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Abstract 

Path-oriented test data generation is in essence a Constraint Satisfaction Problem solved 

by search strategies, among which backtracking algorithms are widely used. In this paper, 

the backtracking algorithm Branch & Bound is introduced to generate path-oriented test data 

automatically. A model based on state space search is proposed to construct the search tree 

dynamically. Aiming at the programs containing constraints of strongly related variables 

even equalities, the static analysis technique interval arithmetic is optimized for the precise 

judgment of the assignment to each variable. The analysis on conflict is made accurate via 

distance for further domain reduction, thus ensuring the precise direction of the next search 

step. Experiments show that the proposed method outperformed other methods used in static 

test data generation. Specifically, it produces excellent results when variables are strongly 

related even when they are in equalities, and generation time increases stably and linearly 

with the increment of number of expressions including both equalities and inequalities. 

 

Keywords: test data generation; Constraint Satisfaction Problem; Branch & Bound; state 

space search; interval arithmetic 
 

1. Introduction  

Software testing plays an irreplaceable role in the process of software development, 

because it is an important stage to guarantee software reliability [1, 2]. And as the most 

important coverage testing [3], the automation of path-oriented test data generation is crucial 

in the testing process [4]. It can be solved by many methods [5-16], wherein the static method 

[5-9] is an important branch. Due to its utilization of static analysis techniques including 

symbolic execution [17, 18] and interval arithmetic [19, 20] without actually executing the 

program under test (PUT), the process of generating test data is definite with relatively less 

cost. It abstracts the constraints to be satisfied, and propagates and solves these constraints to 

obtain the test data. When the variables in the constraints are weakly related, test data can be 

generated rather well [21]. But when the variables are strongly related especially in equalities 

[22], the constraints become difficult to solve, which in turn poses problems in generating test 
data for PUTs containing this kind of constraints.  

In this paper, we propose a new method for static test data generation based on our previous 

work, which tests programs written in C programming language with complex data structure. 
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Solving the constraints containing strongly related variables even equalities is our focus. The 
main contribution of this paper is as follows.  

1) The problem of path-oriented test data generation is defined as a Constraint Satisfaction 

Problem(CSP), the solution space is represented as state space, and the backtracking 

algorithm Branch & Bound (BB) is introduced to solve the constraints.  

2) Aiming at the difficulty in solving the constraints containing strongly related variables 

including equalities, interval arithmetic is enhanced to judge the assignment to each 

variable more precisely. The analysis on conflict is made accurate via distance for the 
further domain reduction in the next search step.  

The rest of this paper is organized as follows. Section 2 provides the background underlying 

our research. Section 3 illustrates the proposed search algorithm in detail. Optimized interval 

arithmetic is described in Section 4 with a case study. Experimental analyses and empirical 

evaluations on the proposed algorithm are presented in Section 5. Section 6 concludes this 
paper and highlights directions for future research. 

 

2. Background 

Many forms of static test data generation make reference to the control flow graph (CFG) of 

the PUT [23]. In this paper, a CFG for a program P is a directed graph G=(N, E, i, o), where N 

is a set of nodes, E is a set of edges, and i and o are respective unique entry and exit nodes to 

the graph. Each node n∈N is a statement in the program, with each edge e=(nr, nt)∈E 

representing a transfer of control from node nr to node nt. Nodes corresponding to decision 

statements such as if statements are branching nodes. Outgoing edges from these nodes are 

referred to as branches. A path through a CFG is a sequence p=(n1,n2,…,nq), such that for all r, 

1≤r<q, (nr,nr+1)∈E.  

A path p is regarded as feasible if there exists a program input for which p is traversed, 

otherwise p is regarded as infeasible. The path-oriented test data generation problem can be 

reformulated as a CSP [24]. X is a set of variables {x1, x2,…, xn}, D={D1, D2,…, Dn} is a set of 

domains[25,26] (a domain is composed of one or more intervals and an interval is a continuous 

range of values), and Di∈D (i=1,2,…,n) is a finite set of possible values for xi. For each path, D 

is defined based on the variables’ acceptable ranges. One solution to the problem is a set of 

values to instantiate each variable inside its domain denoted as  , ,...,1 1 2 2 n nx V x V x V , 

Vi∈Di to make path p feasible. To be specific, each constraint defined by the PUT along p 

should be satisfied. In static analysis, the feasibility of a path is judged by the result of interval 

arithmetic. To be more exact, the path is feasible only when all the constraints along the path 

are satisfied, which is the very reason why we optimize interval arithmetic to be more precise. 

