
Mining Periodic Workload Patterns in Database Audit Trails

Marcin Zimniak1

marcin.zimniak@cs.tu-chemnitz.de

Janusz R. Getta2

jrg@uow.edu.au

Wolfgang Benn1

benn@cs.tu-chemnitz.de
1 Faculty of Computer Science, TU Chemnitz, Germany
2 School of Computer Science and Software Engineering,

University of Wollongong, Australia

Abstract

Information about periodic processing of database operations has a pivotal importance for
continuous physical database design and automated performance tuning of database systems.
This work shows how to detect the oscillations of database workloads caused by the periodi-
cal invocations of user applications. In particular, we present an algorithm for discovering
periodic patterns in the histories of processing of complex and elementary database opera-
tions. In our approach, information collected from the database audit trails is transformed
into a sequence of syntax trees and later on it is compressed in a syntax tree table. The
periodic patterns are discovered through nested iterations over a four dimensional space of
syntax trees and positional parameters of the patterns. Transformations of the patterns are
used to discover the overlaping periodic patterns.

Keywords: periodic pattern, database audit trail, automated performance tuning

1 Introduction

It is well known that database workloads oscillate in time. The oscillations are caused
by the periodical invocations of database applications, which process data on behalf of
human operators, like for example customers accessing bank accounts, students enrolling
courses, stock exchange broker performing financial operations on a stock market, etc. The
periodic iterations of real world processes reflect on a database system as the periodic
changes in its workload. The variations of workload levels can be discovered from historical
information stored in the log files, traces from processing of database applications, audit
trails, etc. Automated performance tuning of database systems [5] requires the prognostics
on the variations of future database workload as well as the frequencies with which the
user applications access the data containers. In a typical scenario, information about a
period of low database workload and about data containers to be accessed in the future
allows for appropriate restructuring of data containers to speed up their future processing.
For example, a period of time when a database workload is low can be used to index data
containers, pin data containers in data buffer caches, partition data containers, etc.

1

International Journal of Database Theory and Application
 Vol.6, No.6 (2013), pp.63-74
 http://dx.doi.org/10.14257/ijdta.2013.6.6.06

ISSN: 2005-4270 IJDTA
Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

At the first glance the problem of discovering periodic patterns in the database workloads
seems to be very similar to the classical problem of periodicity mining in the long sequences
of numerical data such as time series [12],[6] or in the long sequences of genetic information
[8]. The algorithms that find periodicity in time series categorize the elements of time
series into a number of ranges and associate a timestamp with each value. A history
of database workload is a sequence of data processing statements, like for example SQL
statements in relational database system, collected by a database administrator over the
long periods of time. This makes input data structures similar to time series as each data
processing statement is also associated with a timestamp. However, due to the internal
structures of complex data processing statements the problem cannot be treated in the
same way as analysis of atomic data elements in time series or genetic sequences. A data
processing statement is an expression over the elementary database operations and the data
containers as the arguments of the operations. Analysis of database workload must consider
the frequencies of elementary database operations as well as the complex ones that represent
complete data processing statements. For example, if a number of SQL statements shares
a common subquery then it may happen that sub query will reveal a periodic pattern
even though the individual SQL statements will not. The next important difference is a
choice of time units over which the periodical processing of the same data operations is
performed. The traditional approaches assume fixed size and adjacent time units and fixed
length of discovered patterns. In our case, the cycles are pretty well determined by the
real world events that happen in daily, monthly and yearly workload of a database system.
For example, backups are taken regularly, the contents of batch queue jobs is processed
regularly, archiving is processed regularly, etc. Periodically processed user applications
have the frequencies consistent with the frequencies of real world events. Such observations
allows for discovery of periodic data processing which do not have the same frequencies
over a given period of time. For example, the students enroll courses at the beginning of
academic sessions, customer purchase tickets periodically occurring sport event, etc.

