
International Journal of Database Theory and Application

Vol.6, No.6 (2013), pp.51-62

http://dx.doi.org/10.14257/ijdta.2013.6.6.05

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2013 SERSC

Semi-supervised Sentiment Classification using Ranked Opinion

Words

Suke Li and Yanbing Jiang

School of Software and Microelectronics, Peking University

{lisuke, jyb}@ss.pku.edu.cn

Abstract

This work proposes a semi-supervised sentiment classification method which is based on

the co-training framework. The proposed method needs to construct three sentiment

classifiers. We use common text features to construct the first classifier. We extract opinion

words from consumer reviews, and then we ranked these opinion words according to their

importance. We also employ extracted opinion words and the ranked co-occurrence opinion

words of the extracted opinion words of each review to get the second sentiment classifier. A

third sentiment classifier comes into being using non-opinion text features from each review.

Based on co-training semi-supervised learning framework, we use the three sentiment

classifiers to iteratively get the final sentiment classifier. Experimental results show that our

proposed method has better performance than the Self-learning SVM method and the Naive

co-training SVM method.

Keywords: opinion mining, sentiment classification, ranked opinion words

1. Introduction

With the development of Web 2.0, Web users are used to publishing product comments or

reviews in Web logs, Web forums, social networks, and some commercial Web sites after

they have finished purchasing activities. These product reviews reflect what products aspects

consumers are fond of and what product features consumers dislike. It is believed that product

reviews in the Web are subjective, and they are often divided into two categories: positive

reviews and negative reviews. Consumers like to express positive sentiment with happy,

supportive, approving language, and they can use angry and depressive words to express

negative sentiment. Because it is difficult for computers to “understand” natural languages, to

do highly accurate sentiment classification is a hard task. So, how to automatically conduct

sentiment classification on product reviews has become a research challenge.

Sentiment classification is an important part of opinion mining which is trying to find

useful knowledge from Web reviews. Lots of research achievements of opinion mining have

been widely applied in business intelligence systems and recommendation systems. Sentiment

classification plays a very important role in these applications. Sentiment classification has

drawn much research attention in the recent years. Many classification methods have been

proposed during the past several years. Some unsupervised methods are easy to be applied

and deployed in the actual applications, but these methods could rely on heuristic rules,

sentiment lexicons or other language resources, even emphasize on natural language

processing techniques such as syntactic and semantic analysis. Although in some cases rule-

based methods are very powerful for opinion text mining, machine learning techniques are

indeed welcome and popular for sentiment classification. Machine learning-based sentiment

classification methods can roughly be classified into two categories: supervised machine

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

52 Copyright ⓒ 2013 SERSC

learning-based methods and semi-supervised machine learning-based methods. Supervised

classification need to label instances to train a sentiment classifier. But most of time it is hard

to find useful labeled data, so we must label data by ourselves. The labeling task is time

consuming and labor intensive. On the other hand, for every product domain, we could need

different training data. Semi-supervised sentiment classification methods only require a small

amount of training data and some unlabeled data to get the final sentiment classifier. Our

work focuses on semi-supervised sentiment classification which only exploits shallow natural

language processing techniques without semantic analysis.

Our method is a kind of semi-supervised sentiment classification method which only needs

to label a small number of training instances. The proposed method is based on three

observations as follows. The first observation is opinion words with the positive sentiment

polarity could have higher possibility to co-occur in positive reviews than in negative

reviews, and opinion words with the negative sentiment polarity could have higher possibility

to co-occur in negative reviews than in positive reviews. For instance, “great” and

“wonderful” have the same positive sentiment polarity, and they could have high possibility

in the reviews with positive sentiment instead of negative reviews. The second observation is

opinion words in the same review tend to have the same sentiment polarity. The above two

observations are not absolute, because in an overall positive review consumer may have

negative comment on some product features. Even in a negative review, consumer could

express some positive opinions on some product aspects. The third observation is we believe

different opinion words can be ranked according to their importance. Some opinion words

could have greater contribution to show review holders' sentiment than other opinion words.

In other words, opinion words with similar sentiment importance could have similar

sentiment strength. So, based on our three observations, we try to propose a research

question: whether can we find similar opinion words for the original opinion words in reviews

to help improve sentiment classification?