To better illustrate path-oriented test data generation, a simple example with a program test1 

and its corresponding CFG are shown in Figure 1, where if_out_4, if_out_5, and exit_6 are 

dummy nodes. Adopting statement coverage, there is one path to be traversed, which is Path 

1:0→1→2→3→4→5→6 as shown in bold．The numbers along the paths denote nodes rather 

than edges of the CFG. To cover Path 1, we need to select V={V1,V2} from {D1,D2} for x1 and 

x2, so that when executing test1 using {V1,V2 } as an input, the path traversed is Path1. There 

are two branching nodes if_head_1 and if_head_2 along Path1, and two corresponding 

branches T_1 and T_2 containing the constraints to be satisfied. 
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   void test1(int x1, int x2)

1{ if(x1+x2==100)  

2      if(x1-x2==20)

3          printf("Solved! ");    

   }
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Figure 1. Program test1 and its corresponding CFG 
 

A CSP is generally solved by search strategies, among which backtracking algorithms [27] 

are widely used. In this paper, the process of exploring the solution space is represented by 

state space search [28] in artificial intelligence. This representation will facilitate the 

implementation of the search methods. With the aid of intelligent rules for selecting nodes to 

explore and pruning those that do not lead to a solution, the complexity of the search can be 

drastically reduced as compared to that of an exhaustive or enumerative search.  

BB [29] is introduced to tackle the problem mentioned above, which is an efficient 

backtracking algorithm for searching the solution space of a problem. Considering that one 

solution is enough for path-oriented test data generation, Best-First-Search is our first choice. 

To find the 'Best', permutation of variables is required for branching to prune the branches 

stretching out from unneeded variables. Besides, as the domain of a variable is a finite set of 

possible values which may be quite large, bounding is necessary to cut the unneeded or 

infeasible solutions. Bounding is the focus of this paper and we propose Best-First-Search 

Branch and Bound (BFS-BB) to generate the test data automatically.  

All the variables involved in BFS-BB are symbolic variables. During the search process, 

variables are divided into three sets: past variables (short for PV, already instantiated), current 

variable (now being instantiated), and future variables (short for FV, not yet instantiated). In 

addition, although the experiments were carried out on programs of different data types, 

integer variables are used as example in the following algorithms in order to simplify the 

explanations. 

 

3. The Search Algorithm 
 

3.1 State space search 

The state space is a quadruple(S, A, I, F), where S is a set of states, A is a set of arcs or 

connections between the states that correspond to the steps or operations of the search at 

different states, I is a non-empty subset of S denoting the initial state of the problem, and F is a 

non-empty subset of S denoting the final state of the problem.  

A state is a tuple (Precursor, Variable, Domain, Value, Type, Queue). In a certain stage of 

the search process, for current state Scur, Precursor provides a link to the previous state; 

Variable=xi∈X(i=1,2,…,n) is the current variable; Domain=Dij  Di∈D, (i=1,2,…,n; 

j=1,2,…,m) in the form of [min, max] is the set of possible values that may be selected to 



International Journal of Database Theory and Application 

Vol.7, No.1 (2014) 

 

 

14   Copyright ⓒ 2014 SERSC 
 

instantiate Variable, where min and max are the lower and upper bounds respectively; 

Value=Vij∈Dij is a value selected from Domain; Type marks the type of state which might be 

active, extensive or inactive; and Queue is a sequence of variables corresponding to Scur.  

State space search is all about finding one final state in a state space (which may be 

extremely large). 'Final' means that every variable has been instantiated with a definite value 

and the path to be traversed is proved to be feasible with all these values by interval arithmetic. 

At the start of the search Precursor is null, and when Queue is null the search ends. The path 

made up of all the extensive nodes in the search tree makes the solution path. The process of 

generating test data for path p takes the form of state space search. The state space needs to be 

searched to find a solution path from an initial state to a final state. We can decide where to go 
by considering the possible moves from the current state Scur and trying to look ahead. 

