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Abstract 

This work proposes a semi-supervised sentiment classification method which is based on 

the co-training framework. The proposed method needs to construct three sentiment 

classifiers. We use common text features to construct the first classifier. We extract opinion 

words from consumer reviews, and then we ranked these opinion words according to their 

importance. We also employ extracted opinion words and the ranked co-occurrence opinion 

words of the extracted opinion words of each review to get the second sentiment classifier. A 

third sentiment classifier comes into being using non-opinion text features from each review. 

Based on co-training semi-supervised learning framework, we use the three sentiment 

classifiers to iteratively get the final sentiment classifier. Experimental results show that our 

proposed method has better performance than the Self-learning SVM method and the Naive 

co-training SVM method. 
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1. Introduction 

With the development of Web 2.0, Web users are used to publishing product comments or 

reviews in Web logs, Web forums, social networks, and some commercial Web sites after 

they have finished purchasing activities. These product reviews reflect what products aspects 

consumers are fond of and what product features consumers dislike. It is believed that product 

reviews in the Web are subjective, and they are often divided into two categories: positive 

reviews and negative reviews. Consumers like to express positive sentiment with happy, 

supportive, approving language, and they can use angry and depressive words to express 

negative sentiment. Because it is difficult for computers to “understand” natural languages, to 

do highly accurate sentiment classification is a hard task. So, how to automatically conduct 

sentiment classification on product reviews has become a research challenge.  

Sentiment classification is an important part of opinion mining which is trying to find 

useful knowledge from Web reviews. Lots of research achievements of opinion mining have 

been widely applied in business intelligence systems and recommendation systems. Sentiment 

classification plays a very important role in these applications. Sentiment classification has 

drawn much research attention in the recent years. Many classification methods have been 

proposed during the past several years. Some unsupervised methods are easy to be applied 

and deployed in the actual applications, but these methods could rely on heuristic rules, 

sentiment lexicons or other language resources, even emphasize on natural language 

processing techniques such as syntactic and semantic analysis. Although in some cases rule-

based methods are very powerful for opinion text mining, machine learning techniques are 

indeed welcome and popular for sentiment classification. Machine learning-based sentiment 

classification methods can roughly be classified into two categories: supervised machine 
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learning-based methods and semi-supervised machine learning-based methods. Supervised 

classification need to label instances to train a sentiment classifier. But most of time it is hard 

to find useful labeled data, so we must label data by ourselves. The labeling task is time 

consuming and labor intensive. On the other hand, for every product domain, we could need 

different training data. Semi-supervised sentiment classification methods only require a small 

amount of training data and some unlabeled data to get the final sentiment classifier. Our 

work focuses on semi-supervised sentiment classification which only exploits shallow natural 

language processing techniques without semantic analysis. 

Our method is a kind of semi-supervised sentiment classification method which only needs 

to label a small number of training instances. The proposed method is based on three 

observations as follows. The first observation is opinion words with the positive sentiment 

polarity could have higher possibility to co-occur in positive reviews than in negative 

reviews, and opinion words with the negative sentiment polarity could have higher possibility 

to co-occur in negative reviews than in positive reviews. For instance, “great” and 

“wonderful” have the same positive sentiment polarity, and they could have high possibility 

in the reviews with positive sentiment instead of negative reviews. The second observation is 

opinion words in the same review tend to have the same sentiment polarity. The above two 

observations are not absolute, because in an overall positive review consumer may have 

negative comment on some product features. Even in a negative review, consumer could 

express some positive opinions on some product aspects. The third observation is we believe 

different opinion words can be ranked according to their importance. Some opinion words 

could have greater contribution to show review holders' sentiment than other opinion words. 

In other words, opinion words with similar sentiment importance could have similar 

sentiment strength. So, based on our three observations, we try to propose a research 

question: whether can we find similar opinion words for the original opinion words in reviews 

to help improve sentiment classification? 

In this work, we firstly extract opinion words from the training data set, unlabeled data set 

and test data set. Then, we use co-occurrence relationship in both the training data set and 

unlabeled data set, and we adopt HITS algorithm [1] to rank opinion words. We find opinion 

words with the similar importance to the original opinion words of each review in the training 

data set and unlabeled data set. We use uni-grams of the training data to train the first 

sentiment classifier f1. We use the original opinion words coming from the training data set 

and the nearest ranked neighbor opinion words of these original opinion words to build the 

second sentiment classifier f2. We use non-opinion text features of the training data set to 

form the third sentiment classifier f3. Finally, we employ the co-training framework [2], f1, f2, 

and f3 to get the final sentiment classifier. Our method is a kind of semi-supervised sentiment 

classification method which only requires a small number of labeled training instances and 

some unlabeled instances. Experimental results show that our method has better performance 

than the Self-learning SVM method and the Naive Co-training SVM method. 

