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Abstract

Data analyzing and processing are important tasks in cloud computing. In this
field, the MapReduce framework has become a more and more popular tool to analyze
large-scale data over large clusters. Compared with the parallel relational database,
it has the advantages of excellent scalability and good fault tolerance. However, the
performance of join operation using MapReduce is not as good as that of parallel
relational database. Thus, how to optimize theta-join operations using MapReduce is
an attractive point to which researchers have been paying attention. In this paper, a
randomized algorithm named Strict-Even-Join(SEJ) is designed to solve the multi-way
theta-joins in a single MapReduce job. Moreover, a dynamic programming algorithm
is elaborated to optimize the multi-way theta-joins by calling the SEJ algorithm. The
results of experiments show that our approach is feasible and effective.

Keywords: MapReduce, Multiway Theta-Joins, Query Optimization, Skew,
Cost Model

1 Introduction

Cloud computing has been gaining more and more attention from the indus-
try and academia. In this area, there are many important issues worthy of in-deep
research, one of which is large-scale data processing. Data processing task on a
share-nothing cluster can be performed on two kinds of systems: parallel relation-
al database and MapReduce-based system. Parallel relational database technology,
which has been used in mainstream data management over the past three decades,
can adeptly solve data processing issues. However, the scalability of parallel relational
database has encountered unprecedented obstacles. This approach is not qualified for
the requirement of large-scale data analysis. According to the CAP [1], consistency,
availability and tolerance to network partitions cannot be simultaneously satisfied in
distributed systems. Parallel relational database, aiming at the pursuit of a higher
level of consistency and fault tolerance, cannot reach an excellent scalability.
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As a parallel computing model for data analyzing and processing, MapReduce [3]
has triggered widespread concern since it was introduced by Google in 2004. In the
early design, MapReduce was committed to the dealing with large-scale data analysis
on low-cost server clusters. Its scalability and availability were placed in a priority
position. Recently, a large number of data analysis applications have been expressed
by MapReduce, including database query, data mining and graph processing. The
related applications of MapReduce are discussed in book [9] in detail.

The optimization of the join operation in parallel relational database has been
studied in many years, such as the optimization of equi-joins and theta-joins. Theta-
join is a cartesian product filtered by an arbitrary condition which compares values
from both datasets. Equi-join is a special case of theta-join. Join operation for large
datasets using MapReduce is a hot issue in recent years. Some high-level languages
have been proposed for MapReduce as Hive [5] and Pig [6], which automatically
transform a SQL query into a set of MapReduce jobs. People can leverage them to
process their data analysis without having to write a set of map and reduce functions.
However, the optimization of the multi-way theta-joins has not been solved very well
in Hive or Pig.

In our paper, the problem of the multi-way theta-joins is solved using MapReduce.
Without modifying the original MapReduce environment, we can achieve the expected
final results only by overwriting map and reduce functions. In particular, we make
the following major contributions:

1. We propose a randomized algorithm named Strict-Even-Join (SEJ) for com-
puting multi-way theta-joins in a single MapReduce job. It uses Lagrangian
method to compute the approximate fragments of each relation and minimizes
the communication cost between map and reduce phases. It can also guarantee
that the data is balanced across reducers when input datasets are skew.

2. We describe the cost models of multi-way theta-joins and equi-joins respectively.
Based on the algorithm SEJ and cost models, we design a dynamic programming
algorithm to generate the best MapReduce implementation for multi-way theta-
joins.

3. We validate the cost models and the algorithms’ efficiency. The result shows
that our algorithms are feasible and effective.

This paper is a revised and expanded version of the paper1. Here, we design
a dynamic programming algorithm, describe the cost models of multi-way joins and
experimental evidence for the benefit of our methods. This material includes Sections
4, 5, 6. The rest of this paper is organized as follows: Section 2 reviews related
work. Section 3 discusses the implementation details for Strict-Even-Join. Section
4 presents the query optimizer and the dynamic programming algorithm. Section 5
describes the cost models of theta-joins and equi-joins. Section 6 reports the results
of the experiments. Section 7 concludes our paper.