 

3.2 Details of the proposed algorithm 

The idea of our algorithm is to extend partial solutions. At each stage, a variable in FV is 

selected and assigned a value from its domain to extend the current partial solution. Interval 

arithmetic evaluates whether such an extension may lead to a possible solution of the CSP and 

prunes subtrees containing no solutions based on the current partial solution. The algorithm 

BFS-BB is expressed by pseudo-code as follows with two stages, which are initialization and 

state space search. 
 

Algorithm1. Best-first-search branch and bound 

Input  p : the path to be traversed 

Output result <Variable, Value>: test data making p feasible 

Stage 1: Initialization 

1: result <Variable, Value> = null; 

2: Q1←permutate FV; 
3: x1←head (Q1); 

4: select V11∈D11 for x1; 

5: initial state= (null, x1, D11, V11, active,Q1); 
6: Scur= initial state; 

Stage 2: State space search 

Begin 

7: foreach Scur =(Pre, xi, Dij, Vij, active, Qi) do 

8:successful=false; 

9: call algorithm2. Optimized interval arithmetic; 
10: if (successful= =false)  

11:    if(|Dij|= =1||j>=m) 

12:        Scur = (Pre,xi, Dij, Vij, inactive, Qi); 
13:        Pre = Scur; 

14:        Scur = (Pre, xi, Dij, Vij, active, Qi); 

15:        remove<xi,Vij> from result;  

16:        remove xi from PV;  

17:    else j++; 

18:        if(distance<0) 
19:            Dij=[Vij+1, Vij+|distance|]; 

20:        else Dij=[Vij-|distance|,Vij-1]; 

21:        select Vij∈Dij for xi; 

22:        Scur = (Pre ,xi, Dij, Vij, active, Qi);  

23: else Scur = (Pre ,xi, Dij, Vij, extensive, Qi); 

24:     add < xi, Vij > to result; 

24:     update FV; 

25:     Qi←permutate FV; 
26:     if(Qi!=null)  

27:         xi←head (Qi); 

28:         select Vi1∈ Di1 for xi;          

29:         Pre= Scur; 

30:         Scur =(Pre ,xi,Di1,Vi1,active, Qi); 
31:     else Scur =final state; 
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32: endfor 

33: return result; 

End 

 

The first stage is to perform the initialization operations. At first, the table result storing test 

data is null. All the relevant variables in FV are permutated to form a queue Q1 and its head x1 

is determined to be the best or the first variable to be instantiated. The initial value V11 is 

selected from the domain D11. With all these, the initial state is constructed as (null, x1, D11, V11, 
active, Q1), which is also the current state Scur. 

The second stage implements state space search. On constructing each state, Type is active, 

Queue=Qi, and Variable= xi is the head of Qi. To each current state (Pre, xi, Dij, Vij, active, Qi), 

optimized interval arithmetic is carried out to determine the direction of the next search step. If 

it succeeds, Type becomes extensive, variables in FV will be permutated to get Queue= Qi, Scur 

becomes Precursor, and the head of Qi will be Variable of next state. With all these, a new 

state can be constructed for which to continue interval arithmetic. If after the conduction of 

interval arithmetic, no variable needs to be permutated, then all the variables have been 
assigned the right values to make p feasible. result is returned as the test data .  

If the interval arithmetic for a certain state meets a conflict, then Type remains active, 

analysis on the conflict information is utilized to reduce Dij, where Value is reselected for xi. In 

that case, the search will expand to a state with a different value for the same variable. If all 

values within its domain for the same variable are tried out or the number of interval arithmetic 

has reached the upper bound m (the threshold used to control the breadth of the search tree), 

then<xi,Vij> is removed from result and xi from PV, and Type becomes inactive, so the search 

will have to backtrack to Precursor at the higher level of the search tree. 

 

4. Optimized Interval Arithmetic  
 

4.1 The design of the algorithm 

It has been previously studied that interval arithmetic works well on a single path
 
[21]. On 

this base, we optimize interval arithmetic by dividing the path to be traversed into its basic 

constituents, in our case, the constraints, or the branching conditions (see Definition 3)，which 

are then considered in the sequence according to their ordering on the path．The domain of the 

current variable xi (Dij) is involved in interval arithmetic as part of the domain of all variables 

(D). The optimization is primarily used to solve the strong constraints between variables 

especially equalities. They are stricter than inequalities in test data generation，because the 

values assigned to variables affect each other when trying to satisfy the constraints defined by 

equalities．Besides, a library of inverse functions is added in case of the occurrences of library 

functions in the PUT.  