In this work, we firstly extract opinion words from the training data set, unlabeled data set

and test data set. Then, we use co-occurrence relationship in both the training data set and

unlabeled data set, and we adopt HITS algorithm [1] to rank opinion words. We find opinion

words with the similar importance to the original opinion words of each review in the training

data set and unlabeled data set. We use uni-grams of the training data to train the first

sentiment classifier f1. We use the original opinion words coming from the training data set

and the nearest ranked neighbor opinion words of these original opinion words to build the

second sentiment classifier f2. We use non-opinion text features of the training data set to

form the third sentiment classifier f3. Finally, we employ the co-training framework [2], f1, f2,

and f3 to get the final sentiment classifier. Our method is a kind of semi-supervised sentiment

classification method which only requires a small number of labeled training instances and

some unlabeled instances. Experimental results show that our method has better performance

than the Self-learning SVM method and the Naive Co-training SVM method.

2. Related Works

Sentiment classification is one of important tasks of opinion mining. Researchers

have made great progress in the field of opinion mining during the past several years.

Pang’s survey [3] gives a great summarization for opinion mining and sentiment

analysis. Opinion mining has three important tasks including development language

resources, sentiment classification and opinion summarization [4]. Some excellent

publications focus on word sentiment classification [5, 6], while some early important

research works address the problem of document sentiment classification such as [7, 8].

Machine learning techniques were firstly applied in sentiment classification by Pang et

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 53

al., [8]. Pang et al., [8] proved that SVM (support vector machine) had better

performance than Naive Bayes and maximum entropy in sentiment classification.

Recent year machine learning-based sentiment classification methods are widely

studied and seem very promising. Except for various supervised machine learning

methods, there are some publications focus on semi-supervised sentiment classification

methods, such as [9, 10, and 11]. Recent research work [12] also addressed the problem

of semi-supervised sentiment classification by exploiting subjective and objective views

of Web reviews. We also compare our work with [12] in this work.

3. Proposed Approach

3.1. Introduction to Our Method

A traditional machine learning-based sentiment classification method needs to manually

label a training data set. The label work is usually time-consuming and uninteresting. A semi-

supervised machine learning-based sentiment classification method only labels a small

number of training instances and some unlabeled instances. The problem is defined as the

work [11]. We firstly prepare for a small training data set T = {(x1, y1), (x2, y2), …, (xn, yn)},

where xi is the training instance. Sentiment classification problem can be seen as a binary

classification problem, yi ∈ {-1,+1} is the label of the instance xi, -1 presents an instance has

negative sentiment, and +1 presents it has positive sentiment. We also need an unlabeled data

set U = {u1, u2,..., um} which is used in the learning process to get the final sentiment

classifier. Let all training instances and unlabeled instances be m dimensional vectors in the

real space X ⊆ R
m
. Then we denote a review as xi = {xi1, xi2, ..., xim}, xi is m dimensional input

vector. The task of semi-supervised classification problem is to obtain a classification

function f(x) to predict the polarity of a consumer review x by exploiting instances in T and U.

: (,)f X T U L (1)

Some opinion words are important for consumers to express strong sentiment. For

example, “great” and “wonderful” can be used to show a possibly strong positive sentiment,

and “ugly” and “unfriendly” will give much negative sentiment. We have three observations:

 Opinion words with the positive sentiment polarity could have higher possibility to

co-occur in positive reviews than in negative reviews; opinion words with the

negative sentiment polarity could have higher possibility to co-occur in negative

reviews than in positive reviews. For example, “great” and “wonderful” could have

higher possibility to co-occur in positive reviews than in negative reviews; “filthy”

and “bad” could have higher possibility to be in the same negative review than in the

same positive review.

 Opinion words in the same review tend to have the same sentiment polarity. We must

say that it is possible that both positive and negative opinion words could exist in the

same review. In this case, we assume each review has its major sentiment polarity

with major opinion words.

 Different opinion words can have different sentiment strength. These opinion words

can show the overall sentiment of reviews. We could find a way to rank opinion

words according to their importance.