The problem of discovering periodic patterns in the database workloads is also quite
similar, however, it is not not exactly the same as a problem of mining cyclic association
rules [11]. Mining of cyclic association rules looks at the periodic executions of the largest
sets of items that have enough support. For example, a cyclic association rule may say that
applications ai and aj are computed in more or less the same period of time every day just
after midnight. Mining of cyclic association rules tries to find the largest sets of operations
on data that are periodically processed by a database system. In our case the largest sets of
operations do not necessarily mean the highest workload. Sometimes a single periodically
processed application issues a complex query that significantly contributes to a database
workload. Additionally, mining of cyclic association rules is not able to discover two or
more periodic periodic patterns whose cycles overlap on the same period of time. Such case
happens when a user application is periodically processed with different frequencies by two
or more users. In transaction processing the total number of operations is not as important
from performance point of view as the total number, size and frequency of concurrently
accessed data items. A set of data operations does not provide as precise information about
the predicted database workload as sequences of operations which determine an order in
which data containers are accessed.

In this work, we consider an environment of relational database system where the user
applications submit SQL statements for processing in a database. A specific objective is
to detect the periodical repetitions of expressions of extended relational algebra over the

2

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

64 Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

fixed size time units. To discover the periodic patterns in the processing of elementary and
complex database operations we use information about the past ”behaviour” of a database
system stored in the anonymized audit trails. An audit trail contains information about
the scopes of individual database applications and about SQL statements processed by
the applications. Database auditing allows to target the given groups of users performing
operations on the given groups of data containers. We analyze an audit trail in order to
detect the applications which require significant processing time and the high amounts of
consumed resources. SQL statements obtained from an audit trail are later on processed
with EXPLAIN PLAN statement in order to obtain the precise execution plans and estimation
of processing costs. An execution plan is an expression built over the names of data con-
tainers and data processing operations such as sequential read and filtering of a relational
table, vertical traversal of an index, hash implementation of join operation and the others.
Next, the execution plans are converted into the syntax trees and saved into a syntax tree
table. The table is further reduced and later on it is used by the iterations that reveal the
periodic patterns in the processing of database operations.

The paper is organized in the following way. The next section reviews the major works
on periodicity mining in time series and mining cyclic association rules. Section 3 defines
an environment of relational database and the concepts of audit trail, syntax tree table, and
time units. A concept of periodic patterns in database workload is introduced in Section
4. An algorithm for discovering periodic patterns in audit trails is explained in Section 5.
Finally, Section 6 concludes the paper.

2 Related work

Easily available historical information on the performance aspects of database systems
allows for application of data mining techniques to discover the periodic patterns in the
database workloads [9], [13]. Sequences of operations on data recorded along the various
periods of time can be easily described by the temporal predicates within a formal scope
of Temporal Programming Logic and temporal deductive database systems [3], [1] Data
mining techniques that inspired the works on period patterns came from the works mining
frequent itemsets/association rules [2] and later on mining frequent episodes [10] and its
extensions on mining complex episodes [15].

A work [11] was a starting point to many works on discovering cyclic patterns. It defined
the principle concepts of cycle pruning, cycle skipping, cycle elimination heuristics.

The problem of discovering cyclic patterns seems to be very similar to a typical periodicity
mining in time series [12],[6] where analysis is performed on the long sequences of elementary
data items discretized into a number of ranges and associated with the timestamps. In our
case, input data is a sequence of complex data processing statements, like for example
SQL statements, which due to its internal structure cannot be treated in the same way as
analysis of elementary data elements in time series or genetic sequences. The complex data
processing statement forms a lattice[4] whose elements are syntax trees of the statements
with a partial order determined by an inclusion relationship on syntax trees [14].

In the recent years more work on discovering period patterns addressed full periodicy,
partial periodicity, perfect and imperfect periodicity [7] and recently asynchronous period-
icity [16],[17],[18].

Our problem is also similar to a problem of mining cyclic association rules [11] where

3

International Journal of Database Theory and Application
 Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 65

Ronnie
Rectangle

an objective is to find the periodic executions of the largest sets of items that have enough
support. However, in our case the largest sets of operations do not necessarily mean the
highest workload and sometimes a single periodically processed application significantly
contributes to a database workload.

Invocation of operation on data along the various points in time can be easily described
by temporal predicates within a formal scope of Temporal Programming Logic and temporal
deductive database systems [3], [1]. The reviews of data mining techniques based on analysis
of ordered set of operations on data performed by the user applications ara available in [9],
[13]. The model of periodicity considered in this paper is consistent with the model proposed
in [19].

