
International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

157

Distributed Workflow Architecture Based on Flexible Data
Management

Yinzhou Zhu1 and Baolin Yin2

1,2 National Laboratory Software Development Environment,
Beihang University, Beijing 100191, China
{zhuyinzhou, yinbaolin}@nlsde.buaa.edu.cn

Abstract
In recent years, distributed workflow management technology attracted much attention for

the requirement of rapid development of process oriented software systems. However the
current workflow management systems do not have sufficient capabilities in controlling data
stream between the workflow engine and applications, decreasing the reusability of the
workflow components. Therefore we enhance the basic data model of the distributed
workflow system, and propose an architecture based on a flexible data mapping model to
improve the reusability of the workflow components in distributed workflow management. A
real-world scenario which is built and implemented based on this architecture is shown to
prove the effectiveness and usefulness of the architecture.

Keywords: Workflow Management, Business process, Distributed systems, Data mapping,
Reusability

1. Introduction

With the expansion of global business, more and more enterprises expect to construct and
improve their business processes rapidly and frequently [1]. Under such circumstances,,
distributed workflow management systems (DWFMSs) attracted much attention because of
their comprehensible and flexible business process model. Software development based on
DWFMS often used a top-down design method, and followed a stepwise refinement process.
This process need close co-operation between business process analysts and programmers [2].
In today's businesses, however, when the workflow requirement was more and more driven
by the customs' demands, the workflows have to be developed faster and more agile than
before. This implies that the architecture of distributed workflow development should be
improved so that the capabilities in controlling data stream between workflow engine and
application could be enhanced to simplify the configuration of the workflow applications.

In a typical DWFMS, the first step of workflow development is to define the process
model with the help of the business process analysts who master the basic computer
knowledge. They have to define the workflow activities, the resources on which the activities
are worked, the applications that will be executed by the resources, and the start-conditions
that describe when an application could be executed. Then the programmers will complete the
workflows by converting the descriptions to the programs and coding for low level functions
[2]. In many cases, the applications of the business processes are similar to each other; only
the input/output data objects and the user permissions of the application are different. This
opens the possibility of developing the workflow by applications that was extended from
standard components, which will save programmers much time and labor. A important thing
to note in workflow developing is the interface of the components, as it should be simple and
flexible enough to learned by business process analysts

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

158

To support the development of the application that have a common user interface, the
component with application-level granularity have more advantages than the web-service
which were adopted in most traditional WFMSs [3]. To keep the simplicity and the
automation of the process of the workflow development, the interface of the components must
be unified and explicitly defined. To mapping complex data structure between the workflow
engine and components, the data model of the workflow must be flexible and easy to operate.
Thus we choose the standard relational table as the basic data type in our DWFMS, for its
simplicity and powerful expressiveness. To support this data model in the DWFMS, it have to
improve the infrastructure of distributed data storage and transmission. To support the
flexible integration between the workflow engine and the components, the DWFMS should
extend the data mapping mechanism based on flexible data mapping model. A graphic design
tool for data mapping is also required to help users develop the workflow more easily and
rapidly.

In the EasyWork project, the support of the relational table and the flexible data mapping
mechanism is implemented for distributed workflow development. Along the lines presented
in this paper, the data mapping model and the component interface specification have been
designed to model and specify flexible data mapping. Based on the DWFMS in the EasyWork
project, related infrastructure have been implemented to select the components, configure the
applications, integrate the applications with workflow engine, and test the activities of the
workflow.

This paper focuses on the data mapping model and the component interface specification
in the EasyWork project. A real-world workflow application developed by the project is
discussed to illustrate the use of the flexible data mapping technique.

2. Related Works

In the past decade, workflow management technology has played an important role in the
fields of business process management and scientific computation [4, 5]. The emphasis has
mainly been on distributed workflow management in scientific computation environments [5].
With the advent of rapid evolution of the business process in large enterprises, however,
distributed workflow management is attracting much attention in business process
management field these days.

Muthusamy et al., developed a flexible and distributed platform to develop, execute, and
monitor business process [6, 7]. This platform is based on web services, and utilize a
distributed content-based publish/subscribe overlay which could work effectively in
heterogeneous environments. The system focus on the service discovery, composition, and
the efficiency of the remote service call, but the discussion of data flow management between
the workflow engine and services is not sufficient for rapid workflow development.