 

2. Related Works 

Sentiment classification is one of important tasks of opinion mining. Researchers 

have made great progress in the field of opinion mining during the past several years. 

Pang’s survey [3] gives a great summarization for opinion mining and sentiment 

analysis. Opinion mining has three important tasks including development language 

resources, sentiment classification and opinion summarization [4]. Some excellent 

publications focus on word sentiment classification [5, 6], while some early important 

research works address the problem of document sentiment classification such as [7, 8]. 

Machine learning techniques were firstly applied in sentiment classification by Pang et 
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al., [8]. Pang et al., [8] proved that SVM (support vector machine) had better 

performance than Naive Bayes and maximum entropy in sentiment classification. 

Recent year machine learning-based sentiment classification methods are widely 

studied and seem very promising. Except for various supervised machine learning 

methods, there are some publications focus on semi-supervised sentiment classification 

methods, such as [9, 10, and 11]. Recent research work [12] also addressed the problem 

of semi-supervised sentiment classification by exploiting subjective and objective views 

of Web reviews. We also compare our work with [12] in this work.  

 

3. Proposed Approach 
 

3.1. Introduction to Our Method 

A traditional machine learning-based sentiment classification method needs to manually 

label a training data set. The label work is usually time-consuming and uninteresting. A semi-

supervised machine learning-based sentiment classification method only labels a small 

number of training instances and some unlabeled instances. The problem is defined as the 

work [11]. We firstly prepare for a small training data set T = {(x1, y1), (x2, y2), …, (xn, yn)}, 

where xi is the training instance. Sentiment classification problem can be seen as a binary 

classification problem, yi ∈ {-1,+1} is the label of the instance xi, -1 presents an instance has 

negative sentiment, and +1 presents it has positive sentiment. We also need an unlabeled data 

set U = {u1, u2,..., um} which is used in the learning process to get the final sentiment 

classifier. Let all training instances and unlabeled instances be m dimensional vectors in the 

real space X ⊆ R
m
. Then we denote a review as xi = {xi1, xi2, ..., xim}, xi is m dimensional input 

vector. The task of semi-supervised classification problem is to obtain a classification 

function f(x) to predict the polarity of a consumer review x by exploiting instances in T and U. 

: ( , )f X T U L                                                              (1) 

Some opinion words are important for consumers to express strong sentiment. For 

example, “great” and “wonderful” can be used to show a possibly strong positive sentiment, 

and “ugly” and “unfriendly” will give much negative sentiment. We have three observations: 

 Opinion words with the positive sentiment polarity could have higher possibility to 

co-occur in positive reviews than in negative reviews; opinion words with the 

negative sentiment polarity could have higher possibility to co-occur in negative 

reviews than in positive reviews. For example, “great” and “wonderful” could have 

higher possibility to co-occur in positive reviews than in negative reviews; “filthy” 

and “bad” could have higher possibility to be in the same negative review than in the 

same positive review. 

 Opinion words in the same review tend to have the same sentiment polarity. We must 

say that it is possible that both positive and negative opinion words could exist in the 

same review. In this case, we assume each review has its major sentiment polarity 

with major opinion words. 

 Different opinion words can have different sentiment strength. These opinion words 

can show the overall sentiment of reviews. We could find a way to rank opinion 

words according to their importance. 
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Figure 1. Overview of Our Proposed Method 

The research problem is whether we can use these observations to improve sentiment 

classification. In our approach, we extract opinion words from training and unlabeled data set. 

We try to construct a graph using the co-occurrence relationship among these opinion words. 

Then we rank these opinion words using HITS algorithm [1]. Our proposed method has 

several basic steps, as Figure 1 shows, and the overall algorithm is showed as follows. 

 We firstly extract opinion words from training and unlabeled data sets. 

 We use the co-occurrence of these extracted words to construct a double-directed 

graph. 

 Using HITS algorithm, we rank opinion words according to their co-occurrence 

relationship. 