2 Related Work

There is a rich history of studying join algorithms in the relation database[15, 19,
18]. [16, 17] are surveys on these algorithms. In particularly, the partition method of

1SEJ: An Even Approach to Multiway Theta-Joins using MapReduce, presented at the second
international Conference on Cloud and Green Computing, (2012) November 1-3, Xiangtan, China
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our work based on [18], we have proposed a random algorithm using MapReduce to
solve multi-way theta-joins and provided a concrete method for constructing partition
functions.

Recently, join algorithm tend to be an attractive point which cannot deal very well
when MapReduce is used. S. Blanas et al. described crucial implementation details
of four two-way joins strategies in MapReduce [4]. Afrati et al. solved a problem on
how to optimize a multi-way joins in a single MapReduce job [7]. They suggested a
method based on lagrangian multipliers to properly select how many buckets of the
share variable for minimizing the sum of the communication costs. However, this
algorithm is not compatible with nonequi-join and its efficiency would reduce visibly
when input datasets are skew. Our algorithm can solve these two problems. S. Wu et
al. developed a query optimization schema for MapReduce-based processing systems
[14]. They also mainly considered the optimization of equi-join algorithm. A. Okcan
et al. proposed how to efficiently perform two-way theta-joins in a single MapReduce
job only [8]. This work cannot be naturally used to processing multi-way theta-joins.
During the preparation of the paper, we notice that the work presented in a newly
accepted paper [20] is similar to ours. Our work is an independent work. Compared
to [20], we present a Lagrangian method to partition the relations, which is easily
be used in pratice, and also provide a concrete method for constructing partition
functions. Moreover, the MapReduce implementation of the equi-width histogram is
proposed and the cost model of the equi-join is considered in our query optimizer,
which can efficiently deal with multi-way joins. In [11], authors transform a batch of
queries into a new batch that will be executed more efficiently by merging jobs into
groups and evaluating each group as a single query. Their method can be integrated
into our work to improve efficiency for multi-way theta-joins.

D. Jiang et al. presented Map-Join-Reduce [12], a system that extends and
improves the MapReduce system to efficiently process data analytical tasks. Users
could use three functions: map(), join(), and reduce() to join multiple data sets.
H. Yang et al. proposed a new function merge() for simplifying join processing [13].
They added to the MapReduce system a merge phase that could efficiently merge data
already partitioned and sorted by map and reduce modules. However, they changed
the internal implementation of Hadoop. But our work is based on the default version
of Hadoop, and is much easier to be accepted and used by other people.

3 Designing and Implementation of Strict-Even-Join

Let us consider three relations R ◃▹ S ◃▹ T. An obvious method is to implement
this situation based on cascades of two two-way joins. At first, we do R ◃▹ S and
then join the intermediate data and T to generate the final results. This means that
there are two rounds of MapReduce processes. The intermediate data, generated by
the first MapReduce process, needs to be written back to and read from DFS by the
second MapReduce process, which is not an efficient implementation. As we all know,
MapReduce is not suitable for the iterative process [10] because the initialization of
the map phase and the access to DFS during the iterative process waste much time.
Therefore, an alternative algorithm is expected to respond to requirement that all
three relations are joined at once in a single MapReduce job. For a given join operation
and the inputs, our aim is to minimize the completion time comprised of every phase
of a MapReduce job. The network overhead between mappers and reducers during
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Figure 1. Exmaple for implementing R
◃▹ S using MapReduce

Figure 2. Replication pattern for R ◃▹ S

the shuffle phase will consume a lot of time, and the unbalanced data handled by
reducers will also delay the execution time of the whole process. Nevertheless, the
latter situation will not happen because our algorithm guarantees even distribution
of the data across reducers. So we can mainly focus on the network overhead during
the shuffle phase in the MapReduce process. Our goal is to minimize this network
overhead.