Khalaf and Leymann present a BPEL fragmentation covering data and explicit control
dependencies, and an approach to handle fragmenting loops and scopes [8]. The system
utilizes the BPEL workflow engine and web services, which are difficult to construct the
applications with a user interface.

Hamann et al., present a migration data meta-model for business processes with the ability
for runtime migration, which enhance the flexibility of the distribution of the ad-hoc
workflow [9]. The prototype is applied to WS-BPEL and XPDL processes, which is not
sufficient for rapid workflow development also.

Besides, most of common business process management systems, such as Staffware,
WebSphere, FLOWer, COSA, or workflow model language, such as XPDL and BPEL4S,
only support basic data types when communicating with the applications [10].

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

159

Our work distinguishes itself from these other approaches by enhancement of the basic
data model of the workflow engine and the components, which could help to assemble the
workflows in more flexible ways.

3. Architecture

The architecture of the EasyWork system, which is shown in Figure 1, aims to define,
execute and monitor the workflows for the cross-regional enterprises which often have
several highly autonomous subsidiaries. The network architecture of the EasyWork system is
a hybrid structure, which is based on the peer to peer network and the client/server framework.
There are two kinds of nodes in the EasyWrok network: EasyWork Server node and the
EasyWork Client node. The EasyWork Servers are the basic nodes which are used to store
and dispatch the distributed workflow instances. The relationships between EasyWork
Servers are symmetrical, while the EasyWork Clients are client nodes of the EasyWork
Server. The EasyWork Platform is installed on every EasyWork Server, and offer the access
interface that allows users to get and do their job in remote EasyWork Clients though a
standard web browser.

Figure 1. The Architecture Diagram of the EasyWork system

EasyWork Process Definition Server is a kind of EasyWork Server on which the workflow
definition tool is installed. The workflow definition tool is used by workflow administrators
to define, compile and deploy the distributed workflow. After a workflow model has been
designed in the Process Definition Server, it will be split into several segments by activities,

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

160

and be compiled to configuration files. These configuration files will then be distributed to
EasyWork Servers which are defined as the computing resources of the activities.

The EasyWork Platform on EasyWork Server is composed of three main parts: the
workflow engine, the user task manager and the application framework. The workflow engine
is used to receive, store, and dispatch the workflow instances, and invoke the application to
process the tasks of the activities. The user task manager offers the access interfaces of the
workflow system to users, shows the task-lists, and communicates with the workflow engine
to process user commands. The application framework is a set of applications which are
created based on the components with application-level granularity. These applications,
which are invoked by the workflow engine to process the tasks of the activities, are
executable programs, such as the executable binary files of the operational systems of
Microsoft Windows or UNIX, or the web pages that could be interpreted by http server or
client browser.

4. Process Model

EasyWork project contains two main parts: the workflow design tools and the distributed
workflow engines. Business process analyzer utilizes the workflow design tools to define, test,
deploy, and monitor the workflow. And the users specified in the workflow receive and
handle their jobs though workflow engines which were distributed over all workflow network.
The process model defined in workflow design tool contains two levels: the upper level is the
business level based on the directed graph of the activities; and the lower level is the
execution level based on the sequences joined by applications, as shown in Figure 2. The
reason of splitting the process model into two levels is the different nature of the process
model in two levels. The process model in the business level is easy to understand and
analyze from the business perspective, and the process model in the execution level specifies
the details of the applications.

Figure 2. Process Model Diagram in EasyWork Project

4.1. Business Level

The process model in the business level is made up of six elements: activities, transitions,
resources, users, start conditions, and branch conditions. Every node in the directed graph
represents an activity which will be executed on a computer resource which is owned by one
or more users. The lines between nodes represent the transition path between activities. Each

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

161

transition path may bind to a branch condition which is a logic expression composed of the
common operators, constants and the workflow data. Each activity has a start condition,
which is composed of the logic operators and the identifiers of the preceded activities, to
specify when to start the applications of the current activity. When the user complete the
sequence of the applications of an activity, the workflow engine on this computer will test all
the following branch conditions to find out which branch conditions are met. If a branch
condition is met, the workflow instance will be transferred to the computer where the branch
condition links to. After a workflow instance is transferred to a computer node, the node will
test the start condition of the activity to find out whether the required workflow instances are
all achieved, and if yes, the activity will be marked as an undo-job in the job list of the
specified users.