 According to the ranking results, we find the nearest neighbor opinion word for every 

extracted opinion word of each review. 

 We train three sentiment classifiers: we get the first sentiment classifier through 

common uni-grams features. The second classifier is trained using original opinion 

words and the nearest ranked neighbor opinion words of the original opinion words 

extracted from each review. The third sentiment classifier is trained using the non-

opinion text features. 

 At last, we employ co-training [2] framework to get the final sentiment classifier. 

The co-training method is a bootstrapping method which iteratively put unlabeled 

instances into training data set. 

 

3.2. Opinion Word Extraction 

To simplify the research problem, we only extract adjectives from consumer reviews. 

Adjectives usually have sentiment polarity, because consumers are used to expressing 

opinions and describing product features using some adjectives. For example, in the sentence 

“The staff is helpful and friendly” there are two adjectives (helpful and friendly) with positive 

sentiment. Some opinion words have negative indicators in the context of negation. In this 

case, to be simple, a negative indicator and an opinion word together are looked as a single 

opinion word. For example, in the phrase “not bad”, the word “bad” is an opinion word, and 

“not” is a negative indicator, and “not bad” is looked as a single opinion word. We extract 

adjectives with POS (Part-of-Speech) labels of JJ, JJR, and JJS. At the same time, If there has 
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a negative indicator in the context window [-3, 0] of an opinion word, then the negative 

indicator combined with the sentiment word together constitute a sentiment unit. The context 

of a word window [-3, 0] means the left distance coverage of the word in a clause is 3 words 

from the opinion word. These negative indicators including “not”, “no”, “donot”, “do not”, 

“didn’t”, “did not”, “was not”, “wasn't”, “isnt”, “isn't”, “weren't”, “werent”, “doesn’t”, 

“doesn't”, “hardly”, “never”, “neither”, and “nor”. 

 

3.3. Co-occurrence Graph Construction and Opinion Word Ranking 

We can generate a double-directed graph by exploiting all reviews in the labeled data set 

and the unlabeled data set. Co-occurrence of two opinion words means they must appear in 

the same consumer review. In the graph, opinion words are used as graph nodes, and the 

edges present co-occurrence relationship. For each co-occurrence opinion word pair, a double 

direction edge is generated. When we finish generating the graph, we can use some graph 

ranking method to rank these opinion words. Suppose the directed graph is denoted as G = (V, 

E), while V is the node set, and E is the edge set. Let M be the adjacency matrix of the graph, 

if opinion word i co-occurs with opinion word j, then Mij = 1 and Mji = 1; otherwise,  Mij = 0 

and Mji = 0 (Graph G is a double-directed graph). 

We use HITS algorithm to do the task of ranking. HITS algorithm is famous for its 

distinguished performance in link analysis for ranking Web pages. Some research work also 

adopts HITS to rank product features [13]. We believe HITS can also be used to rank opinion 

words. In order to use HITS algorithm, we need to computes two kinds of scores for each 

Web page. One is the hub score, the other is the authority score. We assume that for each 

opinion word in our co-occurrence graph hi is the hub score of the opinion word i, and ai is 

the authority score of the opinion word i. The two kinds of scores can be iteratively computed 

using Equation (2) and Equation (3). The authority score of an opinion word is the sum of hub 

scores of opinion words that links to the opinion word, and the hub score of an opinion word 

is the sum of authority scores of opinion words that the opinion word points to. The mutual 

reinforcement relationship of authorities and hubs is the key philosophy in the HITS 

algorithm. 

                                                                                                                                            (2) 

 

                                                                                                                                            (3) 

If our opinion word number is n, then we present the authority scores of all opinion words 

as a column vector A = (a1, a2, ..., an)
T
. We denote H = (h1, h2, ..., hn)

T
 as the column vector 

with the hub scores. The idea is we iteratively compute the authority score vector and the hub 

score vector using Equation (4) and Equation (5) until the algorithm converges. We set all the 

elements of A and H the same value of 1’s. The initial vector for A and H is A = (1,...,1)
T
, H 

= (1,...,1)
T
. 

 

                                                                                                                                           (4) 

                                                                                                                                           (5) 
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3.4. Using Ranked Opinion Words and Co-training Framework to Conduct Sentiment 

Classification 

The co-training method [2] is typical semi-supervised self-boost algorithm framework. The 

co-training method uses different views to train the final classifier. We generate three 

sentiment classifiers which will be used to get the final sentiment classifier in our co-training 

framework. The first sentiment classifier takes the frequencies of uni-grams extracted from 

the training data set as training features. In this case, we remove the tokens whose sizes are 

less than 3, as well as some stop words. After the preprocessing action, we use TinySVM [14] 

to get the first sentiment classifier f1. 