Definition 3. Let B be the set of boolean values{true, false}, D be the domain of all 

variables( ij ij i
V D D D   ), the branching condition Br(nq,nq+1): D→B where nq is a branching 

node is defined as the following formula: 

 1  

1

, if  is traversed with 

, otherwi se
( , ) {

q q

q q

true n ,n D 

false
Br n n



  (1) 

Hence, for the k branching nodes along the path, all k branching conditions should be true to 

make the path feasible if p is traversed with D. But if less than k branching conditions are 

satisfied, then the branch with false branching condition should be spotted and the conflict 
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information should be analyzed, so as to reduce the domain of current variable xi(Dij). The 

value of the branching condition Br(nqa,nqa+1)(a∈[1,k]) depends on two factors: 1) aD ,which 

is the domain of all variables that satisfies all the a-1 branching conditions ahead and will be 

used as input for the calculation of the ath branching condition; 2) aD , which is the result when 

calculating Br(nqa,nqa+1) with aD  and satisfies the ath branching condition. a aD D   

means that a aD D  satisfies both all the a-1 branching conditions ahead and the ath 

branching condition, ensuring that interval arithmetic can continue to calculate the remaining 

branching conditions． 

The calculating process of optimized interval arithmetic is shown in Figure 2. There is no 

conflict in (a), and all the k branching conditions are satisfied, so the permutation of the 

remaining variables follows in the search algorithm. On the contrary, there is a conflict in (b), 

and the hth (1≤h≤k) branching condition is not satisfied, so the analysis on the conflict follows 

in the search algorithm. The calculating process of optimized interval arithmetic is shown by 

pseudo-code as follows. 
 

Algorithm 2. Optimized interval arithmetic 
 

Input  D1:the domain of all variables; Br(nqa,nqa+1)(a∈ [1,k]): branching conditions along the path 

Output Dk+1: the reduced domain of all variables; distance: the value used for the reduction of Dij after a conflict  

Begin 

1: for a→1:k 

2:    Br(nqa,nqa+1)=false; 

3:    
aD ←calculate Br(nqa,nqa+1) with Da; 

4:    if (
a aD D  ) 

5:        Br(nqa,nqa+1)=true; 

6:        1a a aD D D  ; 

7:    else distance= ' '( )a
ij ij ijV V V D  ; 

8:        return distance; 
9: endfor  

10:successful=true; 

11:return Dk+1; 

End 

 

Br(nq1,nq1+1)

1D

Br(nq2,nq2+1)

Br(nqk,nqk+1)

Br(nq1,nq1+1)

Br(nq2,nq2+1)

Br(nqh,nqh+1)

1D 1D

2 1 1D D D 

2D 2D

3 2 2D D D 

1 1k k kD D D   1 1h h hD D D  

kD

1k k kD D D  

hD

1h h hD D D  

(a)                                  (b)           

2 1 1D D D 

3 2 2D D D 

1D

 

Figure 2. The calculating process of optimized interval arithmetic 
(a) no conflict  (b) conflict detected 
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Interval arithmetic receives Vij, the value of the current variable, which is part of the domain 

of all variables D
1
 and evaluates the branching condition corresponding to the branch (nq1,nq1+1) 

where nq1 is the first branching node. The branching condition Br(nq1,nq1+1) is generally not 

satisfied for all the values in D
1
 but for values in a certain subset 2 1D D ensuring the traversal 

of branch(nq1,nq1+1), i.e., 1 1 1( , )1 2q qBr n n
D D . Next the branching condition Br(nq2,nq2+1) is 

evaluated given that the domain of all variables is D
2
. Again, generally Br(nq2,nq2+1)is only 

satisfied by a subset 3 2D D , i.e., 2 2 1( , )2 3q qBr n n
D D . This procedure continues along p until all 

the k branching conditions are satisfied with the domains of all variables reduced. The 

propagation of the constraints made up of the branching conditions along p takes the form of 
1 1 1 2 2 1 1( , ) ( , ) ( , )1 2 3 1...q q q q qk qkBr n n Br n n Br n nk kD D D D D      , where 1 2 3...D D D  1k kD D   .  