3.1 Multi-way Theta-joins in a Single MapReduce Job

First, a two-way theta-joins R ◃▹ S is considered. Let us assume that we have
four reducers. R is fragmented into four disjoint fragments (R1, R2, R3, R4) and the
following relationship is guaranteed: R1 ∪ R2 ∪ R3 ∪ R4 = R. To process the join
operation in parallel, the map function sends 4 fragments of R to 4 reducers, and
sends the entire S to all reducers. In each reducer, the reduce function produces the
final results to DFS. Fig. 1(a) shows this situation. To obtain the correct results, each
reducer has to receive one of the four fragments R and the entire relation S, because
we don’t know which values of R and S satisfy the theta-join condition if we don’t
sample from R and S beforehand. The communication cost between mappers and
reducers in the shuffle phase is r + 4s, where r and s represent the size of relation R
and S respectively. Fig. 1(b) is another segmentation pattern. Relations R and S are
fragmented into (R1, R2) and (S1, S2) respectively. At the same time, each fragment
must comply to the following relationships: R1 ∪R2 = R; S1 ∪ S2=S. We use a two-
dimensional cell to represent four reducers. In the MapReduce environment, the map
function sends R1 to reduce (1,1) & reduce (1,2), sends R2 to reduce (2,1) & reduce
(2,2), sends S1 to reduce (1,1) & reduce (2,1), and sends S2 to reduce (1,2) & reduce
(2,2). In the reduce phase, the reduce function computes the final results. It’s easy to
prove that the correct results will be thusly produced in this way, without losing any
possible results. The communication cost between mappers and reducers in the shuffle
phase is 2r+2s, which may reduce communication cost by a factor of (2s−r) compared
with the former situation. So what’s the best segmentation pattern? To answer this
question, relations R and S are fragmented into disjoint fragments (R1,R2,. . .,Rm)
and (S1,S2,. . .,Sn). From Fig. 2, in order to get the correct results, the map function
must send Ri to reduce (i,*) (‘*’ stands for matching anything) in the horizontal
direction and send Sj to reduce (*, j) in the vertical direction. The communication
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cost between mappers and reducers is: cost = r × n + s × m, and constraints are
followed: n × m = k, where k represents the number of reducers and m and n are
positive integers. The minimum cost is: cost = rn+sm ≥ 2

√
rn× sm. The condition

of the minimum cost is: m =
√

rk
s and n =

√
sk
r .

Similarly, for a three-way theta-joins R ◃▹ S ◃▹ T, all reducers should be repre-
sented by a three-dimensional cell. The map function sends Ri to reducer (ci,*,*),
sends Sj to reducer (*,cj ,*) and sends Tk to reducer (*,*,ck). To extend this method
for the multi-way theta-joins, we use the following notation to simplify our discussion:

• k = the number of reducers

• n = the number of relations involved in the theta-join

• Ri = the ith relation for i = 1,2,. . .,n

• ri = the size of Ri relation

• cell (L1,L2,. . .,Ln) = an n-dimensional cell, with Li being the fragments of ith

relation in the cell and L1×L2×. . .×Ln = k

• reduce (c1,c2,. . .,cn) = an n-dimensional reducer, with 1 ≤ ci ≤ Li.

When doing multi-way theta-joins, the map function must send R1 to reduce

(c1,

n−1︷ ︸︸ ︷
∗ . . . ∗), and send Ri to reduce (

i−1︷ ︸︸ ︷
∗ . . . ∗,ci,

n−i︷ ︸︸ ︷
∗ . . . ∗). When sending relation Ri, the

map function makes k/Li new copies of Ri and send each copy to a different reducer.
The communication cost of sendingRi is ri×k/Li. Therefore, the total communication
cost of the multi-way theta-joins is:

cost =
n∑
1

ri ×
k

Li
. (1)

The constraints are following :
∏n

i=1 Li = k, where Li is a positive integer. The
lagrangian multipliers is used to solve this optimization problem. The function F is
formed:

F =

n∑
1

ri ×
k

Li
+ λ(

n∏
i=1

Li − k). (2)

F is used to partial derivative of Li:

∂F

∂Li
= −ri ×

k

L2
i

+ λ× k

Li
= 0. (3)

Li is solved:

Li =
ri × k

1
n

(
∏n

i=1 ri)
1
n

. (4)

The minimal cost is:

min cost = n× (

n∏
i=1

ri)
1
n × k1−

1
n . (5)

Note that the value of Li is not necessarily integer. However, the values tell us
approximately how many fragments each relation should be divided into. They also
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tell us the desired ratios of the relations, for example, Li/Lj = ri/rj , the number
of fragments for a relation is proportional to its size. We can pick good integer
approximation to Li, as well as the value of k that is in the approximation range.