The second sentiment classifier is trained by extracted opinion words which have POS tags 

of “JJ”, “JJR”, and “JJS”. If in the context window of an opinion word there is a negative 

indicator, then the negative indicator as well as the opinion word together to form an opinion 

unit which is looked as a single training feature. Negative indicators include “not”, “no”, 

“donot”, “don't”, “didn’t”, “wasn’t”, “isn't”, “isnt”, “weren't”, “werent”,  “doesn't”, “doesn’t”, 

“didn't”, “hardly”, “never”, “neither” and “nor”. We use frequencies of these extracted 

opinion words or sentiment units from training data set to get the second sentiment classifier 

f2. 

In order to get the third sentiment classifier, we must get the nearest neighbor opinion word 

of every original opinion word of each review. Suppose OT is the set of total opinion words 

extracted from the training data set. Let OU be the set of total opinion words extracted from 

the unlabeled data set. Let OTU = OT ∪ OU, for each review ri we will get an opinion word set 

Oi for ri, while Oi ⊆ OTU. Oi could include one or several opinion words. According to the 

adjacent matrix M, we can get the co-occurrence opinion word set for every element of Oi. 

For any element oij, oij ∈Oi, 0 ≤  j < |Oi|, we denote oij’s co-occurrence opinion word set as 

Nij. We select the nearest neighbor opinion word nijz ∈Nij which has the nearest authority 

score to oij, here nijz ∈ Nij,  nijz ≠  oij, 0≤  z < |Nij|, satisfying the condition 

arg min | ( ) ( ) |z ijz ijz A n A o  ,                                           (6) 

where A(nijz) and A(oij) are the authority scores in the HITS algorithm described in Section 

3.3. Using Equation (6), we put the selected neighbor opinion word nijz into ri's neighbor 

opinion word set Ni. Finally, we get the neighbor opinion word set Ni for Oi, where |Ni| ≤ |Oi|. 

(Note: if an opinion word has no any co-occurrence opinion word, then we could get |Ni| < 

|Oi|.) The detailed steps is shown as Algorithm 1. 

Algorithm 1: Sentiment Classification Algorithm Based on Ranked Opinion Words 

Input: Training data set T={t1, t2,...,tx}, T includes balanced positive reviews and negative 

reviews; Unlabeled data set U={u1, u2, ..., uy}; 

Output: Sentiment classifier C; 

BEGIN 

1. Extract opinion words from T and U, we get the training opinion word set OT  and the 

unlabeled opinion word set  OU. 

2. Construct a graph and get adjacent matrix M using co-occurrence relationship (if two 

opinion words are in the same review) among opinion words coming from  OT  and  OU 

; 

3.  OTU = OT ∪ OU ,  rank the opinion words of  OTU  using HITS algorithm; 
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4.  For each training instance in training data set  T  and unlabeled data set  T  , we get the 

nearest neighbor opinion word set Ni  of its original opinion word  Oi  set using 

Equation (6), where  |Ni|≤ |Oi| ; 

5. WHILE {There are unlabeled instances left in the unlabeled data set} 

6.        Use training data set T and SVM to get the first sentiment classifier f1 ; 

7.      Use original opinion words extracted from the training instances together with the 

nearest neighbors of extracted original opinion words to train SVM to get the 

second classifier f2 ; 

8.        Use the non-opinion text features to get the third sentiment classifier f3; 

9.        Use  f1 to classifier instances in  U , and get positive instance set Pf1 ~ and Negative 

instance set Nf1 (In each iteration we take the most  50  possible classified 

instances); 

10.    Use  f2 to classify unlabeled data set U , and get positive instance set Pf2 and 

negative instance set Nf2 (In each iteration we take the most  50  possible classified 

instances); 

11.    Use  f3 to classify unlabeled data set  U , and get positive instance set Pf3 and 

negative instance set  Nf3 (In each iteration we take the most  50  possible 

classified instances); 

12.       L=L∪Pf1∪Nf1∪ Pf2∪Nf2∪Pf3∪ Nf3 ; 

13. ENDWHILE; 

14. C=f1; 

15. RETURN  C; 

END. 

