29 10 1 to calculate bonus

according to profit

referring

to[21]

days 33 17 3 to calculate which day a

specific day is in a year

referring

to[21]

statistics 21 8 5
to count the number of

each kind of characters

referring

to[21]

isValidDate 59 16 3 to check whether a date

is valid or not

referring

to[30]

gcd 38 5 2
to calculate greatest

common denominator

referring

to[31]

5.1 Testing a composed test bed

In this part, test data were automatically generated to meet three control flow coverage

criteria, which were statement, branch, and MC/DC. The test bed was a composed program

with 402 lines, 29 input variables, and complex structure that might appear in real-world

programs. Some commonly used benchmarks for test data generation such as bonus, days,

statistics, and isValidDate were all used to compose this test bed.

The result is shown in Table 2. The numbers of paths were different owing to different

coverage criteria adopted. BFS-BB was able to generate test data for all the feasible paths no

matter which coverage criterion was taken. The MC/DC coverage did not reach 100%,

because it is relatively strict and difficult to meet, and subsumes statement and branch

coverage [32]. But tolerable coverage was achieved within tolerable time. There exists a

trade-off between efficiency and success rate.

Table 2. The coverage achieved by BFS-BB using a composed test bed

Adequacy criterion # of paths Average Coverage %

statement 61 100

branch 119 100

MC/DC 125 98

5.2 Testing the performance of optimized interval arithmetic

Optimized interval arithmetic is primarily used for PUTs containing constraints of strongly

related variables especially equalities. So in this part, experiments were carried out to evaluate

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

20 Copyright ⓒ 2014 SERSC

the performance of BFS-BB for varying numbers of expressions including both inequalities

and equalities. To be specific, our major concern is the relationship between generation time

and the number of expressions. This was accomplished by repeatedly running BFS-BB on

generated test programs having 50 input variables. Adopting statement coverage, in each test

the program contained u (u∈ [1,50]) if statements (equivalent to u path constraints or u

branching conditions) and there was only one path with entirely true branches (T,TT,TTT,…)

to be traversed, i.e., all the branching conditions were the same as the corresponding predicates.

The predicate of each if statement was an expression in the form of

  1 2 50 1 2 50, ,..., , ,..., 'a a a x x x rel_op  const u (3)

where a1,a2,…,a50 were randomly generated numbers either positive or negative,

rel_op∈ {>,≥,<,≤,=,≠}, and const[u] (u∈ [1,50]) was an array of randomly generated constants

within [0,1000]. The randomly generated av(v=1,2,…,50) and const[u] should be selected to

make the path feasible. This arrangement constructs the strongest linear relation between

variables, all of which are relevant to the path to be traversed. The programs for various values

of u ranging from 1 to 50 were each tested 50 times and the time required to generate the data

for each test was recorded. The results can be seen in Figure 5. For the sake of easy

observation, the axes of generation time for both cases are normalized.

Figure 5. Relationship between generation time and the number of expressions
(u) for variables that are the strongest linearly related

Figure 5 shows the relationship between generation time and the number of expressions (u)

for variables that are the strongest linearly related. (a), (b), (c) and (d) represent four different

situations marked by the ordinates. It can be seen that the generation time increases

approximately linearly with the number of expressions and the linear correlation relationship is

significant at 95% confidence level with p-value far less than 0.05. As the increase of the

number of expressions, generation time increases at an even speed. The average value and the

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 21

minimum value can be represented as straight lines very well, showing that they are the most

ideal and stable in the four situations with the values of R
2
to be 0.995 and 0.994 separately.

The slopes of the fitting lines reflect the change of generation time. It can be seen that the

slope of the fitting line in (d) corresponding to the minimum value of generation time is

smaller than that in (b) corresponding to the average one, which, however, is smaller than that

in (c) corresponding to the maximum one, all of which fit the experimental results. Variations

between tests with the same values of u were attributed to the randomness involved in 1) the

difference in the selection of the initial values for the sake of diversity of test data; 2) the

difference of the expressions along the path (it will surely take longer time to satisfy an

equality than an inequality for equalities are stricter constraints).

5.3 Comparison with other static methods

This part presents the result from an empirical comparison of BFS-BB with the static

method in [21], which performs well on programs containing variables that are weakly related.

The comparison adopted three control flow criteria: statement, branch, and MC/DC.

