
International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

11

Exploring Query Optimization Techniques in Relational Databases

Majid Khan and M. N. A. Khan

SZABIST, Islamabad, Pakistan

engrmajidkhan@gmail.com,mnak2010@gmail.com

Abstract

In the modern era, digital data is considered as the more valuable asset of an

organization, and the organizations assign more significance to it than the software and

hardware assets. Database systems are computer-based record keeping systems, which have

been developed to store data for efficient retrieval and processing. One particular approach

is the relational databases in which all the information is stored in rows and columns in a

series of interconnected tables, and a snippet of structured code called query is used to

interact with these database tables. Database management involves indexing of data by

tagging information based on some common factors and corresponding criteria. Performance

of SQL query against a production database eventually becomes an issue sooner or later. The

time-intensive queries not only degrade performance of servers and applications by

consuming substantial system resources, but can also result in table locking and data

corruption. Therefore, query optimization becomes necessary to prevent performance

degradation. Query optimization primarily means selection, followed by sequencing in

specific order, of the different SQL clauses to formulate an efficient query from the multiple

query plans by drawing a comparison of the query plans based on the cost of the resources

involved and the response time. The objective of query optimization is to provide minimum

response time and maximum throughput (i.e., the efficient use of resources). This paper

reviews different query optimization techniques and approaches discussed in the

contemporary literature for both centralized and distributed databases. The paper also

highlights merits of these techniques by critically analyzing them.

Keywords: SGA, PGA, Advanced Database Management System, DBCC, Automatic

Storage Management, VDSI, Query Optimization

1. Introduction

Query evaluation and its optimization belong to a broader class of research, and much

work has been performed in this field since the early 1970s [7]. Query processing passes

through three steps: decomposition of query, its optimization and execution. During the

decomposition process, parsing and binding are performed on the SQL query. During parsing,

the query validation in terms of syntax, semantic and authorization is checked. Binding makes

sure that all objects used in the query do exist and bind every table and column name in the

parse tree to their corresponding objects of the system catalogue. The output of the first step

is an algebraic tree. This tree is then passed to query optimizer to generate a cost-effective

plan for the specified SQL query from the possible search spaces which have many candidate

execution plans. In the third step, the query with the efficient plan is executed making a tree

called operator tree or physical operator tree. The main purpose of query optimization is to

optimize cost in terms of minimizing the response time and maximizing the throughput by the

proficient use of resources [8].

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

12

There are two main components of DBMS to evaluate and optimize the query: the query

optimizer and the query execution engine. The execution engine uses physical operators like

SORT, NESTED LOOP JOIN, MERGE JOIN and INDEX SCAN, etc. to take input and

produce the required output. These physical operators are the building blocks which make the

SQL query execution possible. These operators construct a tree called parsed tree, which

represents the flow of data from one operator to the others in the form of edges moving back

and forth to the nodes. Query optimizer takes a parsed tree of the SQL query as an input from

the execution engine and produces an best possible or close to optimal execution plan out of

the possible execution plans for the given query based on the least resource consumption. For

a given query, there are many logical algebraic representations and there are many choices of

physical operators to implement these logical representations in addition to the variation of

response time of these plans. Therefore, it is obviously not an easy task for an optimizer to

generate an optimal plan [7].

Query optimizer being an important module of a DBMS has a greater impact on the

database performance. It analyzes a number of candidate plans generated for a given query

which have equivalent output but having different resource costs. It selects an efficient plan

out of these candidates’ plans having the least cost [1]. Although much work has been

performed in query optimization, but cardinality estimation to manage optimization time and

effective cost estimation with respect to the server state are still the challenging problems

[11].

The optimizer should be capable to handle complex and large data by adopting some

specific search strategy to counter the problems that an optimizer may face. Genetic strategies

can be used to solve the optimization issues such as joins which is a challenging part for an

optimizer in making efficient plan. Genetic strategies are mainly used to focus these problems

to improve the query optimization [3].

Different methods for query processing and optimization are used according to the data

size and the complexity of queries [10]. As the amount of data increases, queries also become

complex to interact with silos of huge data, thus optimization of these queries becomes

essential due to the involvement of different sub-queries, joining and grouping [2]. Besides, it

also becomes more difficult to cache the result at client side when there is a massive volume

of data. In such scenarios, efficient paging query concept is used to handle the situation when

data size becomes huge (e.g., in terabytes) [5].