 

4. Experiments 
 

4.1. Experimental Data 

We crawled mobile phone and laptop reviews from Amzaon [15] and hotel reviews from 

Tripadvisor [16] respectively. We used OpenNLP [17] get sentences and POS tags for these 

reviews. These data sets were also used in the previous publications [11, 12]. Statistics on the 

experimental data sets are shown in Table 1. For example, the hotel data set has 1000 positive 

reviews and 1000 negative reviews, and these reviews are segmented into 18694 sentences. 

The sentiment polarity of a review in a training data set is assigned according to their review 

ratings. A review rating is a real number ranging from 1 to 5. When the a review rating is 

greater than 3, then the review is a positive review; when a review rating is less than 3, the 

review is a negative review. 
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Table 1. Experimental Statistics 

Data  Positive reviews # Negative reviews # Sentences # 

phone 1000 1000 28811 

laptop 1000 1000 14814 

hotel 1000 1000 18694 

 

4.2. Compared Methods 

 

4.2.1 Self-learning SVM Method: The earliest use of SVM (Support Vector Machine) [18] 

to determine the sentiment polarity of consumer reviews is Pang's research work [8]. It is 

believed SVM is one of the best text classification methods. Because our proposed method is 

semi-supervised sentiment classification method, we try to compare our method with the Self-

learning SVM method. Therefore, the Self-learning SVM method is our baseline. We use the 

frequencies of uni-grams of reviews as the training and test features for SVM. We employ 

TinySVM [14] software to conduct SVM-based sentiment classification.  

Algorithm 2: Self-learning SVM Method [11, 12] 

Input: Training set T = {t1, t2, ..., tx} ,  T  includes positive reviews and negative reviews; 

Unlabeled data set  U={u1, u2, ..., uy} ; 

Output: Sentiment classifier C; 

BEGIN 

1. n is the number of selected reviews which are the most likely correctly classified 

reviews; 

2. Use SVM to get the initial sentiment classifier C on training data set T; 

3. WHILE {the unlabeled data set is not empty} 

4.      Use sentiment classifier C to classify the unlabeled instances in U: get positive set P 

and the negative set  N; 

5.      If   |P|> = d, then select the most likely correctly classified  d  instances from  P  (the 

set is  Pd ) into  T,  T=T∪Pd,  P=P-Pd; otherwise put all the instances in the  P  into  

T,  T = T∪ P ; 

6.     If   |N|> = d  , then select the most likely correctly classified  d  instances from  N  

(the set is  Nd ) into  T ,  T=T∪Nd ,  N=N-Nd ; otherwise put all the instances in the  

N  into  T,  T= T∪N ; 

7.     Employ SVM to train a new sentiment classifier C  on the current training data set  T 

; 

8. ENDWHILE; 

9. RETURN  C; 

      END. 

Self-learning SVM is a bootstrap approach to learning as Algorithm 2 shows. The method 

is also used as the baseline in the previous works [11, 12]. The algorithm iteratively selects 
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the most likely correctly classified reviews which are determined by their distances to 

classification hyperplane, and put them into the training data set. A new sentiment classifier is 

built by training on the new training data set. Repeat the above steps until there are no 

unlabeled review that can be added to the training data set so far. When a classified review 

has greater distance from SVM hyperplane, the review is considered have higher probability 

to be correctly classified. 

 

4.2.2 Naive Co-training SVM Method: The Naive Co-training SVM method is based on the 

same co-training framework as Algorithm 3 which has been described as the Two-view Co-

training Method in the first author’s previous work [12]. The only difference between 

Algorithm 1 and Algorithm 3 is that Algorithm 1 uses the HITS algorithm to rank opinion 

words, and select the nearest neighbor opinion words according to ranking information of 

opinion words to train the sentiment classifier f2, while in the Naive Co-Training SVM 

sentiment classification method, we only use the original opinion words to train the sentiment 

classifier  f2. 