3 Database processing model

In this work, we consider a typical relational database system where a relational model
of data is used to represent data containers. Let x be a nonempty set of attribute names
later on called as a schema and let dom(a) denotes a domain of attribute a ∈ x. A tuple
t defined over a schema x is a full mapping t : x → ∪a∈xdom(a) and such that ∀a ∈ x,
t(a) ∈ dom(a). A relational table r created on a schema x is a set of tuples over a schema
x. A query processor transforms SQL statements submitted by the user applications into
the query execution plans formulated as the expressions of extended relational algebra.
Processing of SQL statements is recorded in a database audit trail.

3.1 Audit trail

A history of SQL processing is stored in a trace from processing of user applications
a1, . . . , an. A trace of a user application ai is a finite sequence of pairs <ci:tci , si1 :ti1 , . . . ,
sin :tin , di:tdi> where ci is a connect statement, tci is a timestamp when the statement
has been processed, all sij are SQL statements, all tij are timestamps of the respective
SQL statements, di is a disconnect statement, and tdi is a timestamp of disconnect state-
ment. Processing of an application ai starts from processing of a connect statement ci,
then it follows with processing of SQL statements sij , and it finally ends with processing
of a disconnect statement di. An audit trail is complete trace from processing of many
concurrently running user applications. Due to concurrent processing of the applications,
an audit trail is an interleaved sequence of connect, disconnect, and SQL statements. For
example, a sequence <ci:tci ,si1 :ti1 ,cj :tcj ,sj1 :tj1 ,si2 :ti2 ,di:tdi dj :tdj> is a sample audit trail
from the processing of applications ai, and aj .

Information about processing of a statement sij is associated in an audit trail with a
timestamp tij . SQL statements can be easily extracted from an audit trail and EXPLAIN

PLAN statement can be used in the contexts of respective user schemas to transform the
statements into the syntax trees of query execution plans over a set of operations of ex-
tended relational algebra. The codes of operations of extended relational algebra are used
as the labels of nonleaf nodes in syntax trees and the names of data containers processed by
the operations are used as the labels of nonleaf nodes. The operations of extended relational
algebra include the implementation dependent variants of operations of standard relational
algebra such as selection, projection, join, antijoin, set operation, and operations of group-
ing, sorting, and aggregate functions. Due to the different implementation techniques, the

4

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

66 Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

operations from the basic system of relational algebra, e.g. selection or join contribute
to an number of different elementary operations depending on their implementations, e.g.
index based selection, full scan selection, hash based join, index based join, etc.

3.2 Syntax tree table

Let si and sj be the statements obtained from an audit trail and let Tsi , Tsj be their
respective syntax trees obtained from the applications of EXPLAIN PLAN statement. We say
that syntax trees Tsi , Tsj are the same if the labels in root nodes of the trees are the same
the respective subtrees directly connected to the root nodes are the same or the labels of
leaf level nodes connected to root node are the same.

We say, that a syntax tree Tsi is included in or equal to a syntax tree Tsj and we denote
it with Tsi ⊑ Tsj if there exists a nonleaf node n in a syntax tree Tsj such that a subtree
with a root node n is the same as a syntax tree Tsi .

Complete information about syntax trees of SQL statements extracted from an audit trail
is stored in an syntax tree table. A syntax tree table is a set of tuples <tree, operation, left,
right, workload, timestamps> where tree is a unique identifier of a syntax tree, operation
is a code of extended relational algebra operation at the root of syntax tree identified by
tree, left and right are the identifiers of left and right argument of syntax tree identified
by tree or the names of relational tables, workload is an estimate workload imposed on
a database system when processing a syntax tree tree, and timestamps is a set of all
timestamps when a syntax tree tree was processed by a database system. A syntax tree
table is created such that each syntax tree is stored in the table only once no matter how
many times it was included in the processed syntax trees. We shall say that a subtree tleaf
is a leaf level subtree of a syntax tree Ts if tleaf ⊑ Ts and both arguments of an operation
in a root node of tleaf are data containers. A syntax tree table is created in the following
way.

(1) Make a syntax tree table empty

(2) For all syntax trees obtained from audit trail repeat the following actions.

(2.1) Let Ts be syntax tree of a statement s. For all leaf level subtrees in Ts repeat the
following actions.