In relational databases, the result of some queries depends on some unknown condition to

be known first. To deal with such situations, the sub-query concept is used. Sub-query

enhances the expressive and declarative capabilities of SQL. It has much importance to deal

with the optimization of sub-queries, particularly, when they are in the form of correlated sub-

queries, i.e., when sub-queries have reference from outer query. In decision support systems

and OLAP, sub-queries are widely used and different query transformation techniques are

used to optimize these queries [4].

Distributed databases which are the logical collection of multiple databases ensure high

performance and availability. User can access the system as a single unique system from

anywhere without any concern of the data location [10]. In distributed systems, computers are

physically distributed and are connected to a centralized database system. The data is

distributed among different computers having their own local application. User simply

queries the data without knowing its actual physical location. The main purpose of the

distributed query processing and optimization is to devise query processing strategy and to

select a least expensive query. There are two basics objective of query optimization in

distributed systems. First one is to achieve minimum total cost including CPU, I/O and data

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

13

transmission cost. Second is to achieve the minimum response time by increasing the

possibility of parallel processing which speeds up the overall query processing [9].

2. Literature Review

Ioannidis [1] focused the optimization of a query in centralized database management

systems. According to the author, the process of query optimizations goes by two key stages:

the rewriting stage and the planning stage. Various query optimizer components are then

explored in these stages. The rewriter module in the rewriting stage performs transformations

for a given query and produces an efficient query. Planner which is the basic module of

planning strategy performs various search strategies mechanism. It explores plans identified

by the algebraic space. Method-structure space modules evaluate these plans using the cost

derived from the Size-Distribution Estimator and Cost-Model module. Out of which, plan

with the least cost is selected. Algebraic space module operators considering the plan of a

query and identifies their order in form of trees or relational algebraic formulas. Logical

operator trees are then related to physical available join methods by Method-Structure Space

module. Cost model determine cost for the access plans using an arithmetic formula.

Sampling or statistical approximations can be done to get query result and their frequency.

Author has focused on histogram method where each attributes values are distributed into

chunks or buckets. However, there are several issues in the field of query optimizations that

necessitates making the query optimizers architecture in a generalized way to handle every

type of query either simple or complex. Also, some other advanced issues to handle in future

are dynamic, parallel, distributed, semantic, object oriented and aggregate query optimization.

Li et al., [2] discussed optimization methods to enhance the query optimization to get an

optimal plan. The main issue using sub-queries is the intra query redundancy in which the

sub-query has the same tables and conditions that are for the outer query. However, it

degrades the query performance if the query has correlated nested queries. One solution to

improve the performance is the query un-nesting, i.e., writing the nested queries into flat

forms to reduce the number of sub-queries. The authors proposed some heuristic strategies for

enhancing query processing. The first strategy proposed is to perform the selection operations

first in order to limit the number of rows/tuples. The second proposed method is to limit the

number of columns by performing projection operations. Thirdly, perform the operations with

the smaller or simple join first if there are consecutive joins in the query. And finally save the

result for the same expression for future use.

Chande et al., [3] focused the join ordering problem in relational database and used genetic

algorithm (GA) to face the problem of efficient selection of join ordering for making an

optimal plan by an optimizer. The queries used for genetic query optimizer (GQO) are

executed in different environment to compare their performance. The execution time for all

queries is compared with the proposed GQO. The authors performed experiments to compare

GQO with PostgreSQL, DB2 and MySQL. The experimental results show that genetic

strategy for query optimization is a good approach for complex queries optimization and

generates better result than standard RDBMS optimizers for large figure of joins e.g., DB2 or

MySQL. GQO is more suitable for fewer joins but it is little expensive in case number of

joins exceed the figure of 20.