We take an example of two-way theta-joins to understand this result. Assume
we have 36 reducers to join two relations R and S; moreover, both R and S have the
same size. Without any optimization, the map function will send 36 fragments of R
to the corresponding reducer and send the entire S to every reducer. Therefore, R is
copied one time and S is copied 36 times. The communication cost is r+r×36 = 37r.
After optimization, according to formula (4), L1 = 6; L2 = 6. So R is copied 6 times
and S is also copied 6 times. The communication cost is r×6 + s×6 = 12r. This can
reduce communication cost by a factor of 37r/12r = 3.08.

Let us consider the general condition. Without any optimization, the commu-
nication cost of the multi-way theta-joins is 1+r2×k+r3×k+. . .+rn×k ≈ O(nrk).
After optimization according to formula (5), the communication cost is reduced to

O(nrk1−
1
n ).

3.2 Data Partitioning

In the last section, we get an n-dimensional cell to partition the input datasets.
When the map task is launched, every tuple of one input dataset will be sent to the
corresponding reducer according to the partition signature which is an n-dimensional
vector. For instance, the tuple of input datasets belongs to r(2, 1, 2) that should be
sent to the sixth reducer. However, the default version of Hadoop can only shuffle an
intermediate pair based on a single partition signature value.

To solve this problem, we must convert this n-dimensional partition signature into
a single value which represents the number of the reducer. Given the n-dimensional
partition signature s = reduce(c1, c2, . . . , cn) and the n-dimensional partition cell
(L1,L2,. . .,Ln), the single signature value s is calculated by formula (6).

s =
n−1∑
i=1

(ci − 1)× (
n∏

j=i+1

Lj) + cn − 1. (6)

For example, we have a three-dimensional partition cell (2, 2, 2). The three-dimensional
vector can be converted to a single value according to formula (6). The result is shown
in Figure 3.

Figure 3. Example of converting 3-dimensional cell to a single value

3.3 Algorithm

We shall now describe the algorithm SEJ that yields the minimum cost optimiza-
tion of multi-way theta-joins in a single MapReduce job.
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Step 1. Write the cost expression; Construct the Lagrangian equations for the
join; Find the optimal solution (L1, L2, . . . Ln) which is stored in divide[1,. . .,n].

Step 2. Using the input datasets R1, . . . , Rn and the divide[1,. . . ,n], we can write
the map and reduce function to deal with multi-way theta-joins. The map and reduce
functions are shown in Algorithm 1. The function findNumi in line 5 in the map
function will not be described here, as it can be implemented according to formula
(6).

Algorithm 1: Strict-Even-Join (multi-way theta-joins in a single MapReduce
job)

1 MapInput : x ∈ R1
∪

R2 . . .
∪

Rn, divide[1 . . . n]
2 switch x do
3 case x ∈ Ri

4 key = random(1, Li)
5 for number in findNumi(key, divide) do
6 output(number, (x,“Ri”))
7 end

8 endsw

9 endsw
10 ReduceInput : (number, [(x1, tagi), (x2, tag2), . . . , (xk, tagk)])

tupleList1 = ∅, . . . , tupleListn = ∅
11 for xj , tagj in inputList do
12 if tagj = Ri then
13 tupleListi = tupleListi

∪
{xj}

14 end

15 end
16 joinResult = thetaJoinAlg(tupleList1, . . . , tupleListn)
17 output(joinResult)

3.4 Analysis of Skew Data

SEJ can implement any multi-way theta-joins in the reduce process. It can also
balance the data across reducers. Considering a theta-join with selectivity σ, the
algorithm produces σ|R1||R2|. . .|Rn| output tuples. Each reducer should be respon-
sible for σ|R1||R2|. . .|Rn|/k. What would happen when input datasets are skew. For
example, some reducers might have much more values that satisfy the join condition,
while other reducers have nearly non of that. Fortunately, this is very unlikely to
take place because of the randomization of assigning tuples from Ri (i = 1 . . .n). Our
experiments in Section 6 will show that the join output is generally distributed over
reducers evenly although we don’t have an analytical proof. The larger join output
size reducers produce, the smaller the sample variance will be. Sample variance in
output is only likely when the size of output is very small. However, in this case, the
total join output is so small that output imbalance has a small effect on the execution
time.
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Figure 4. Example of a join graph Figure 5. Example of a partition for a
join graph

4 Optimizing Multi-Way Theta-Joins using MapReduce

In the last section, the communication cost in the shuffle phase of SEJ isO(nrk1−
1
n ).