(2.1.1) Let tleaf be a leaf level subtree in Ts. Search a syntax tree table for a tuple that has
a value of code equal to an operation code in a root node of tleaf and left equal to
the left argument of tleaf and right equal to the right argument of tleaf

(2.1.2) If a tuple searched for is found then that a subtree the same as tleaf has been already
re-ordered in the table. Then add a timestamp of tleaf to timestamps in the tuple
found.

(2.1.3) If a tuple searched for is not found then create and append a new tuple to a syntax
tree table. The new tuple should obtain a new automatically generated tid. A code
of operation in a root of tleaf becomes a value of code. The parameters left and right
obtain the values of left and right arguments of tleaf . A value of workload imposed
by the computation of tleaf becomes a value of workload and finally timestamps
becomes a single element set that consist of a timestamp of tleaf .

(2.1.4) A subtree tleaf is removed from TS such that a root node of tleaf is replaced either
with a tid found in step (2.1.2) if tleaf has been already recorded in syntax tree table

5

International Journal of Database Theory and Application
 Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 67

Ronnie
Rectangle

p
1

p
1

p
1

p
2

p
2

p
1

p
3

t 1 t 2
t 3

t 4

r s

t t v

v

r s

r s r

1:

1:

1:

2: 3:
5:

4:

Figure 1. A sequence of syntax trees

Table 1. A sample syntax tree table
tree operation left right workload timestamps

1 p1 r s w1 {t1, t3, t4}
2 p2 1 t w2 {t1}
3 p2 t v w3 {t2, t4}
4 p3 r v w4 {t4}
5 p1 1 4 w5 {t4}

or a the new tid found in a step (2.1.3) if a new tuple representing tleaf has been
inserted into a syntax tree table.

(2.1.5) If Ts still has at least one leaf level subtree then return to step (2.1.1).

(2.2) If there is at least one more syntax tree top be stored in a syntax tree table then
return to step (2.1). Otherwise all syntax trees from an audit trail has been stored in
a syntax tree table.

As a simple example consider a sequence of syntax trees processed at the timestamps t1, t2,
t3, and t4 given in Fig. 1 where p1, p2, and p3 are the codes of operations. The respective
syntax tree table is given below.

3.3 Time units

Let <tstart, tend> be a period of time over which an audit trail is recorded. The period is

divided into a contiguous sequence of disjoint and fixed size elementary time units <t
(i)
e , τe>

where t
(i)
e for i = 1, . . . , n is a timestamp when an elementary time unit starts and τe is

a length of the unit. Elementary time units are distributed over <tstart, tend> such that

tstart = t
(1)
e and t

(i+1)
e = t

(i)
e + τe and t

(n)
e + τe = tend.

A time unit is a pair <t, τ> where t is a start point of a unit and τ is a length of the
unit. A time unit consists of one or more consecutive elementary time units.

A sequence U of n disjoint time units <t(i), τ (i)> i = 1, . . . , n over <tstart, tend> is any
sequence of time units that satisfies the following properties: tstart ≤ t(1) and t(i) + τ (i) ≤
t(i+1) and t(n) + τ(n) ≤ tend.

As a simple example consider an audit trail that starts on t01−01−20070.00am and ends
on t31−01−200712.00pm. Then, a sequence of disjoint time units called as morning tea time
consists of the following units <t01:01:2007:10:30am, 30mins>, <t02:01:2007:10:30am, 30mins>,
. . . , <t31:01:2007:10:30am, 30mins>.

6

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

68 Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

4 Periodic patterns

In this section we define a concept of periodic pattern and its validation in an audit trail.
A periodic pattern is a tuple <Ts, U , l, b, e, p> where T is a syntax tree of a statement
s, U is a sequence of disjoint time units over which the pattern occurs, l is a threshold
load level, b is a number of time unit in U from where the pattern begins, e is a number of
time unit in U where the pattern ends, and p is a length of a period measured in the total
number of time nits after the computations of Ts are repeated. The positional parameters
b, c, p of a periodic pattern must satisfy the following properties: 1 ≤ b < length(U) and
1 < e ≤ length(U) and ∃n ∈ 1, 2 . . . e = b+ n ∗ p.