Bellamokanda et al., [4] presented different query transformations techniques in Oracle

relational database. Oracle uses many transformation techniques, e.g., sub-query un-nesting,

group by, view merging, common sub-expression elimination, join predicate pushdown, semi-

joins, anti-joins, star transformation and OR expression. Generally, sub-query coalescing,

sub-query removal using windows functions and NULL-AWARE ANTI-JOIN methods are

used to improve execution time of queries. Query transformations in Oracle use either cost

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

14

based approach or heuristic approach to select an optimal execution plan. To avoid self-joins

in multiple query blocks, Oracle uses windows function for efficient execution and

optimization. In addition, Oracle uses PARTITION BY key or ORDER BY key for sorting

data to compute window functions. In sub-query coalescing technique, two sub-queries are

coalesced into one single sub-query and is used to reduce multiple table access and multi

joins operations into single table access and single join operation. Sub-query coalescing

works like a filter on the tables of the outer query. In Oracle, coalescing sub-queries appear in

conjunction or disjunction. When two sub-queries are of the same type, e.g., both use either

EXIST or NOT EXIST then sub-query coalescing result in the removal of one query. Sub-

query removal using windows function technique replaces the sub-queries with windows

functions to reduce the number of table access and joins to improve query efficiency. A

regular Anti-join is exactly opposite to inner join. Since in SQL, any relational comparison

with null always results in a null value, so there should be some strategy to deal this situation.

NULL-AWARE ANTI-JOIN concept is used to handle null values in anti-join operations.

Sun et al., [5] proposed a paging query solution to for a large-scale data to improve query

efficiency and overall application performance. Through this method, all the data satisfying

all the query conditions are first placed at server’s memory and then only the part of the data

needed by the client is passed to the client. The proposed method is in contrast to the

traditional method of paging query in which all the data is stored at client memory which is

obviously not an efficient way while handling massive data as it may lead to choke the client

system resources. To achieve little paging or swapping, server’s memory should be

configured properly. The authors also suggest that data files, table data and indexes should be

distributed properly into different table spaces and disks to reduce disk interaction and to

perform load balancing. To improve the query efficiency, the authors focused the indexes by

explaining when to use and where to use the indexes. The authors have optimized the paging

query statements by avoiding scanning the full tables in all sub-queries. The proposed

solution has huge effect on performance by utilizing the server and client resources

efficiently, particularly to reduce the consumption of client’s resources.

Mateen et al., [6] proposed developing an Automatic Database Management Systems

(ADBMS) to automate most of the database activities in order to reduce burden over the

DBA. SQL server has different components which are used to implement autonomic

behavior. Self-optimization is an important key factor for ADBMS which can be achieved by

query optimizer, SQL server automatic statistics management component and performance

monitor. Self-configuration being another important factor for ADBMS can be achieved by

configuration manager, DB tuning advisor and self-tuning. Factor self-healing can be

achieved through maintenance plan providing automatic recovery when SQL server is started.

Self-protection can be achieved by single sign in, encryption mechanism and other security

features. Self-inspection can be achieved by monitoring tools and Database Consistency

Check (DBCC). Self-organization can be achieved through Automatic Storage Management

(ASM) and reorganization the indexes. In addition the authors reveal the auto nature of

different SQL server components and their degree of human intervention that may lead us to

those changes that should make the system fully autonomic in future. Main advantages of the

proposed solution are: less DBA interaction with the system, efficient use of system

resources, recovery and protection. But sometime the auto mechanism does not fulfill the user

requirement; in that case, the DBA involvement is much necessary. To make the system fully

autonomic, all these features of SQL server should be compared with other database

management systems like Oracle and DB2.

Chaudhuri [7] discussed the fundamental requirements such as search spaces, an accurate

cost estimation technique, an efficient algorithm and an optimizer to generate the best

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

15

execution plan. The query passes through many representations when it is submitted to

database server. The first phase is called parse tree, the intermediate phase is called logical

operation tree and the final representation is called the operator tree. There are many logical

trees possible for a given query submitted to database and to implement these trees, many

combinations of physical operators are possible. An optimal plan is generated according to

the operator tree having least resource consumption. For selecting best plan, the statistical

information and execution cost are gathered and analyzed. Statistical information includes the

number of rows, joins, memory requirement and the number of pages used by a table.

Statistical information of column also has importance particularly when they have indexes.

Sampling data is used to estimate the statistics/histograms accurately and efficiently. In order

to select an inexpensive plan, an enumeration algorithm is needed to build an optimizer and

its nature should be to adapt changes in the search spaces dues to the addition of new

transformation or new physical operator. Such optimizers are called extensible optimizers,

e.g., Starburst and Volcano/Cascade.