We can draw a conclusion that the more relations are joined in one step, the more
replications of tuples that are necessary, the more cost of the shuffle phase that is.
Although SEJ can save the MapReduce rounds, it will increase the network overhead.
Thus, it is a good idea to partition relations R1 ◃▹ R2 . . . ◃▹ Rn into join groups.
Each join group executes two-way or multi-way joins, which is computed by a single
MapReduce job. Then we search for the best plan to generate the final results by
combining these join groups.

4.1 Generating Optimal Query Plan

To simplify the discussion, we first define a join graph for queries R1 ◃▹ R2 . . . ◃▹
Rn.

Definition 1 Join Graph
Given a query Q, the join graph of Q is defined as GQ = (V,E), where

• if relation Ri is involved in Q , Ri is a note in V

• if relations Ri ◃▹i.k,j.k Rj is a join condition in Q, an undirectred edge e =
(Ri, Rj) exists in E.

An example of a joining graph for R1 ◃▹ R2 ◃▹ R3 ◃▹ R4 ◃▹ R5 is shown in Fig. 4.

Definition 2 A partition p of joining graph G, satisfying:

• ∀ Gi ∈ p, Gi is a subgraph of G. Given a join graph GQ=(V,E), Gi = (Vi, Ei)
is a subgraph of G, satisfying: ∀ v ∈ Vi, v ∈ V ; ∀ e ∈ Ei, e ∈ E.

• ∀ Gi ∈ p, G.V = ∪Gi∈pGi.V .

• ∀ Gi, Gj ∈ p, Gi.V ∩Gj .V = ϕ.

Based on the above definition, all the relations are included in a division p of
GQ. Each subgraph of a partition p corresponds a join strategy. An example of one
partition p containing two parts is shown in Fig. 5. For a subgraph Gi in p, the join
strategies are as follows:

• if |Gi.V | <= 1, no join is defined.

• if |Gi.V | = 2, if join operation is ”=”, improved repartition join [4] is used; else
SEJ is used.
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• if |Gi.V | >= 3, if each of join operations is ”=”, multi-way equi-join [7] is used;
else SEJ is used.

Algorithm 2: GenerationQueryPlan

Input: QueryGraph G
Output: OptimalPlan Op

1 for int i=2 to n do
2 for ∀ Gi in G do
3 min cost = MAX
4 for ∀ partition p for Gi do
5 cost = estimatedCost(Gp

i )
6 if cost < min cost then
7 min cost = cost
8 Gp

i .plan = plan

9 end

10 end

11 end

12 end
13 return G.plan;

Algorithm 2 shows how to generate the best plan for multi-way theta-joins using
MapReduce. We iterate all subgraph Gi containing i nodes of GQ (line 2). For
a specific Gi, all possible partitions for Gi are iterated (line 4). Then we select a
minimum cost and a corresponding plan for Gi (line 5-8). The function estimatedCost
will be discussed in Section 5. At last, this algorithm returns the best plan for the
multi-way theta-joins using MapReduce.

4.2 Concurrent MapReduce Jobs

In Hadoop, concurrent MapReduce jobs may lead a worse performance, as jobs
will compete for computing resources. Therefore, we perform a simple analysis to
decide whether multiple MapReduce jobs should be simultaneously submitted. Given
a job set J = {j0, . . . , jn}, the jobs can be simultaneously submitted, satisfying:

• ∀ ji, jk ∈ J , ji and jk are independent, which means they don’t depend on each
other’s results.

• Let m(ji) and r(ji) denote the number of mappers and reducers of each job re-
spectively. When

∑i=n
i=0 (r(ji) < MaxMappers and

∑i=n
i=0 (m(ji) < MaxReducers,

where MaxMappers and MaxReducers denote max numbers of mappers and
reducers in the Hadoop System, respectively.

This strategy is similar to the strategy used in [14]. In this paper, we adopt the
above simple strategy to improve the parallelism, which can avoid concurrent jobs to
compete for the resources.