If in this process Br(nqh,nqh+1)= false (1≤h≤k), which means a conflict is detected, then 

interval arithmetic is aborted and reduction of Dij is carried out according to the result of 

interval arithmetic at the branch with the conflict. So we give the following definition. 

Definition 4. Let '

ijV  be the value of the current variable xi determined by interval 

arithmetic to make a branching condition to be true after a conflict occurs, distance is 

calculated by the following formula:  

distance=
'

ij ijV V                        (2) 

Distance lays the foundation for the reduction of Dij, for it provides both the upper and the 

lower bounds of Dij after reduction，determined by the sign and absolute value of distance 

respectively．Since the reduction of Dij happens in two opposite directions, the efficiency of the 

algorithm is improved greatly. To Scur=(Pre, xi, Dij, Vij, active, Qi), if a conflict is detected by 

interval arithmetic, then Dij is reduced where the next value to be assigned to xi is 

selected．Hence the constraints made up the branching conditions are propagated in a more and 

more precise manner. 

 

4.2 Case study 

The program test in Figure 1 is used as a case to illustrate the process of optimized interval 

arithmetic．In test1, there are two input variables x1 and x2. The path to be traversed is Path 

1:0→1→2→3→4→5→6 that passes the two true branches of the if statements and reaches 

stmt3. The true branches T_1 and T_2 make the branching conditions and their corresponding 

branch predicates exactly the same，causing the process of test data generation to be in fact 

solving an equality set. To put it more exactly, only { 60, 40}x1 x2  satisfies the two 

constraints, which is very strict for a PUT with two variables. The initial domains of x1and x2 

are both set [0,100]． 

Let Scur=(null, x1, [0,100], 50, active, (x1,x2)), which is also the initial state. That is, x1 is 

selected to be the first variable to be instantiated，and it is assigned 50 from [0,100]. Optimized 

interval arithmetic evaluates whether D
1
= {x1:[50,50]; x2:[0,100]} satisfies the constraints 

along the path as shown in Figure 3. It can be seen that after the first constraint x1+x2=100 is 

satisfied, the domains of both variables are reduced to D
2
={x1:[50,50]; x2:[50,50]}. But when 

evaluating the second constraint x1-x2=20 with D
2
, a conflict is detected for D

3
={x1:[50,50] 

∩[70,70]=Ø;x2:[50,50]∩[30,30]=Ø}, where the domain of the current variable x1 is empty. 
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x1+x2=100 1={ :100-[0,100]=[0,100] ; :100-[50,50]=[50,50]}x1 xD 2

1={ 1:[50,50] ; 2:[0,100]}xD x

2={ :[50,50] [0,100] [50,50] ; :[0,100] [50,50] [50,50]}x1 x2D  

x1-x2=20 2={ :20+[50,50]=[70,70] ; :[50,50]-20=[30,30]}x1 xD 2

3={ :[50,50] [70,70]  ; :[50,50] [30,30] }x1 x2D    

Figure 3. The calculating process of interval arithmetic when x1 is assigned 50 
 

Interval arithmetic calculates distance of the current variable x1 on the branch T_2 with the 

conflict to be -20 according to formula (2), that is, 50-70=-20. With distance<0 it can be 

concluded that 50 for x1 is smaller for the satisfaction of the constraint on T_2，so the next 

value to be assigned to x1 should be selected from [51,100] where the lower bound is 

determined to be 51. However, not every value in [51,100] will be better for the satisfaction of 

the constraint on T_2 than 50. For example, 80 for x1 is too large and is farther from the right 

value than 50. Therefore, it is necessary to determine a more suitable upper bound according to 

the absolute value of distance, which is 20. And finally the domain of x1 is reduced to 

[51,70]．Then 60 from [51,70] is assigned to x1，and the current state Scur changes into (null, x1, 

[51,70], 60, active, (x1,x2)). Interval arithmetic evaluates whether D
1
={x1:[60,60]; x2:[0,100]} 

satisfies the constraints along the path as shown in Figure 4.  