The comparison result is shown in Table 3. It can be seen that BFS-BB reached 100%

coverage for all the test beds using three coverage criteria while method in [21] did not. That is

largely attributed to the intelligent methods utilized in BFS-BB, especially optimized interval

arithmetic. There are modulus operations in the program days, so it had been difficult for the

method in [21] to handle, causing loss of precision. But due to the library of inverse functions,

it is not so difficult for BFS-BB.

Table 3. Comparison result with method in [21] using three coverage criteria

program
Coverage

criterion

of

paths

Average Coverage by

method in [21] %

Average Coverage by

BFS-BB %

bonus

statement 6 25 100

branch 6 37 100

MC/DC 6 30 100

days

statement 17 100 100

branch 17 100 100

MC/DC 14 94 100

statistics

statement 4 100 100

branch 5 100 100

MC/DC 11 82 100

gcd

statement 3 85 100

branch 3 77 100

MC/DC 5 75 100

6. Conclusion

In the framework of state space search, this paper reformulates the problem of path-oriented

test data generation as a CSP and introduces BB from artificial intelligence to solve this

problem. Interval arithmetic is optimized to be more precise in the solving process. The

conflict is analyzed precisely to distance for the further domain reduction in the next search

step. Experimental results show that BFS-BB performs well for programs containing

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

22 Copyright ⓒ 2014 SERSC

constraints of both strongly related variables and weakly related variables. It works especially

well for programs containing equalities.

Our future research concerns not only how to generate test data to reach high coverage but

how coverage criteria, generation approach, and system structure jointly influence test

effectiveness. The MC/DC coverage criterion will be given more emphasis. The effectiveness
of the generation approach continues to be our primary work.

References

[1] R. Zhao and M. R. Lyu, “Character string predicate based automatic software test data generation”, in

Proceedings of IEEE the 3rd International Conference on Quality Software, ser. QSIC’03, Washington DC:

IEEE Computer Society Press, (2003), pp. 255-266.

[2] H. -Q. Zhao and S. Jing, “An algebraic model of service oriented trustworthy software architecture”, Chinese

Journal of Computers, vol. 33, no. 5, (2010) May, pp. 890-899.

[3] S. Raul and M. J. Harrold, “Demand‐driven propagation‐based strategies for testing changes”, Softw. Test.

Verif. Reliab., (2013), pp. 499-528.

[4] J. Shan, J. Wang and Z. Qi, “Survey on path-wise automatic generation of test data”, Acta Electronica Sinica,

vol. 32, no. 1, (2004), pp. 109-113 (in Chinese).

[5] A. Gotlieb, B. Botella and M. Rueher, “Automatic test data generation using constraint solving techniques”,

ACM SIGSOFT Software Engineering Notes, vol. 23, no. 2, (1998) March, pp. 53-62.

[6] Z. X. Xu and J. Zhang, “A test data generation tool for unit testing of C programs”, in Proceedings of the 6th

International Conference on Quality Software, ser. QSIC’06, Washington DC: IEEE Computer Society Press,

(2006), pp. 107-116.

[7] A. Gotlieb, “Euclide: a constraint-based testing framework for critical c programs”, in Proceedings of the 2nd

International Conference on Software Testing Verification and Validation, ser. ICST’09, Washington DC:

IEEE Computer Society Press, (2009), pp. 151-160.

[8] I. Chung and J. M. Bieman, “Generating input data structures for automated program testing”, Softw. Test.

Verif. Reliab., vol. 19, no. 1, (1990) March, pp. 3-36.

[9] J. Zhang, “Symbolic execution of program paths involving pointer and structure variables”, in Proceedings of

IEEE the 4th International Conference on Quality Software, ser. QSIC’04, Washington DC: IEEE Computer

Society Press, (2004), pp. 87-92.

[10] B. Korel, “Automated software test data generation”, IEEE Trans. Softw. Eng., vol. 16, no. 8, (1990) August,

pp. 870-879.

[11] P. Godefroid, “Compositional dynamic test generation”, ACM SIGPLAN Notices, vol. 42, no. 1, (2007)

January, pp. 47-54.

[12] X. Xie, B. Xu, S. Liang, et al., “Genetic test case generation for path-oriented testing”, Journal of Software,

vol. 20, no. 12, (2009) December, pp. 3117-3136, (in Chinese).

[13] Y. Xue, C. Wei, W. Yongji, et al., “An automated approach for structural test data based on messy GA”,

Journal of Software, vol. 17, no. 8, (2006) August, pp. 1688-1697, (in Chinese).