5 Cost Model of Multi-way Joins using MapReduce

To evaluate the cost of a specific plan, we should propose a cost model for the
MapReduce framework. Generally, for MapReduce jobs, the heavy cost on a large-
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scale sequential disk scan, as well as the frequent I/O of intermediate results, are
to dominate the entire execution time. Therefore, the execution time model for a
MapReduce job should be built based on the analysis of disk I/O cost and network
I/O cost. Moreover, since entire input data may not be loaded into the system memory
within one round [21], the model should also take account of this situation. We assume
these map tasks are performed round by round, thus, the cost of the map phase and
shuffle phase can be added by rounds. Before the discussion, parameters used in the
analysis are listed in Table 1.

Table 1. Parameters
Definition Parameter Definition Parameter

cost ratio of HDFS reads ρ join selectivity of R1 and R2 g(R1, R2)
cost ratio of HDFS writes η number of mappers m
cost ratio of Network I/O µ number of reducers k
number of tuples in R |R| accumulative selectivity of R αR

size of R
′
tuple f(R) projection selectivity of R βR

5.1 Building Equi-Width Histogram using MapReduce

Before evaluating the cost models of multi-way joins, we should build histograms
for join attributes of relations to estimate the selectivity of predicates and joins. The
similar work is shown in [14]. In this paper, we build the equi-width histogram for
each join attributes of each relation, which is illustrated in algorithm 3. We parse
each line of the relation into individual join attributes (line 1). For each join at-
tribute i, suppose that its domain is [low[i],high[i]], the jth bucket covers the range

[low[i]+ j(attribute[i]−low[i])
w , low[i]+ (j+1)(attribute[i]−low[i])

w ], where w is the bucket width
for attribute i. The Function getID uses this rule to return a bucketID for each
join attribute (line 4). Then a key-value pair by composting the attribute ID and
its corresponding bucketID is generated to be sent to reducers. The reduce function
computes the number of each bucketID and stores the histograms to DFS. In current
implementation, the equi-width histogram is simple and provide good enough esti-
mations. The method of building more sophisticated histograms using MapReduce is
orthogonal to our work, and we leave it in the future work.

Algorithm 3: Building Equi-width Histogram using MapReduce

1 MapInput: each record r of relation R
2 Object[] attributes = parse(r)
3 for int id=0 to attributes.length do
4 int bucketID = getID(id, attributes[i], low[i], high[i])
5 output(< id, bucketID >, 1)

6 end
7 ReduceInput : (< id, bucketID >, [1, . . . , 1])
8 for value in inputList do
9 histogram[id][bucketID]+ = value

10 end
11 output(histogram)
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5.2 Cost Model of Theta-Joins using MapReduce

We evaluate the cost model of multi-way theta-joins. For each map task, it
receives the split of each relation Ri. The disk I/O cost tThetajoin−map of each map
task is:

tThetajoin−map = ρ×
SR1,...,Rn

I

m
. (7)

where SR1,...,Rn

I = |R1|f(R1)+. . .+|Rn|f(Rn). As a general assumption, each relation
Ri is considered to be evenly partitioned among the m map task and m

′
is the current

number of map tasks running in parallel in the system. Thus, the total cost of the
map phase TTwowayThetajoin−map is:

TTwowayThetajoin−map = tThetajoin−map ×
m

m′ . (8)

Let tThetajoin−shuffle be the cost for copying the output of a single map task to k
reduce tasks, including the data copying over network cost, as well as overhead of all
serving network protocols.

tThetajoin−shuffle = µ(Σi=n
i=1

αRiβRi |R|f(Ri)k

mLi
+ q × k). (9)

q is a random variable which represents the cost of a map task serving k connections
from k reduce tasks. Intuitively, there is a rapid growth of q as k gets larger. α
denotes the output ratio of a map task, which is query specific and can be computed
with the selectivity estimation. β denotes the projection selectivity (the tuple size is
reduced to β × 100% of its original size after ruling out the unnecessary columns).
Since there are m/m

′
rounds in the map phase, thus the total cost of the shuffle phase

TThetajoin−shuffle can be computed as follows:

TThetajoin−shuffle = tThetajoin−shuffle ×
m

m′ . (10)