It can be seen that after the first constraint x1+x2=100 is satisfied, the domains of both 

variables are reduced to D
2
={x1:[60,60]; x2:[40,40]}. D

2 
also satisfies the second branching 

condition x1-x2=20，and it is calculated that D
3
 to be {x1:[60,60]; x2:[40,40]}. Since both 

constraints are satisfied with 60 for x1，Type is changed into extensive, and BFS-BB will take 

the next search step． 

 

x1+x2=100 1={ :100-[0,100]=[0,100] ; :100-[60,60]=[40,40]}x1 xD 2

1={ :[60,60] ; :[0,100]}x1 x2D

2={ :[60,60] [0,100] [60,60] ; :[0,100] [40,40] [40,40]}x1 x2D  

x1-x2=20 2={ :20+[40,40]=[60,60] ; :[60,60]-20=[40,40]}x1 xD 2

3={ :[60,60] [60,60] [60,60] ; :[40,40] [40,40] [40,40]}x1 x2D    

Figure 4. The calculating process of interval arithmetic when x1 is assigned 60 
 

5. Experimental Analyses and Empirical Evaluations 

We carried out a large number of experiments in our team, where the PUT is automatically 

analyzed, its basic information is abstracted to form the Abstract Syntax Tree (AST), and its 

CFG is generated. According to the specified coverage criteria, the paths to be covered are 

generated and provided for BFS-BB as input. After test data have been generated by BFS-BB, 

the test drive is generated to provide the environment to execute the test case. There are some 

auxiliary functions in our team, including coverage observation, display of the covered code 

lines as well as the execution results, and the management of test cases for the convenience of 

regression testing. 
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The experiments were performed in the environment of MS Windows 7 with 32-bits, 

Pentium 4 with 2.8 GHz and 2 GB memory. The algorithms were implemented in Java and 

run on the platform of eclipse. The experiments include three parts. Section 5.1 tests the 

performance of BFS-BB using a test bed containing a few commonly used benchmarks. 

Section 5.2 presents a performance evaluation of optimized interval arithmetic. Section 5.3 

compares BFS-BB with other static methods used in test data generation. The details of the 

programs used in the experiments are shown in Table 1.  

 
Table 1. Programs used in the experiments

Program LOC 
# of 

branches 

# of 

variables 
Description Source 

bonus 29 10 1 to calculate bonus 

according to profit 

referring 

to[21] 

days 33 17 3 to calculate which day a 

specific day is in a year 

referring 

to[21] 

statistics 21 8 5 
to count the number of 

each kind of characters 

referring 

to[21] 

isValidDate 59 16 3 to check whether a date 

is valid or not 

referring 

to[30] 

gcd 38 5 2 
to calculate greatest 

common denominator 

referring 

to[31] 

 
5.1 Testing a composed test bed  

In this part, test data were automatically generated to meet three control flow coverage 

criteria, which were statement, branch, and MC/DC. The test bed was a composed program 

with 402 lines, 29 input variables, and complex structure that might appear in real-world 

programs. Some commonly used benchmarks for test data generation such as bonus, days, 

statistics, and isValidDate were all used to compose this test bed. 

The result is shown in Table 2. The numbers of paths were different owing to different 

coverage criteria adopted. BFS-BB was able to generate test data for all the feasible paths no 

matter which coverage criterion was taken. The MC/DC coverage did not reach 100%, 

because it is relatively strict and difficult to meet, and subsumes statement and branch 

coverage [32]. But tolerable coverage was achieved within tolerable time. There exists a 

trade-off between efficiency and success rate.  
 

Table 2. The coverage achieved by BFS-BB using a composed test bed 

Adequacy criterion # of paths Average Coverage % 

statement 61 100 

branch 119 100 

MC/DC 125 98 
 

5.2 Testing the performance of optimized interval arithmetic 

Optimized interval arithmetic is primarily used for PUTs containing constraints of strongly 

related variables especially equalities. So in this part, experiments were carried out to evaluate 
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the performance of BFS-BB for varying numbers of expressions including both inequalities 

and equalities. To be specific, our major concern is the relationship between generation time 

and the number of expressions. This was accomplished by repeatedly running BFS-BB on 

generated test programs having 50 input variables. Adopting statement coverage, in each test 

the program contained u (u∈ [1,50]) if statements (equivalent to u path constraints or u 

branching conditions) and there was only one path with entirely true branches (T,TT,TTT,…) 

to be traversed, i.e., all the branching conditions were the same as the corresponding predicates. 