Hameurlain [8] explored the growth of query optimization techniques from centralized DB

system to data grid systems. The optimization is discussed in uni-processor, distributed,

parallel processing and large-scale environments. Optimization methods and their special

characteristics are described for each environment. In static optimization, sub-optimal plans

are generated due to lack of resources. Then to detect and modify these plans at runtime,

dynamic method is presented in various environments. The query optimization in uni-

processor systems is of two types: logical and physical optimization. In the proposed solution

of scheduling problem of uni-processor relational systems, two search strategies enumerative

and random are focused. Enumerative strategy follows the dynamic programming, but it

cannot handle complex queries optimization due to their large execution plans. To pick an

optimal plan definitely becomes a difficult task. To focus this problem, the concept of random

strategies is used. For parallel relational systems, a dynamic optimization algorithm is

proposed, which have the basic idea based on collected statistics. In case of distributed

environment, the static query optimization is used to optimize the communication costs

between the nodes by reducing data transferred between them. Centralized approach could

not be scaled up due to the network bandwidth and latency issues. Grid systems are large-

scale systems having massive data with many users, sources and other computing resources.

These are also dynamic in nature. Flexibility and power make grid systems a good platform

for distributed query processing. The adaptive query processing approach is also proposed by

the author to optimize query in grid environments.

Lin [9] presented the query optimization flow consisting of multiple modules for

distributed databases. The user module in distributed system analyzes the user query request.

The System Analysis module examines sentence of the query, where its semantics, syntax and

spells are checked followed by converting the query into its corresponding tree. This

corresponding tree is passed to query tree conversion module which converts it into the global

query tree according to data structure described in the query tree. The global query tree

received from query tree conversion module is mapped to the corresponding physical

operators’ trees by the optimizer module. Then the optimizer module selects a physical

operator tree with lowest cost. The order processing module sends the whole process to

respective server which gives response to user. The local data dictionary is added with

sentence table to store mostly used results to avoid the transmission of large data, which

greatly improves query efficiency. But when the size of the corresponding table become

large, the CPU processing time will be large and the memory consumption will be more

which may be consider the limitation of the proposed system.

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

16

In contrast to the old methods, Zafarani et al., [10] proposed a new method for the

optimization of heterogeneous distributed databases by introducing a new agent to reduce

calculation of join orders resulting in better response time. Some old methods for like

decisive, genetic and contingent techniques are discussed for join ordering optimization. The

authors have extend the system by adding a new agent which act as an adapter and its main

purpose is to reduce the calculations in join ordering. The proposed algorithm avoids the joins

operations stages which are frequently sent to database during query processing. The

algorithm has three parts: joins order separator, substitution politics and query similarity

recognizer. The responsibility of the join order separator is to separate queries with and

without join operations. Query similarity recognizer compares the queries and identifies

queries of same structure and then makes an execution plan for them. If the sent query is

already in the database then its weight is increased. The queries with high score i.e.,

frequently used queries are then saved into the database. The performance is measured in

terms of its execution time between the submitting query and receiving the reply.

Chaudhuri [11] addressed the problems of optimizer like its cardinality estimation. The

main focus of the paper is on the characteristics of optimizer so that its core components i.e.,

cardinality, cost and search estimation control the application input and produce better output.

In cardinality estimation, it is easy and effective to work with single dimensional histogram

but it may face many challenges when dealing with multi-dimensional histograms because of

its space and the combination of columns. For ad-hoc queries, cost estimation is also a

challenge for optimizers to improve the optimization time. Keeping in mind the mentioned

challenges and issues, the authors propose to revisit the work of optimizer to make it capable

to leverage information for analysis. The authors have generalized the statistical module

architecture to make it open for the larger set of statistical directives, e.g., cardinality injection

and cardinality constraints. Execution plan is simpler type of search directive to control the

nature of execution plan selected by an optimizer. Plan-space directives help the application

developers and administrator to control the behavior of search algorithm. Plan-space directive

helps the DBA to deal with parameterized queries to select a good plan.

Sun et al., [12] focus to optimize the query to speedily retrieve data from the running

database by means of indices. To gain the best performance, the database should have a good

design, i.e., all the basics tables are in 3NF. The 3NF eliminate data redundancy, support fast

transaction and ensure data integrity. After having the design in 3NF, the logic structure of

the database is optimized by using indexes techniques. Index is a database object used to

retrieve the required data rapidly by reducing the amount of data. It also reduces the I/O

operation, improves the response time of the query Since the indexes store addresses of all the

rows related the column on which indexing is applied, therefore, they should be applied very

carefully as it sometime degrades the performance. Also, there are some cases which restrict

the use of index, e.g., the use of NULL and NOT NULL may interrupt the normal use of

indexing. Index cannot be utilized in case of incorrect use of LIKE statement. The use of IN

or NOT IN operations may also lead to the full table scan hence degrading the performance.