With the help of the process model in business level, the workflow design tool could
support all typical workflow model patterns, such as And-Split, And-Join, Or-Split, Or-Join.
Besides, this model decreases the number of the operator types and simplify the relation
between the activity and the computer resource.

4.2. Execution Level

The jobs specified in the activity are composed of the applications which are executable
programs, such as the executable binary files on the operational system of Microsoft
Windows or UNIX, or the web pages that could be interpreted by http server or client browser.
These applications is produced from configuring the components that chosen from the
component library. The library is composed of a set of basic standard components, such as
form, grid, report construction, or email delivery; and many domain specific components,
such as the components used in office domain, submit/approval domain, financial domain. All
components in the library have the unified interface to configure and execute. When defining
the process model in execution level, it first has to configure the input and output data and the
execute conditions of the components to create executable applications, and then add the
configured applications to task sequence of the activity. When the activity is started, the
workflow engine will execute the applications in the task sequence one by one, mapping the
suitable workflow data to the input of the application, and mapping the output of the
application back to the workflow data.

Based on process model in execution level, the DWFMS could handle the workflow data
more flexible, reducing the coupling between the workflow engine and the applications,
making the components and the workflow data more independently, increasing the reusability
of the components. Combined with the flexible data mapping mechanism which simplify the
data mapping operation, the EasyWork project can help the business process analysts break
out of their dependence on the programmers.

5. Flexible Data Mapping

Flexible data mapping mechanism, which is the key technique for binding the applications
to the workflow, is used to define the data mapping relationships between the workflow data
and component data, and to convert the data schema based on these relationships when the
workflow engine invoke the applications.

5.1. Workflow Data Bus

Workflow Data Bus is an abstract layer used to store and offer the workflow data in
EasyWork project. It manages all the business data transmitted in the workflows. When a
workflow instance has been started, the Workflow Data Bus transfers the instance data from

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

162

one activity node to another activity node in the workflow network. When running an
application, Workflow Data Bus offers the data which required by the application, and store
the return data from the application when it is finished, as can be seen inn Figure 3.

Figure 3. Data Flow in the Workflow Instance Execution

The data model of Workflow Data Bus is based on relational table. All workflow data is
represented in the form of relational table. Also, in the definition of the component interface,
the data model of the input data and output data of the components are based on relational
table. This approach opens the possibility of converting the data schema of the workflow data
when mapping workflow data to component data so that the new data schema of the
workflow data could meet the component data requirement. The same goes for the mapping
from component data to workflow data after the application have been finished.

5.2. Data Mapping Specification

The primary goal of the flexible data mapping mechanism is to support the conversion of
the data schema between the workflow data and the component data. In order to make it
easier to use and learn for the business process analysts, a SQL-like language has been used
to specify the flexible data mapping. A mapping description is like this:

dest_data [+]= SELECT src_field_list FROM src_data_list [WHERE condition]

In this line, dest_data represents the variable to which the converted data is assigned in the
mapping operation. The list src_data_list is composed of one or more source variables which
are from the workflow data or component data. The list src_field_list is composed of one or
more constant or column names, which are in the tables of the source variables, to specify the
columns to be retrieved. The condition is a logic expression to select the proper tuples from
the sources variables. When performing a mapping operation, the tables in source variables
are joined together to take the Cartesian product, and then select the tuples though the logic
expression condition and retrieved the columns that specified by src_field_list. The result data
will be assigned to dest_data in two ways: rewrite or append, which are represented with the
operators “=” and “+=” respectively. The rewrite mode will clean the old data of dest_data
and assign a new table to it. And the append mode means the old data will be retained and
new data will be appended to it.

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

163

3. Component Interface Specification

Each component on which the applications are based must give a specification about its
basic information and data schemas, which is called component interface specification, to
help the business process analysts understand how to configure the component and how to
specify the data mapping between workflow and component. The workflow design tool in the
EasyWork project reads the component interface specification files and show them in a visual
way. Below a demonstrative component interface specification is given.