The predicate of each if statement was an expression in the form of  

  1 2 50 1 2 50, ,..., , ,..., 'a a a x x x  rel_op  const u           (3) 

where a1,a2,…,a50 were randomly generated numbers either positive or negative, 

rel_op∈ {>,≥,<,≤,=,≠}, and const[u] (u∈ [1,50]) was an array of randomly generated constants 

within [0,1000]. The randomly generated av(v=1,2,…,50) and const[u] should be selected to 

make the path feasible. This arrangement constructs the strongest linear relation between 

variables, all of which are relevant to the path to be traversed. The programs for various values 

of u ranging from 1 to 50 were each tested 50 times and the time required to generate the data 

for each test was recorded. The results can be seen in Figure 5. For the sake of easy 

observation, the axes of generation time for both cases are normalized. 

 

 

Figure 5. Relationship between generation time and the number of expressions 
(u) for variables that are the strongest linearly related 

 

Figure 5 shows the relationship between generation time and the number of expressions (u) 

for variables that are the strongest linearly related. (a), (b), (c) and (d) represent four different 

situations marked by the ordinates. It can be seen that the generation time increases 

approximately linearly with the number of expressions and the linear correlation relationship is 

significant at 95% confidence level with p-value far less than 0.05. As the increase of the 

number of expressions, generation time increases at an even speed. The average value and the 
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minimum value can be represented as straight lines very well, showing that they are the most 

ideal and stable in the four situations with the values of R
2 
to be 0.995 and 0.994 separately. 

The slopes of the fitting lines reflect the change of generation time. It can be seen that the 

slope of the fitting line in (d) corresponding to the minimum value of generation time is 

smaller than that in (b) corresponding to the average one, which, however, is smaller than that 

in (c) corresponding to the maximum one, all of which fit the experimental results. Variations 

between tests with the same values of u were attributed to the randomness involved in 1) the 

difference in the selection of the initial values for the sake of diversity of test data; 2) the 

difference of the expressions along the path (it will surely take longer time to satisfy an 

equality than an inequality for equalities are stricter constraints). 

 

5.3 Comparison with other static methods 

This part presents the result from an empirical comparison of BFS-BB with the static 

method in [21], which performs well on programs containing variables that are weakly related. 

The comparison adopted three control flow criteria: statement, branch, and MC/DC.  

The comparison result is shown in Table 3. It can be seen that BFS-BB reached 100% 

coverage for all the test beds using three coverage criteria while method in [21] did not. That is 

largely attributed to the intelligent methods utilized in BFS-BB, especially optimized interval 

arithmetic. There are modulus operations in the program days, so it had been difficult for the 

method in [21] to handle, causing loss of precision. But due to the library of inverse functions, 

it is not so difficult for BFS-BB. 

 
Table 3. Comparison result with method in [21] using three coverage criteria 

program 
Coverage 

criterion 

# of 

paths 

Average Coverage by 

method in [21] % 

Average Coverage by 

BFS-BB % 

bonus 

statement 6 25 100 

branch 6 37 100 

MC/DC 6 30 100 

days 

statement 17 100 100 

branch 17 100 100 

MC/DC 14 94 100 

statistics 

statement 4 100 100 

branch 5 100 100 

MC/DC 11 82 100 

gcd 

statement 3 85 100 

branch 3 77 100 

MC/DC 5 75 100 

 

6. Conclusion  

In the framework of state space search, this paper reformulates the problem of path-oriented 

test data generation as a CSP and introduces BB from artificial intelligence to solve this 

problem. Interval arithmetic is optimized to be more precise in the solving process. The 

conflict is analyzed precisely to distance for the further domain reduction in the next search 

step. Experimental results show that BFS-BB performs well for programs containing 
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constraints of both strongly related variables and weakly related variables. It works especially 

well for programs containing equalities. 

Our future research concerns not only how to generate test data to reach high coverage but 

how coverage criteria, generation approach, and system structure jointly influence test 

effectiveness. The MC/DC coverage criterion will be given more emphasis. The effectiveness 
of the generation approach continues to be our primary work. 
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