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

54 Copyright ⓒ 2013 SERSC

Figure 1. Overview of Our Proposed Method

The research problem is whether we can use these observations to improve sentiment

classification. In our approach, we extract opinion words from training and unlabeled data set.

We try to construct a graph using the co-occurrence relationship among these opinion words.

Then we rank these opinion words using HITS algorithm [1]. Our proposed method has

several basic steps, as Figure 1 shows, and the overall algorithm is showed as follows.

 We firstly extract opinion words from training and unlabeled data sets.

 We use the co-occurrence of these extracted words to construct a double-directed

graph.

 Using HITS algorithm, we rank opinion words according to their co-occurrence

relationship.

 According to the ranking results, we find the nearest neighbor opinion word for every

extracted opinion word of each review.

 We train three sentiment classifiers: we get the first sentiment classifier through

common uni-grams features. The second classifier is trained using original opinion

words and the nearest ranked neighbor opinion words of the original opinion words

extracted from each review. The third sentiment classifier is trained using the non-

opinion text features.

 At last, we employ co-training [2] framework to get the final sentiment classifier.

The co-training method is a bootstrapping method which iteratively put unlabeled

instances into training data set.

3.2. Opinion Word Extraction

To simplify the research problem, we only extract adjectives from consumer reviews.

Adjectives usually have sentiment polarity, because consumers are used to expressing

opinions and describing product features using some adjectives. For example, in the sentence

“The staff is helpful and friendly” there are two adjectives (helpful and friendly) with positive

sentiment. Some opinion words have negative indicators in the context of negation. In this

case, to be simple, a negative indicator and an opinion word together are looked as a single

opinion word. For example, in the phrase “not bad”, the word “bad” is an opinion word, and

“not” is a negative indicator, and “not bad” is looked as a single opinion word. We extract

adjectives with POS (Part-of-Speech) labels of JJ, JJR, and JJS. At the same time, If there has

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 55

a negative indicator in the context window [-3, 0] of an opinion word, then the negative

indicator combined with the sentiment word together constitute a sentiment unit. The context

of a word window [-3, 0] means the left distance coverage of the word in a clause is 3 words

from the opinion word. These negative indicators including “not”, “no”, “donot”, “do not”,

“didn’t”, “did not”, “was not”, “wasn't”, “isnt”, “isn't”, “weren't”, “werent”, “doesn’t”,

“doesn't”, “hardly”, “never”, “neither”, and “nor”.

3.3. Co-occurrence Graph Construction and Opinion Word Ranking

We can generate a double-directed graph by exploiting all reviews in the labeled data set

and the unlabeled data set. Co-occurrence of two opinion words means they must appear in

the same consumer review. In the graph, opinion words are used as graph nodes, and the

edges present co-occurrence relationship. For each co-occurrence opinion word pair, a double

direction edge is generated. When we finish generating the graph, we can use some graph

ranking method to rank these opinion words. Suppose the directed graph is denoted as G = (V,

E), while V is the node set, and E is the edge set. Let M be the adjacency matrix of the graph,

if opinion word i co-occurs with opinion word j, then Mij = 1 and Mji = 1; otherwise, Mij = 0

and Mji = 0 (Graph G is a double-directed graph).

We use HITS algorithm to do the task of ranking. HITS algorithm is famous for its

distinguished performance in link analysis for ranking Web pages. Some research work also

adopts HITS to rank product features [13]. We believe HITS can also be used to rank opinion

words. In order to use HITS algorithm, we need to computes two kinds of scores for each

Web page. One is the hub score, the other is the authority score. We assume that for each

opinion word in our co-occurrence graph hi is the hub score of the opinion word i, and ai is

the authority score of the opinion word i. The two kinds of scores can be iteratively computed

using Equation (2) and Equation (3). The authority score of an opinion word is the sum of hub

scores of opinion words that links to the opinion word, and the hub score of an opinion word

is the sum of authority scores of opinion words that the opinion word points to. The mutual

reinforcement relationship of authorities and hubs is the key philosophy in the HITS

algorithm.