Gupta et al., [13] addressed the techniques used by Oracle for query optimization and

analyzed the performance of LIKE operator. Oracle uses cost based as well rule based

optimizer to handle query optimization. The main objective of cost based optimizer is to

provide high throughput and best response time. Rule based optimizer apply equivalence

rules to generate an optimal query evaluation plan for an algebraic query. Different queries

are analyzed and their costs are computed by measuring CPU time, elapsed time, disk

characteristics, i.e., the number of physical reads, number of buffers for consistent read and

current mode. Queries are analyzed with indexed and without indexes. The queries on tables

without indexes took much time as compared to the indexed one. It was analyzed that LIKE

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

17

operator required a full scan of the table, hence degrading the performance. Therefore, some

extra improvement is required to use ‘%%’ in LIKE operator to avoid full scan.

Herodotou et al., [14] focused the optimization of SQL queries running over partitioned

tables by presenting a technique to optimally select the best execution plan. Partitioned tables

provide variety of advantages to the database systems including query pruning, i.e., fast query

processing, access of data in parallel fashion, efficient mechanism to load data, to backup

data, to maintain statistics in case of DML operations, better cardinality evaluation and to

avoid fragmentation. Particularly, query optimization is not an easy task for a large amount of

data,. The authors proposed a partitioned aware technique for the PostgreSQL optimizer

which generates plans much better than the current optimizer through better cardinality

estimation and improved search space. The type of partition like List, Range etc. is not

mentioned in the paper.

Antoshenkov et al., [15] focused the query processing and its optimization in Oracle

relational databases by reworking the query optimizer to get improved compilation time,

handling large amount of data, reduced computational complexity and manual plan

management. The authors have developed bitmap compression and dictionary compression

methods to achieve efficiency in case of large objects and indexes.

O’Neil et al., [16] focused the query performance in decision support systems and OLAP

environments by introducing a method to execute the common multi-table joins. The author

presented Star Join method with bitmap indexes to improve the performance by avoiding full

table scan and hence better evaluation plans.

Bruno et al., [17] looked into ways to improve the poor plan selected by the optimizer

through query hints. Through suggestive hints, optimizer can keep on improving the plan

until a best plan is picked up. The authors proposed Phints to capture possible hints for

optimizer to get better plan. Query hints are a non-trivial complex methods to achieve better

plan. A summary of the critical evaluation of the proposed techniques in the contemporary

literature is provided in Table 1.

Table 1. Summary of Query Optimization Techniques in Relational Databases:
Problems/Solutions/Practices/Techniques

Research

Topic
Author(s)

Problem Discussed

and Proposed

Solution

Strengths Limitation/Scope

Query

Optimization

Ioannidis [1] Described the structure

of the optimizer and

explained the main

issues handle by each

optimizer module.

Understanding of

optimization concepts

and main modules of

query optimizer.

Dynamic, parallel and

distributed

optimizations are not

discussed.

Query

Optimization

Li et al. [2] Discussed intra-query

redundancy in sub-

queries. Suggest un-

nesting and some other

heuristics strategies

like selection,

projection and joining.

Optimizing query by

removing intra-query

redundancy.

The experiments

performed are not

related to the

techniques mentioned

in the paper.

Genetic

optimization

for join

ordering

problem

Sun et al.[3] Proposed genetic

algorithm to face the

problem of efficient

selection of join

ordering for making an

optimal plan by an

optimizer.

Better execution time

for the query by proper

join ordering.

In terms of cost, the

proposed algorithm is

little expensive for

more than 20 joins.

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

18

Sub-query

optimization

in Oracle

Bellamokan

da et al. [4]

Avoiding self joins,

multi-joins, multi table

access and handling

NULL values.

Proposed sub-query

coalescing, sub-query

removal using

windows functions and

NULL-AWARE

ANTI-JOIN

transformation

techniques.

Improved query

execution time.