Each reduce task performs a cross-product and stores the results to HDFS. Thus the
cost of the single reduce task TTwowayThetajoin−reduce

TThetajoin−reduce = η
JΠi=n

i=1αRi |Ri|
k

. (11)

where J = g(R1, . . . , Rn)Σ
i=n
i=1 (βRif(Ri)). Hence the total cost of theta-joins using

MapReduce TThetajoin

TThetajoin = TThetajoin−map + TThetajoin−shuffle + TThetajoin−reduce (12)

5.3 Cost Model of Equi-Joins using MapReduce

We evaluate the cost of two-way joins and multi-way joins respectively, since
their shuffle cost models are different from each other. Let TTwowayEquijoin−map,
TTwowayEquijoin−reduce, TNwayEquijoin−map and TNwayEquijoin−reduce denote the map
and reduce of two-way and multi-way equi-joins, respectively. They are the same
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as that of multi-way theta-joins. We no longer describe them. The shuffle cost of
two-way equi-joins TTwowayEquijoin−shuffle is calculated by formula (13).

TTwowayEquijoin−shuffle = µ(
αRβR|R|f(R)

mk
+

αSβS |S|f(S)
mk

+ qk)× m

m′ (13)

The shuffle cost of multi-way equi-joins TNwayEquijoin−shuffle is different from that of
two-way equi-joins. Suppose the relations are joined on a attribute set χ. We use cx
to denote the number of reducers for attribute ax(ax ∈ χ). According to [7], we have
k =

∏x=n
x=1 cx. To improve the performance, the number of required reducers is set to

be proportional to the size of corresponding relation. Thus, cx can be computed. For
relation Ri, if it contains a join attribute set χ

′
(χ

′ ⊂ χ, χ = {A,B,C}), we need to
replicate its data to cRi reducers, where cRi =

∏
∀ri /∈χ′ ∧

ri∈χ cx. Therefor, the shuffle
cost of multi-way equi-joins TNwayEquijoin−shuffle

TNwayEquijoin−shuffle = µ(Σi=n
i=1

IRi

mk
+ qk)× m

m′ (14)

Where IRi = cRiαRiβRi |Ri|f(Ri) and cRi =
∏

∀ri /∈χ′ ∧ ri∈χ cx. The interesting reader

can further read more detais in [7].

6 Experiments

All experiments are executed on 10 blades running Hadoop 0.20.2 [2], each with
2.4GHz*12 core CPU, 20G RAM, 270G hard disk. All blades are directly connected
to a Gigabit switch. Each blades runs at most 12 map tasks and 12 reduce tasks. The
other major Hadoop parameters are listed in Table 2.

Table 2. Hadoop parameter confuguration
Parameter value Parameter value

fs.blocksize 64M io.sort.spill.percentage 0.8
io.sort.mb 100M io.sort.factor. 100

io.sort.record.percentage 0.05 dfs.replication 3

6.1 Effect of SEJ

Firstly, we compare SEJ with cascades of two-way theta-joins. Suppose The
three-way joins R(A,B) ◃▹ S(B,C) ◃▹ T (C,A) needs to be computed. Each dataset
R(A,B), S(B,C) and T (C,A) contains 0.1 million records; each record has ten at-
tributes and each attribute is drawn uniformly at random from its range. We take
the following four cases as examples:

• Case 1:

SELECT r.A, s.B, t.C
FROM R as r, S as s, T as t
WHERE r.B − s.B > 95000 AND s.C = t.C
AND t.A = r.A.

• Case 2:

SELECT r.A, s.B, t.C
FROM R as r, S as s, T as t
WHERE |r.B − s.B| < 3 AND
t.A− r.A > 98000 AND s.C = t.C.
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Figure 6. MapReduce time for two-way
joins
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Figure 7. MapReduce time for multi-
way joins

• Case 3:

SELECT r.A, s.B, t.C
FROM R as r, S as s, T as t
WHERE |r.B − s.B| < 3 AND
|s.C − t.C| < 3 AND |t.A− r.A| < 3.

• Case 4:

SELECT r.A, s.B, t.C
FROM R as r, S as s, T as t
WHERE r.B − s.B > 99000 AND
s.C − t.C > 99000 AND t.A− r.A > 99000.