 (2)

 (3)

If our opinion word number is n, then we present the authority scores of all opinion words

as a column vector A = (a1, a2, ..., an)
T
. We denote H = (h1, h2, ..., hn)

T
 as the column vector

with the hub scores. The idea is we iteratively compute the authority score vector and the hub

score vector using Equation (4) and Equation (5) until the algorithm converges. We set all the

elements of A and H the same value of 1’s. The initial vector for A and H is A = (1,...,1)
T
, H

= (1,...,1)
T
.

 (4)

 (5)

(,)

i j

i j E

h a


 

TA M B
H MA

(,)

i j

j i E

a h


 

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

56 Copyright ⓒ 2013 SERSC

3.4. Using Ranked Opinion Words and Co-training Framework to Conduct Sentiment

Classification

The co-training method [2] is typical semi-supervised self-boost algorithm framework. The

co-training method uses different views to train the final classifier. We generate three

sentiment classifiers which will be used to get the final sentiment classifier in our co-training

framework. The first sentiment classifier takes the frequencies of uni-grams extracted from

the training data set as training features. In this case, we remove the tokens whose sizes are

less than 3, as well as some stop words. After the preprocessing action, we use TinySVM [14]

to get the first sentiment classifier f1.

The second sentiment classifier is trained by extracted opinion words which have POS tags

of “JJ”, “JJR”, and “JJS”. If in the context window of an opinion word there is a negative

indicator, then the negative indicator as well as the opinion word together to form an opinion

unit which is looked as a single training feature. Negative indicators include “not”, “no”,

“donot”, “don't”, “didn’t”, “wasn’t”, “isn't”, “isnt”, “weren't”, “werent”, “doesn't”, “doesn’t”,

“didn't”, “hardly”, “never”, “neither” and “nor”. We use frequencies of these extracted

opinion words or sentiment units from training data set to get the second sentiment classifier

f2.

In order to get the third sentiment classifier, we must get the nearest neighbor opinion word

of every original opinion word of each review. Suppose OT is the set of total opinion words

extracted from the training data set. Let OU be the set of total opinion words extracted from

the unlabeled data set. Let OTU = OT ∪ OU, for each review ri we will get an opinion word set

Oi for ri, while Oi ⊆ OTU. Oi could include one or several opinion words. According to the

adjacent matrix M, we can get the co-occurrence opinion word set for every element of Oi.

For any element oij, oij ∈Oi, 0 ≤ j < |Oi|, we denote oij’s co-occurrence opinion word set as

Nij. We select the nearest neighbor opinion word nijz ∈Nij which has the nearest authority

score to oij, here nijz ∈ Nij, nijz ≠ oij, 0≤ z < |Nij|, satisfying the condition

arg min | () () |z ijz ijz A n A o  , (6)

where A(nijz) and A(oij) are the authority scores in the HITS algorithm described in Section

3.3. Using Equation (6), we put the selected neighbor opinion word nijz into ri's neighbor

opinion word set Ni. Finally, we get the neighbor opinion word set Ni for Oi, where |Ni| ≤ |Oi|.

(Note: if an opinion word has no any co-occurrence opinion word, then we could get |Ni| <

|Oi|.) The detailed steps is shown as Algorithm 1.

Algorithm 1: Sentiment Classification Algorithm Based on Ranked Opinion Words

Input: Training data set T={t1, t2,...,tx}, T includes balanced positive reviews and negative

reviews; Unlabeled data set U={u1, u2, ..., uy};

Output: Sentiment classifier C;

BEGIN

1. Extract opinion words from T and U, we get the training opinion word set OT and the

unlabeled opinion word set OU.

2. Construct a graph and get adjacent matrix M using co-occurrence relationship (if two

opinion words are in the same review) among opinion words coming from OT and OU

;

3. OTU = OT ∪ OU , rank the opinion words of OTU using HITS algorithm;

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 57

4. For each training instance in training data set T and unlabeled data set T , we get the

nearest neighbor opinion word set Ni of its original opinion word Oi set using

Equation (6), where |Ni|≤ |Oi| ;

5. WHILE {There are unlabeled instances left in the unlabeled data set}

6. Use training data set T and SVM to get the first sentiment classifier f1 ;

7. Use original opinion words extracted from the training instances together with the

nearest neighbors of extracted original opinion words to train SVM to get the

second classifier f2 ;