Let A be an audit trail. A subsequence all SQL statements in an audit trail A processed
in the n-th time unit in U is denoted by A[n]. Then, the total load created by the multiple
processing of a statement s in A[n] is denoted by load(s,A[n]). We say that a periodic
pattern <Ts, U , l, b, e, p> occurs in an audit trail A when ∀ls ∈ {load(s,A[b]), load(s,A[b+
p], . . . , load(s,A[e])}ls ≥ l.

It may happen, that due to the random reasons, certain periodically repeated real world
processes do not occur from time to time. Then a weaker definition of periodic patter is
needed to describe such cases. Let c = 1 + (e− b)/p. We say that a periodic pattern <Ts,
U , l, b, e, p> occurs in an audit trail A with a support 0 < σ ≤ 1 when the total number
of values in a set {load(s,A[b]), load(s,A[b+ p], . . . , load(s,A[e])} that are greater or equal
to a threshold load l is greater or equal to σ ∗ c.

A process of discovering periodic patterns in an audit trails takes under the consideration
a situation when some of the database applications are submitted for processing by different
users with different frequencies. It means that the same statements can be involved in a
number of periodic patterns with different frequencies. We also take under the consideration
that two or more applications share and use the same module. Then, even if processing of
some statements does not reveal any periodic patterns then it is possible that their common
module may behave in a way consistent with a certain periodic pattern.

4.1 Reduced syntax tree table

Let T be a set of syntax trees that consists of all syntax trees of statements in an
audit trail. Let Tǫ be an empty syntax tree and let Tπ be a syntax tree obtained from
concatenation of all syntax trees from syntax tree table, which are not included in any
other syntax tree. Then, discovering periodic patters in an audit trail is performed over
a lattice < T , ⊑> implemented as a syntax tree table with a minimum Tǫ and maximum
Tπ. The following three rules can be used to reduce the total number of iterations over the
syntax trees.

(1) If a periodic pattern <Ts, U , w, b, e, p> occurs in an audit trail A then for any syntax
tree T such that T ⊑ Ts the same periodic pattern occurs in A.

(2) If a periodic patterns <Ts, U , w, b, e, p> does not occur in an audit trail A then for
any syntax tree T such that Ts ⊑ T the same pattern does not occur in A.

(3) If a periodic patterns <Ts, U , w, b, e, p> does not occur in an audit trail A then for
any syntax tree T ⊑ Ts and not shared with any other subtree the same pattern does
not occur in A.

7

International Journal of Database Theory and Application
 Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 69

Ronnie
Rectangle

The rules listed above mean that for any syntax tree T ⊑ Ts and not shared with any
other subtree a set of periodic pattern that occurs in T is the same as set of periodic
patterns that occur in Ts. It allows to reduce a syntax tree table to a simple table of pairs
<tree, timestamps> where tree is an identifier of a syntax tree that suppose to be verified
against periodic patterns and timestamps is a set of timestamps when the processing of a
syntax tree identified by tree occurred in an audit trail. A reduced syntax tree table includes
the identifiers of all sub-lattices determined by the rules (1)-(3) above. The table contains
only information about the syntax trees of the statements from an audit trail and about
subtrees shared by two or more syntax trees. For example, a syntax tree table given in Table
1 reduces to a set of pairs {<1, {ts1, ts3, ts4}>,<2, {ts1}>,<3, {ts2, ts4}>,<5, {ts4}>}.

4.2 Workload histogram

Next, for each syntax tree T in a reduced syntax tree table a sequence of workload
amounts WT is created. A sequence WT is called as workload histogram of a syntax tree T
and it is used to represents the workloads imposed on a database system when processing
a syntax tree T in each time unit in U . The n-th value in a workload histogram WT [n] is
equal to wT ∗ |T.timestamps[n]|, where T.timestamps[n] is a set of timestamps included in
the n-th time unit and associated with the identifier of a syntax tree T in a reduced syntax
tree table.

5 Discovering periodic patterns

Discovering a periodic pattern <T , U , w, b, e, p> for a given set of time units U , a
given minimal workload w, and a given value of support parameter 0 < σ ≤ 1 is performed
through the nested iterations over the syntax trees included in a reduced syntax tree table
and the iterations over the positional parameters b, e, and p. At the beginning all syntax
trees in a reduced syntax tree table are marked as ”not processed yet” and a set P of
periodic patterns that occur in an audit trial A is set to empty. At each level the iterations
are performed in the following way.