Table 1. Demonstrative Component Interface Specification

Specification Annotation
Component_Name: {

title: STRING,
desc: STRING,
class: STRING,
input: [var1, var2, …],
output: [var1, var2, …]

},
var1: {

title: STRING,
table: {

field1: [fieldType, setting],
field2: [fieldType, setting],
…

},
canModified: BOOL,
desc: STRING

},
…

Basic information block
Component title
Component introduction
Component classification
Input variables of the component
Output variables of the component

Data information block
Variable title
Data schema block
Field setting

Whether the data schema can be modified
Variable introduction

Other data information blocks

A component specification file is composed of many information blocks. The first block is
basic information block, and others are data information blocks. The basic information block
consist of the component’s name, title, classification, a simple introduction, and input and
output variables. The data information blocks specify the variables of the component one for
one. And each data information block consist of the name, title, initial data schema, and a
simple introduction of a variable.

With the help of the component specification files, business process analysts could
configure the applications and its data mapping rules in the workflow design tool. And when
the applications are invoked, the workflow engine will automatically mapping the data
between workflow and applications.

6. Case Study

To illustrate the effectiveness of the business process development with the architecture
presented the EasyWork project uses on a real-world scenario as input: the Freshwater
Quality Monitoring scenario (FQM).

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

164

6.1. Background

Every year, the National Oceanic Administration of China needs to investigate the
freshwater quality in the coastal areas, collecting the information, and provide a summary
report. There are over 100 observation stations located in different parts of the country, which
help the administration investigate the water quality. The FQM process is started by the
officer at the headquarters, and the lists of the test items are sent to the observation stations.
Then the observation stations investigate the water quality according to the lists they received,
fill out the investigation forms, and send them back. The head office collects these responses,
calculates the related indexes, and provides the summary report at last.

6.2. Data Mapping Specification

The primary goal of the flexible data mapping mechanism is to support the conversion of
the data schema between the workflow data and the component data. In order to make it
easier to use and learn for the business process analysts, a SQL-like language has been used
to specify the flexible data mapping. A mapping description is like this:

The FQM process was implemented based on the DWFMS in EasyWork project. The
implementation is divided into four steps: (1) Define the activities and the organizations. (2)
Choose the proper components and configure them to create the applications for each activity.
(3) Define workflow variables and consider the data mapping specifics. (4) Deploy the
distributed workflow in the DWFMS network.

Table 2 shows some important attributes of the activities on FQM process. There are 134
activities, two of them are executed by head office to start and summarize the investigation,
and others are distributed to 132 observation stations located along the east coast to fill out
the investigation forms.

Table 2. Activities on the FQM Process

ID Name Purpose User Applications
A1 Start Start the Investigation Head office Report Setting

B1 ~ B132 Submission Fill out the investigation
form Observation Stations Investigation Form

C1 Summary Calculate the index and
show the report table Head office Index Calculation

Report Grid

The application used in the process is described in Table 2 and Table 3. There are four
applications extended from three basic components. The components Form and Grid are used
to construct GUI applications which can present the data to users and get the input from users.
The component Calculator is used to construct the computational applications which are
executed without any user input.

Table 3. Basic Components and Extended Applications used in the FQM
Process

Basic Components Introduction Application

Form Show a data input form based on
field names, field types, and constraints

Report Setting
Investigation Form

Grid Show a data grid table based on
the header setting and the data Report Grid

Calculator Calculate the result list based on input
variables and formulas Index Calculator

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

165

Table 4 shows the main workflow data in this process. The variables Form and Collect
have the same data schema to store the information of the 376 test items of the investigation
form. The difference is that the variable Form just has only one tuple while the variable
Collect has multiple tuples. Since the DWFMS in EasyWork project could offer a buffer for
each activity to store the temporary workflow data, it is not necessary to set up a central
database system for this workflow, so we just use a local database in node C1 to backup the
summary reports.

Table 4. Main Workflow Variables on the FQM Process

Variables Introduction Data schema
Form Store the test names and values (p1, p2, p3, …, p376)

Collect Collect all the test values in
FQM process (p1, p2, p3, …, p376)

Result Store the index name and values
that shown in the summary report (index_name, index_value)

The workflow model and data mapping specifics can be seen in Figure 4. First of all, three
main workflow variables are initiated in activity A1. And then these variables are transferred
to every observation station though the Workflow Data Bus. From activity B1 to B132, each
of them save the information of the submitted investigation form to the branched variable
form. All these branched variables are assembled in activity C1, and are presented as the
variable act.form, where act is the name of the preceded activity from where the variable is
sent.