8. Use the non-opinion text features to get the third sentiment classifier f3;

9. Use f1 to classifier instances in U , and get positive instance set Pf1 ~ and Negative

instance set Nf1 (In each iteration we take the most 50 possible classified

instances);

10. Use f2 to classify unlabeled data set U , and get positive instance set Pf2 and

negative instance set Nf2 (In each iteration we take the most 50 possible classified

instances);

11. Use f3 to classify unlabeled data set U , and get positive instance set Pf3 and

negative instance set Nf3 (In each iteration we take the most 50 possible

classified instances);

12. L=L∪Pf1∪Nf1∪ Pf2∪Nf2∪Pf3∪ Nf3 ;

13. ENDWHILE;

14. C=f1;

15. RETURN C;

END.

4. Experiments

4.1. Experimental Data

We crawled mobile phone and laptop reviews from Amzaon [15] and hotel reviews from

Tripadvisor [16] respectively. We used OpenNLP [17] get sentences and POS tags for these

reviews. These data sets were also used in the previous publications [11, 12]. Statistics on the

experimental data sets are shown in Table 1. For example, the hotel data set has 1000 positive

reviews and 1000 negative reviews, and these reviews are segmented into 18694 sentences.

The sentiment polarity of a review in a training data set is assigned according to their review

ratings. A review rating is a real number ranging from 1 to 5. When the a review rating is

greater than 3, then the review is a positive review; when a review rating is less than 3, the

review is a negative review.

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

58 Copyright ⓒ 2013 SERSC

Table 1. Experimental Statistics

Data Positive reviews # Negative reviews # Sentences #

phone 1000 1000 28811

laptop 1000 1000 14814

hotel 1000 1000 18694

4.2. Compared Methods

4.2.1 Self-learning SVM Method: The earliest use of SVM (Support Vector Machine) [18]

to determine the sentiment polarity of consumer reviews is Pang's research work [8]. It is

believed SVM is one of the best text classification methods. Because our proposed method is

semi-supervised sentiment classification method, we try to compare our method with the Self-

learning SVM method. Therefore, the Self-learning SVM method is our baseline. We use the

frequencies of uni-grams of reviews as the training and test features for SVM. We employ

TinySVM [14] software to conduct SVM-based sentiment classification.

Algorithm 2: Self-learning SVM Method [11, 12]

Input: Training set T = {t1, t2, ..., tx} , T includes positive reviews and negative reviews;

Unlabeled data set U={u1, u2, ..., uy} ;

Output: Sentiment classifier C;

BEGIN

1. n is the number of selected reviews which are the most likely correctly classified

reviews;

2. Use SVM to get the initial sentiment classifier C on training data set T;

3. WHILE {the unlabeled data set is not empty}

4. Use sentiment classifier C to classify the unlabeled instances in U: get positive set P

and the negative set N;

5. If |P|> = d, then select the most likely correctly classified d instances from P (the

set is Pd) into T, T=T∪Pd, P=P-Pd; otherwise put all the instances in the P into

T, T = T∪ P ;

6. If |N|> = d , then select the most likely correctly classified d instances from N

(the set is Nd) into T , T=T∪Nd , N=N-Nd ; otherwise put all the instances in the

N into T, T= T∪N ;

7. Employ SVM to train a new sentiment classifier C on the current training data set T

;

8. ENDWHILE;

9. RETURN C;

 END.

Self-learning SVM is a bootstrap approach to learning as Algorithm 2 shows. The method

is also used as the baseline in the previous works [11, 12]. The algorithm iteratively selects

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 59

the most likely correctly classified reviews which are determined by their distances to

classification hyperplane, and put them into the training data set. A new sentiment classifier is

built by training on the new training data set. Repeat the above steps until there are no

unlabeled review that can be added to the training data set so far. When a classified review

has greater distance from SVM hyperplane, the review is considered have higher probability

to be correctly classified.

4.2.2 Naive Co-training SVM Method: The Naive Co-training SVM method is based on the

same co-training framework as Algorithm 3 which has been described as the Two-view Co-

training Method in the first author’s previous work [12]. The only difference between

Algorithm 1 and Algorithm 3 is that Algorithm 1 uses the HITS algorithm to rank opinion

words, and select the nearest neighbor opinion words according to ranking information of

opinion words to train the sentiment classifier f2, while in the Naive Co-Training SVM

sentiment classification method, we only use the original opinion words to train the sentiment

classifier f2.