Algorithm 3: Naive Co-training SVM Method (Two-view Co-training Method [12]) 

Input: Training data set  T={t1, t2 ,..., tx}, T is balanced data set; Unlabeled data set  

U={u1, u2, ..., uy}; 

Output: Sentiment classifier C ; 

  BEGIN 

1. WHILE {There are unlabeled instances left in the unlabeled data set} 

  2.        Use training data set T  and SVM to get the first sentiment classifier f1 ; 

 3.       Use opinion words extracted from the training instances to train SVM to get the 

second classifier f2 ; 

 4.      Use non-opinion text features from training data set and SVM to get the third 

sentiment classifier f3 ; 

5.         Use  f1 to classifier instances in  U, and get positive instance set Pf1 and Negative 

instance set Nf1 (each iteration we take the most  50  possible classified instances; 

6.      Use  f2 to classify unlabeled data set U, and get positive instance set Pf2 and 

negative instance set  Nf2 (each iteration we take the most  50  possible classified 

instances); 

7.      Use  f3 to classify unlabeled data set  U , and get positive instance set Pf3 and 

negative instance set Nf3 (each iteration we take the most  50  possible classified 

instances); 

 8.    L=L∪Pf1∪Nf1∪Pf2 ∪Nf2∪Pf3∪ Nf3; 

9.  ENDWHILE; 

10. C=f1 ; 

11. RETURN  C ； 

End. 
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4.3. Experiments 

For each category data set, we divided the whole data set into training, unlabeled and test 

data sets respectively. The test data set of each product is randomly sampled from the product 

data set. Each test data set includes 800 instances, 400 positive instances and 400 negative 

instances. For example, if the training instance number is 100 as Table 2 shows, it means we 

have 50 positive instances and 50 negative instances for training. The remaining 1100 

instances are used as unlabeled instances. We use accuracy to evaluate our proposed method, 

as Equation (7). 

 

                                                                                                                                           (7) 

 

Table 2. Experimental Results on the Phone Data Set 

Training Unlabeled Test Self-learning 

SVM 

Naive Co-training 

SVM 

Proposed 

Method 

100 1100 800 66% 74% 72.25% 

200 1000 800 64% 75.25% 77.38% 

300 900 800 72.13% 76.63% 80.25% 

400 800 800 73.38% 78% 78.88% 

 

Table 2 gives experimental results of our proposed method on the phone data set. In Table 

1, we can see that our proposed method has the best performance, while the Self-learning 

SVM method has the worst accuracy. Only in the case when the number of training data 

instance is 100, the Naive Co-training method outperforms the proposed method. 

Table 3. Experimental Results on the Laptop Data Set 

Training Unlabeled Test Self-learning 

SVM 

Naive Co-training 

SVM 

Proposed 

Method 

100 1100 800 64.63% 72.38% 74.00% 

200 1000 800 70.50% 76.38% 76.38% 

300 900 800 67.50% 72.75% 77.50% 

400 800 800 69.13% 78.13% 77.63% 

 

Table 3 shows that both our proposed method and the Naive Co-training method have 

better performance than the Self-learning SVM method on the laptop data set. But in this 

case, the proposed method and the Naive Co-training SVM method are well-matched, and the 

proposed method has little advantage than the Naive Co-training method. 

number of right classified instances

total number of test instances
Accuracy 



International Journal of Database Theory and Application 

Vol.6, No.6 (2013) 

 

 

Copyright ⓒ 2013 SERSC   61 
 

Table 4. Experimental Results on the Hotel Data Set 

Training Unlabeled Test Self-learning 

SVM 

Naive Co-training 

SVM 

Proposed 

Method 

100 1100 800 68.88% 79.63% 80.50% 

200 1000 800 76.25% 83.25% 83.50% 

300 900 800 79.50% 82.63% 83.38% 

400 800 800 79.75% 84.50% 85.25% 

 

In Table 4, we can see our proposed method has the best performance among the three 

methods. In this case, ranked opinion words are very helpful for the sentiment classification. 

The Naive Co-Training SVM method seems stable and it has better performance than the 

Self-learning SVM method. We can see the classification accuracy will improve if we give 

more training instances. In summary, our proposed method is effective on the empirical data 

sets. 

 

5. Conclusion 

This work focuses on semi-supervised sentiment classification. We proposed a semi-

supervised sentiment classification method which focuses on using ranked opinion words to 

build a semi-supervised sentiment classifier based on the co-training framework. The method 

itself doesn't rely on other language resources. Our method only needs a small number of 

labeled training instances and some unlabeled instances. We find that ranked opinion words 

are helpful for improving the final sentiment classification accuracy. Experimental results on 

empirical data sets show our method is effective and promising, and it outperforms the Self-

learning SVM method and the Naive Co-training SVM Method. In the future, we will 

continue our research to find more effective sentiment classification methods. 
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