Table 3 shows SEJ is generally better than cascades of joins in two MapReduce
processes, because it wastes too much time for generating intermediate data, writing
them to DFS by the first MapReduce job and reading them from DFS by the second
MapReduce job. In particular, in the first case, the size of the intermediate result
by R ◃▹ S is about 107 records that leads to the worse performance of cascades of
joins than that of SEJ. In the second case, the performance of cascades of joins for
computing ((S ◃▹ T ) ◃▹ R) is nearly the same as the performance of SEJ, because the
intermediate data is small enough that accessing to DFS wastes little time.

Table 3. MapReduce time (in seconds) for cascades of two two-way joins and
Strict-Even-Join.

Case
R◃▹S=temp S◃▹T=temp R◃▹T=temp R◃▹S◃▹T
temp◃▹T temp◃▹R temp◃▹S

1 14400 1183 1180 983

2 1340 1160 3603 1140

3 1514 1516 1513 1020

4 2080 2083 2081 1422

Secondly, we compare SEJ with the two-way equi-join [4] and the multi-way equi-
joins algorithm [7] when dealing with the skew data. The frequency of key dividing
the total data size is defined as the skew rate. The results are shown in Fig. 6 and
Fig. 7, respectively. When input datasets are uniform, their algorithms performances
are better than ours, as the communication cost between map and reduce of SEJ is
more than that of euqi-joins algorithms. However, with the increasing of skew rate,
the efficiency of equi-joins algorithm declines because the skew input datasets make
some reducers deal with too much data. This will increase the overall execution time
of MapReduce process. On the other hand, SEJ has a stable performance when the
skew rate increases, because it ensures the data is evenly distributed across reducers.
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Figure 10. Cost Model Val-
idation

6.2 Effect of Query Optimization

We use the TestDFSIO program to test the I/O performance of the system. In our
cost model, the cost ratios of of Table 1 are set as follows: HDFS read (ρ)=1, HDFS
write (η)=1.5, network I/O (µ)=1.5. Then we should compute the distribution of q
which serves the estimation of MapReduce’s running time. The number of reduce tasks
is set to 108 and the value of q is computed by studying an output controllable program
over a series of test data. The result is shown in Fig. 8. Then we add the number
of join relations and use Algorithm 2 to select a best MapReduce implementation
for four-way theta-joins: R(A,B) ◃▹ S(B,C) ◃▹ T (C,D) ◃▹ U(D,A). The size of
each relation is 0.1 millions; each record has two attributes, each attribute is drawn
uniformly at random from its range. The following two cases are taken as examples.
Fig. 9 shows the results of the three kinds of methods for these two cases. We can
observe that the join plan generated by our query optimizer can improve the efficiency
of the multi-way theta-joins. In our implementation, we apply the I/O based model
for its simplicity. As shown in Fig. 10, our estimation and real MapReduce execution
time are very close.

• Case 1:

SELECT r.A, s.B, t.C, u.D
FROM R as r, S as s, T as t, U as u
WHERE |r.B − s.B| < 2
AND |s.C − t.C| > 99900
AND t.D = u.D AND u.A = r.A.

• Case 2:

SELECT r.A, s.B, t.C, u.D
FROM R as r, S as s, T as t, U as u
WHERE |r.B − s.B| < 2
AND |s.C − t.C| < 2
AND t.D − u.D > 99900
AND u.A− r.A > 99900

7 Conclusion and Future Work

In this paper, we propose an random algorithm SEJ for implementation of multi-
way theta-joins in a single MapReduce job. To minimize the communication cost
between map and reduce phases, Lagrangian method is used to compute the approx-
imate fragments of each relation. The result of the experiment shows that in most
situations it is more efficient to join a multi-way joins in a single MapReduce job
than cascades of two-way joins. When input datasets are skew, compared with oth-
er existing algorithms, SEJ is more stable and efficient due to its even distribution
of datasets. Moreover, a dynamic programming algorithm is designed to partition
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multi-way theta-joins into subgroups and select a best MapReduce implementation
by combining these subgroups for this problem.

There is more work to do in the future. The concurrency strategies for the join
operation in MapReduce should be considered and the efficient approach of building
histograms using MapReduce will also developed in the upcoming work.
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