Algorithm 3: Naive Co-training SVM Method (Two-view Co-training Method [12])

Input: Training data set T={t1, t2 ,..., tx}, T is balanced data set; Unlabeled data set

U={u1, u2, ..., uy};

Output: Sentiment classifier C ;

 BEGIN

1. WHILE {There are unlabeled instances left in the unlabeled data set}

 2. Use training data set T and SVM to get the first sentiment classifier f1 ;

 3. Use opinion words extracted from the training instances to train SVM to get the

second classifier f2 ;

 4. Use non-opinion text features from training data set and SVM to get the third

sentiment classifier f3 ;

5. Use f1 to classifier instances in U, and get positive instance set Pf1 and Negative

instance set Nf1 (each iteration we take the most 50 possible classified instances;

6. Use f2 to classify unlabeled data set U, and get positive instance set Pf2 and

negative instance set Nf2 (each iteration we take the most 50 possible classified

instances);

7. Use f3 to classify unlabeled data set U , and get positive instance set Pf3 and

negative instance set Nf3 (each iteration we take the most 50 possible classified

instances);

 8. L=L∪Pf1∪Nf1∪Pf2 ∪Nf2∪Pf3∪ Nf3;

9. ENDWHILE;

10. C=f1 ;

11. RETURN C ；

End.

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

60 Copyright ⓒ 2013 SERSC

4.3. Experiments

For each category data set, we divided the whole data set into training, unlabeled and test

data sets respectively. The test data set of each product is randomly sampled from the product

data set. Each test data set includes 800 instances, 400 positive instances and 400 negative

instances. For example, if the training instance number is 100 as Table 2 shows, it means we

have 50 positive instances and 50 negative instances for training. The remaining 1100

instances are used as unlabeled instances. We use accuracy to evaluate our proposed method,

as Equation (7).

 (7)

Table 2. Experimental Results on the Phone Data Set

Training Unlabeled Test Self-learning

SVM

Naive Co-training

SVM

Proposed

Method

100 1100 800 66% 74% 72.25%

200 1000 800 64% 75.25% 77.38%

300 900 800 72.13% 76.63% 80.25%

400 800 800 73.38% 78% 78.88%

Table 2 gives experimental results of our proposed method on the phone data set. In Table

1, we can see that our proposed method has the best performance, while the Self-learning

SVM method has the worst accuracy. Only in the case when the number of training data

instance is 100, the Naive Co-training method outperforms the proposed method.

Table 3. Experimental Results on the Laptop Data Set

Training Unlabeled Test Self-learning

SVM

Naive Co-training

SVM

Proposed

Method

100 1100 800 64.63% 72.38% 74.00%

200 1000 800 70.50% 76.38% 76.38%

300 900 800 67.50% 72.75% 77.50%

400 800 800 69.13% 78.13% 77.63%

Table 3 shows that both our proposed method and the Naive Co-training method have

better performance than the Self-learning SVM method on the laptop data set. But in this

case, the proposed method and the Naive Co-training SVM method are well-matched, and the

proposed method has little advantage than the Naive Co-training method.

number of right classified instances

total number of test instances
Accuracy 

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

Copyright ⓒ 2013 SERSC 61

Table 4. Experimental Results on the Hotel Data Set

Training Unlabeled Test Self-learning

SVM

Naive Co-training

SVM

Proposed

Method

100 1100 800 68.88% 79.63% 80.50%

200 1000 800 76.25% 83.25% 83.50%

300 900 800 79.50% 82.63% 83.38%

400 800 800 79.75% 84.50% 85.25%

In Table 4, we can see our proposed method has the best performance among the three

methods. In this case, ranked opinion words are very helpful for the sentiment classification.

The Naive Co-Training SVM method seems stable and it has better performance than the

Self-learning SVM method. We can see the classification accuracy will improve if we give

more training instances. In summary, our proposed method is effective on the empirical data

sets.