From the above process which has been worked in the real world, we can see many
advantages of the architecture presented in this paper. Compared to most traditional
DWFMSs which often only manage the simple status data, our DWFMS chooses a more
flexible data management model to manage complex data. As a result, we can save much time
and labor that is used to code for controlling the data flow to connect the applications to the
workflow. For example in above process, we didn't write any code for the applications. On
one hand, the reusability of the components are improved, and on the other hand, this
approach enhances the control of the data for process analysts, which could reduce the
probability of errors in the workflow design.

Figure 4. Distributed Workflow Model and Data Mapping Specifics for the FQM

Process

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

166

Compared to the object-oriented data models, relational table is simpler and more universal,
and easier to operate when sharing data with databases. The operation of the relational table is
based on relational algebra which is strong in logic and systematism, so the relational table is
more appropriate to the occasion of converting the data model.

7. Conclusions

By the use of flexible data mapping mechanism, increasing the reusability of the workflow
applications is possible. The data model of the architecture is based on relational table, and a
SQL-like language is chosen to specify the flexible data mapping. Compared to traditional
DWFMS, this approach enhances the power of the data flow management, so that save much
time and labor on developing similar applications. The data mapping language is easy to learn,
which make business process analysts less dependent on application programmers, and
improve the efficiency of the workflow development. Besides, as the data flow is more
controlled by the process analyzer, the applications could be designed in a more universal
way. In future, the database operation will be integrated into the flexible data mapping
mechanism to provide a more powerful method of the data flow controlling.

References
[1] J. Sinur and J. B. Hill, "Magic Quadrant for business process management suites", Gartner RAS Core

research note, (2010), pp. 1-24.
[2] C. Ouyang, M. Dumas, W. M. P. Aalst, A. H. M. T. Hofstede and J. Mendling, "From business process

models to process-oriented software systems", ACM transactions on software engineering and methodology
(TOSEM), vol. 19, no. 1, (2009), pp. 1-37.

[3] G.-J. Jin, B.-L. Yin and Q.-Y. Zhao, "Reusability enhancing method for integratable software components
with application-level granularity", Computer Integrated Manufacturing Systems, vol. 17, no. 2, (2011), pp.
425-432.

[4] W. M. van der Aalst, "Business Process Management: A Comprehensive Survey", ISRN Software
Engineering, (2013).

[5] E. Deelman, D. Gannon, M. Shields and I. Taylor, "Workflows and e-Science: An overview of workflow
system features and capabilities", Future Generation Computer Systems, vol 25, no. 5, (2009), pp. 528-540.

[6] V. Muthusamy, "Flexible Distributed Business Process Management", University of Toronto, (2011).
[7] S. Ganesan, Y. Yoon and H.-A. Jacobsen, "NIÑOS take five: the management infrastructure for distributed

event-driven workflows", Proceedings of the 5th ACM international conference on Distributed event-based
system, DEBS, (2011).

[8] R. Khalaf and F. Leymann, "Coordination for fragmented loops and scopes in a distributed business process",
Information Systems, vol. 37, no. 6, (2012), pp. 593-610.

[9] K. Hamann, S. Zaplata and W. Lamersdorf, "Process instance migration: Flexible execution of distributed
business processes", Software Services and Systems Research-Results and Challenges (S-Cube), 2012
Workshop on European, IEEE, (2012).

[10] N. Russell, A. Ter Hofstede, D. Edmond and W. van der Aalst, "Workflow data patterns: Identification,
representation and tool support", Conceptual Modeling–ER 2005, (2005), pp. 353-368.

Authors

Yinzhou Zhu received his M.S. in 2006 and currently is a Ph.D.

candidate, both in Computer Science and Engineering Department at
Beihang University (Beijing). His research interests include workflow
management, enterprise application integration and distributed systems.

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

167

Baolin Yin is a Professor in Computer Science and Engineering
Department at Beihang University (Beijing), and is currently head of the
State Key Laboratory of Advanced Software Development. He received
his Ph.D. in Artificial Intelligence in the University of Edinburgh
(1984).His research activity is concerned with distributed systems,
workflow management, image identification, and computer security.

International Journal of Database Theory and Application

Vol. 6, No. 4, August, 2013

168

	Distributed Workflow Architecture Based on Flexible Data Management
	Abstract