(1) At the outermost level we pick a syntax tree T from a reduced syntax tree table such
that it is not included in any other ”not processed yet” syntax tree. If such tree
does not exist then the iterations are completed. Otherwise, we create a workload
histogram WT for T .

(1.1) At the first inner level the iterations are performed over the values of positional
parameter b. The parameter b iterates over an increasing sequence of numbers
1, 2, 3, . . . , |U | − 1. Let bc be the current value of parameter b. If WT [bc] ≤ w then
a value of bc is increased by one and the same condition is tested again. If no more
iterations over the values of parameter b are possible then we move to a step (1.2)
below.

(1.1.1) At the next inner level the iterations are performed over the values of parameter e for
a fixed value bc set at outer level. A parameter e iterates over a decreasing sequence
of numbers |U |, |U |−1 . . . , bc+2, bc+1. Let ec be the current value of parameter e. If
WT [ec] ≤ w then we take the next value of parameter e the same condition is tested
again. If no more iterations over the values of parameter e are possible we return to
level(1.1).

8

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

70 Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

(1.1.1.1) At the lowest level the iterations are performed over an increasing sequence of values
of parameter p such that (ec − bc)mod p = 0 and bc + p < ec. If no more iterations
over the values of parameter p are possible we return to level (1.1.1). Otherwise, we
set the current value of parameter p to pc.

(1.1.1.2) Next, we create a candidate periodic pattern <T , U , w, bc, ec, pc> and we use a
histogram WT to check whether the candidate pattern is valid in an audit trail with
a given support σ. Let W+

T be a set of all values of histogram WT with the same
numbers as a set of time units UT and such each value in W+

T ≥ w. Then, a candidate
periodic pattern <T , U , w, bc, ec, pc> is valid in an audit trail with a support σ when
W [bc] ≥ w and W [ec] ≥ w and σ ≤ |W+

T |/|UT |.
If the candidate pattern is not valid in an audit trail then we return to step (1.1.1.1)
to collect the next value of parameter p.

(1.1.1.3) If a candidate pattern is valid in an audit trail then we find the smallest workload in
the pattern wmin = min{WT [bc + i ∗ pc],∀i = 0, 1, 2, . . . , (ec − bc)/pc} and we append
<T , U , wmin, bc, ec, pc> to a set P. Then we modify the entries of histogram WT

such that WT [bc + i ∗ pc] := WT [bc + i ∗ pc]−wmin,∀i = 0, 1, 2, . . . , (ec − bc)/pc. Next
we return to step (1.1.1.1) to collect the next value of parameter p.

(1.2) At the end of iterations over the positional parameters we are left with the single
elements in a workload histogram WT , which are not attached to any periodic pattern
in P and such that their value is greater than w. If there exists a periodic pattern
< T,U,w, b, e, p >∈ P and an element WT [n] > w such that n ∈ {b+p, b+2∗p, . . . , e−
2∗p, e−p} then we split the pattern into < T,U,w, b, n, p > and < T,U,w, n+p, e, p >
and we modify a histogram WT [n] := WT [n] − w. Splitting the periodic patterns is
repeated until no more single elements in WT can be used.
When finished, we mark a syntax tree T as ”processed” in a reduced syntax tree table
and we return to a step (1) above.

6 Conclusions and further work

The efficiency of search over the dimensions of syntax trees and positional parameters
of periodic pattern is very low. If an audit trail is divided by a set of time units U into n
partitions then complexity of a search over the values of b, e, p is approximately O(k ∗ n3)
where 0 < k < 1/8. Complexity of search over syntax trees is hard to estimate as it depends
on the total number of access methods to relational tables, complexity of SQL statements,
and a level of sharing common components among SQL statements.

As usual more efficient search over a space of syntax trees and positional parameters is a
natural objective for the further research. As an ultimate objective is to apply the discovered
periodic patterns to automated database performance tuning the next open problem is an
application of the patterns to the prognostics of future intensity and structure of database
workload. It requires a system of derivation rules for the periodic patterns to estimate what
relational tables will be accessed by user applications and what database operations will be
processed by the applications. One more issue is the right choice of a sequence of time units
U when searching for periodic patterns. Too long time units in U would hide the existence
of periodic patterns while too short time units would make the discovered patterns hard to
comprehend and not consistent with the reality.