5. Conclusion

This work focuses on semi-supervised sentiment classification. We proposed a semi-

supervised sentiment classification method which focuses on using ranked opinion words to

build a semi-supervised sentiment classifier based on the co-training framework. The method

itself doesn't rely on other language resources. Our method only needs a small number of

labeled training instances and some unlabeled instances. We find that ranked opinion words

are helpful for improving the final sentiment classification accuracy. Experimental results on

empirical data sets show our method is effective and promising, and it outperforms the Self-

learning SVM method and the Naive Co-training SVM Method. In the future, we will

continue our research to find more effective sentiment classification methods.

Acknowledgements

We thank anonymous reviewers for their constructive comments. The paper is supported

by the National Natural Science Foundation of China under Grant 61170002.

References

[1] J. Kleinberg, “Authoritative sources in a hyperlinked environment”, Journal of ACM, vol. 46, no.5, (1999),

pp. 604-632.

[2] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training”, Proceedings of the 11th

Annual Conference on Computational Learning Theory”, (1998), pp. 92-100.

[3] B. Pang and L. Lee, “Opinion mining and sentiment analysis”, Foundations and Trends in Information

Retrieval, vol. 2, no. 1-2, (2008).

[4] D. Lee, O. Jeong and S. Lee, “Opinion mining of customer feedback data on the web”, Proceedings of the

2nd International Conference on Ubiquitous Information Management and Communication, (2008), pp. 230-

235.

[5] P. Turney and M. L. Littman, “Measuring praise and criticism: Inference of semantic orientation from

association”, ACM Transaction on Information System, vol. 21, no. 4, (2003), pp. 315-346.

[6] V. Hatzivassiloglou and K. McKeown, “Predicting the semantic orientation of adjectives”, Proceedings of

the 8th Conference on European Chapter of the Association for Computational Linguistics, (1997), pp. 174-

181.

International Journal of Database Theory and Application

Vol.6, No.6 (2013)

62 Copyright ⓒ 2013 SERSC

[7] P. Turney, “Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of

reviews”, Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, (2002), pp.

417-424.

[8] B. Pang, L. Lee and S. Vaithyanathan, “Thumbs up?: sentiment classification using machine learning

techniques”, Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing,

(2002), pp. 79-86.

[9] S. Zhou, Q. Chen and X. Wang, “Active deep networks for semi-supervised sentiment classification”,

Proceedings of the 23rd International Conference on Computational Linguistics: Posters, (2010), pp. 1515-

1523.

[10] S. Li, C. R. Huang, G. Zhou and S. Y. M. Lee, “Employing personal/impersonal views in supervised and

semi-supervised sentiment classification”, Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, (2010), pp. 414-423.

[11] S. Li and J. Hao, “Spectral clustering-based semi-supervised sentiment classification”, Proceedings of 8th

Advanced Data Mining and Applications, Lecture Notes in Computer Science, Springer, vol. 7713, (2012),

pp. 271-283.

[12] S. Li, “Sentiment classification using subjective and objective Views”, International Journal of Computer

Applications, vol. 80, no. 7, (2013), pp. 30-34.

[13] L. Zhang, B. Liu, S. Lim and E. O’Brien-Strain, “Extracting and ranking product features in opinion

documents”, Proceedings of the 23rd International Conference on Computational Linguistics: Posters, (2010),

pp. 1462-1470.

[14] http://chasen.org/~taku/software/TinySVM/.

[15] http://www.amazon.com.

[16] http://www.tripadvisor.com.

[17] http://opennlp.apache.org.

[18] C. Cortes and V. Vapnik, “Support-vector networks”, Machine Learning, vol. 20, no. 3, (1995), pp. 273-297.

Authors

Suke Li, he received his Ph.D. degree in computer science from

Peking University (2012). He is currently an assistant professor in Peking

University, China. His research interests include financial data mining,

Web mining and retrieval, opinion mining, social networks, and

information security

Yanbing Jiang, he received his Ph.D. degree in computer science

from Peking University (2004). Now he is an associate professor of

Peking University. His research interests include software development

methodology, object-oriented software development technology, model-

driven software development technology, “Cloud + End” mobile Internet

software development and reconstruction technology.

http://chasen.org/~taku/software/TinySVM/
http://www.amazon.com/
http://www.tripadvisor.com/
http://opennlp.apache.org/