[14] W. Lin, Y. Feng and Z. Ruilian, “Path-oriented test data generation based on improved genetic algorithm”,

Computer Engineering, vol. 38, no. 4, (2012) February, pp. 158-161, (in Chinese).

[15] Z. Ruilian, “Search-based automatic path test generation method for character string data”, Journal of

Computer-Aided Design & Computer Graphics, vol. 20, no. 5, (2008) May, pp. 671-677, (in Chinese).

[16] K. Sen, D. Marinov and G. Agha, “CUTE: a concolic unit testing engine for C”, in Proceedings of the 10th

European Software Engineering Conference, ser. ESEC’05, New York: ACM Press, (2005), pp. 263-27.

[17] J. C. King, “Symbolic execution and program testing”, Communications of the ACM, vol. 19, no. 7, (1976)

July, pp. 385-394.

[18] S. Person, G. Yang, N. Rungta, et al., “Directed incremental symbolic execution”, ACM SIGPLAN Notices,

vol. 47, no. 6, (2012), pp. 504-515.

[19] T. Hickey, Q. Ju and M. H. Van Emden, “Interval arithmetic: From principles to implementation”, Journal of

the ACM, vol. 47, no. 2, (2001), pp. 1038-1068.

[20] W. Zhiyan and L. Chunyan, “The application of interval computation in software testing”, Journal of

Software, vol. 9, no. 6, (1998) June, pp. 438-443, (in Chinese).

[21] W. Yawen, G. Yunzhan and X. Qing, “A method of test case generation based on necessary interval set”,

Journal of Computer-Aided Design & Computer Graphics, vol. 25, no. 4, (2008) April, pp. 550-556, (in

Chinese).

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

Copyright ⓒ 2014 SERSC 23

[22] M. J. Gallagher and V. L. Narasimhan, “Adtest: a test data generation suite for ada software systems”, IEEE

Trans. Softw. Eng., vol. 23, no. 8, (1997) August, pp. 473-484.

[23] P. McMinn, “Search-based software test data generation: a survey”, Softw. Test. Verif. Reliab., vol. 14, no. 2,

(2004) June, pp. 105-156.

[24] C. Xinguang and P. Van Beek, “Conflict-directed backjumping revisited”, Journal of Artificial Intelligence

Research, vol. 14, (2001) June, pp. 53-81.

[25] W. Yawen, G. Yunzhan, X. Qing and Y. Zhaohong, “Variable range analysis on interval computation”,

Journal of Beijing University of Posts and Telecommunications, vol. 32, no. 3, (2008) April, pp. 550-556, (in

Chinese).

[26] W. Yawen, G. Yunzhan, X. Qing, et al., “A method of variable range analysis based on abstract interpretation

and its applications”, Acta Electronica Sinica, vol. 39, no. 2, (2011) February, pp. 293-303, (in Chinese).

[27] E. G. Lisgara, G. I. Karolidis and G. S. Androulakis, “Advancing the backtrack optimization technique to

obtain forecasts of potential crisis periods”, Applied Mathematics, vol. 3, no. 30, (2012), pp. 1538-1551.

[28] D. Szer, F. Charpillet and S. Zilberstein, “MAA: a heuristic search algorithm for solving decentralized

POMDPs”, In Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence, ser. UAI’05,

Edinburgh, Scotland, (2005), pp. 576–583.

[29] L. Gao, S. K. Mishra and J. Shi, “An extension of branch-and-bound algorithm for solving

sum-of-nonlinear-ratios problem”, Optimization Letters, vol. 6, no. 2, (2012), pp. 221-230.

[30] C. Mao, Y. Xinxin and C. Jifu, “Generating test data for structural testing based on ant colony optimization”,

in Proceedings of IEEE the 12th International Conference on Quality Software, ser. QSIC’12, Washington

DC: IEEE Computer Society Press, (2012), pp. 98-101.

[31] Bouchachia and Abdelhamid, “An immune genetic algorithm for software test data generation”, in

Proceedings of the 7th International Conference on Hybrid Intelligent Systems. Washington DC: IEEE

Computer Society Press, (2007), pp. 84-89.

[32] A. Rajan, M. W. Whalen and M. P. E. Heimdahl, “The effect of program and model structure on MC/DC test

adequacy coverage”, in Proceedings of the 30th ACM/IEEE International Conference on Software

Engineering, ser. ICSE’08. New York, NY, USA: ACM Press, (2008), pp. 161-170.

International Journal of Database Theory and Application

Vol.7, No.1 (2014)

24 Copyright ⓒ 2014 SERSC