9

International Journal of Database Theory and Application
 Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 71

Ronnie
Rectangle

References

[1] Mart́ın Abadi and Zohar Manna. Temporal logic programming. J. Symb. Comput.,
8(3):277–295, 1989.

[2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining association rules be-
tween sets of items in large databases. In Proceedings of The 1993 ACM SIGMOD
Intl. Conf. on Management of Data, pages 207–216, 1993.

[3] Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Temporal deductive databases,
1992.

[4] Garrett Birkhoff. Lattice theory. In Colloquium Publications, volume 25. Amer. Math.
Soc., 3. edition, 1967.

[5] Nicholas Bruno, editor. Automated Physical Database Design and Tuning. CRC Press
Taylor and Francis Group, 2011.

[6] Jiawei Han, Wan Gong, and Yiwen Yin. Mining segment-wise periodic patterns in time-
related databases. In Proceeding of International Conference on Knowledge Discovery
and Data Mining, pages 214–218, 1998.

[7] Kuo-Yu Huang and Chia-Hui Chang. SMCA: A general model for mining asynchronous
periodic patterns in temporal databases.

[8] Martin Krallinger, Alfonso Valencia, and Lunette Hirschman. Linking genes to lit-
erature:text mining, information extraction, and retrieval applications for biology.
Genome Biology, 9(2), 2008.

[9] Srivatsan Laxman and P S Sastry. A survey of temporal data mining. Sadhana,
Academy Proceedings in Engineering Sciences, 31(2):173–198, 2006.

[10] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of frequent
episodes in event sequences. Data Mining and Knowledge Discovery, 1:259–289, 1997.

[11] Banu Özden, Sridhar Ramaswamy, and Abraham Silberschatz. Cyclic association rules.
In Proceedings of the Fourteenth International Conference on Data Engineering, pages
412–421, 1998.

[12] F. Rasheeed, M. Alshalalfa, and R Alhajj. Efficient periodicity mining in time series
databases using suffix trees. IEEE Transactions on Knowledge and Data Engineering,
23(1):79–94, 2011.

[13] John F. Roddick and Myra Spiliopoulou. A survey of temporal knowledge discovery
paradigms and methods. IEEE Transactions on Knowledge and Data Engineering,
14:750–767, 2002.

[14] Dan A. Simovici and Chabane Djeraba. Mathematical tools for data mining : set the-
ory, partial orders, combinatorics. Advanced Information and Knowledge Processing.
Springer, London, 2008.

[15] M. Wojciechowski. Discovering frequent episodes in sequences of complex events. In
Proceedings of Enlarged Fourth East-European Conference on Advances in Databases
and Information Systems (ADBIS-DASFAA), pages 205–214, 2000.

[16] Jiong Yang, Wei Wang, and Philip S. Yu. Mining asynchronous periodic patterns in
time series data. IEEE Transactions on Knowledge and Data Engineering, 15(3):613–
628, March 2003.

10

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

72 Copyright ⓒ 2013 SERSC

Ronnie
Rectangle

[17] Jieh-Shan Yeh, Szu-Chen Lin, and Shueh-Cheng Hu. Novel algorithms for asyn-
chronous periodic pattern mining based on 2-d linked list. International Journal of
Database Theory and Application, 5(4):33–43, 2012.

[18] Jieh-Shan Yeh, Szu-Chen Lin, and Shueh-Cheng Hu. OEOP: A novel algorithm for
periodic pattern mining. International Journal of Hybrid Information Technology,
5(2):365–367, 2012.

[19] Marcin Zimniak, Janusz Getta, and Wolfgang Benn. Discovering periodic patterns in
database audit trails. In Proceedings of International Conference on Interdisciplinary
Research Theory and Technology, pages 365–367, 2013.

11

International Journal of Database Theory and Application
 Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 73

Ronnie
Rectangle

International Journal of Database Theory and Application
Vol.6, No.6 (2013)

74 Copyright ⓒ 2013 SERSC