Simulation results are

achieved using parallel

CPUs and other high

level hardware which

may be affected if

degree of parallelism

becomes low.

Paging Query

Optimization

of Massive

Data

Sun et al.[5] Paging query in large

scale databases.

Proposed a sharable

stored procedure at

server side and

applying Oracle

techniques like

memory management,

indexes, distribution of

data and its files.

The proposed solution

has huge effect on

performance by

utilizing the server and

client resources

efficiently.

The paper mainly

focused on Oracle user

guides.

Autonomic

Computing in

SQL Server

Mateen et

al.[6]

Development of an

Automatic Database

Management Systems

(ADBMS)

Introduced self-

optimization, self-

healing, self-

protection, self-

inspection and self-

organization key

characteristics for

ADBMS.

Main advantages of the

proposed solution are:

less DBA interaction

with the system,

efficient use of system

resources, recovery

and protection.

No simulation is

performed to show the

autonomic nature of

the system.

An overview

of query

optimization

Chaudhuri

[7]

Selecting the best

execution plan for a

query by an optimizer.

Discussed the

fundamental

requirements for search

spaces, accurate cost

estimation technique

and optimizer.

Best execution plan out

of many candidates

plans.

No optimization

technique is discussed

pertaining to memory

issues linked with

optimization.

Query

optimization

in centralized,

distributed

systems

Hameurlain

[8]

The optimization in

uni-processor,

distributed and parallel

processing

environments.

Discussed enumerative

and random

techniques, dynamic

optimization algorithm,

decentralized approach

and adaptive query

processing.

Enhance optimization

of query in all the

environments

The paper lacks

algorithmic or

prototype support.

Query

optimization

strategies for

distributed

databases

Lin [9] Query optimization in

distributed databases.

The local data

dictionary is added

with sentence table to

These strategies

enhance the query

efficiency and reduce

data transmission

costs.

As size of the

corresponding table

becomes large, it takes

more CPU time and

occupies more

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

19

store mostly-used

results to avoid the

transmission of large

data.

memory.

Optimizing

Join queries

Zafarani et

al.[10]

Join ordering in

heterogeneous

distributed databases.

Reduced calculation of

join orders result in

better response.

The simulation results

shown in the paper are

complex.

Query

optimizers

Chaudhuri

[11]

Cardinality estimation

and effective cost

estimation.

Best response time for

a query.

No interface for the

optimizer is discussed.

Query

optimization

strategy of the

VDSI system

database

Sun et al.

[12]

Query optimization of

large scale VDSI

systems. Proposed

indexes algorithm.

Reduces I/O operations

and improves the

response time of the

query.

No cache technique is

discussed.

Empirical

evaluation of

LIKE operator

in Oracle

Gupta et al.

[13]

Performance issues

with LIKE operator,

DB design and indexes

High throughput and

best response time is

achieved.

The paper only

discusses LIKE

operator, but the

experimental diagrams

and results are about

indexes.

Query

Optimization

Techniques

for Partitioned

Tables

Herodotou

et al.[14]

Optimization of SQL

queries which are

running over

partitioned tables.

Proposed partitioned

aware technique for the

optimizer.

Fast query processing,

access of data in

parallel fashion,

efficient mechanism to

load data and to

maintain statistics.

Ambiguity about the

type of partition for

which the proposed

technique can perform

better.

Query

processing

and

optimization

in

 Oracle

RDB

Antoshenko

v et al.[15]

Query processing and

its optimization in

Oracle relational

databases by reworking

the query optimizer.

Improved compilation

time to reduce

complexity and to

handle large amount of

data.

Partitioning can be

introduced while

dealing with large

amount of data.

Multi-Table

Joins Through

Bitmapped

Join Indices

O’Neil et al.

[16]

Query performance in

decision support

systems and OLAP

environments by

introducing a method

to execute the common

multi-table joins (Star

join).

Better evaluation

plans.

Indexes seriously

affect performance

when DML operations

are performed.

Power Hints

for Query

Optimization

Bruno et al.

[17]

To improve the poor

plan selected by

optimizer by query

hints.

Better query plan. Query hints are a non-

trivial complex method

to achieve better plan.

3. Future Work

Majority of research conducted in this area highlights the techniques and models used to

enhance the query performance. I intend to propose a technique which will improve the

performance issues pointed the in existing research regarding Query Optimizations. My focus

will be to improve the query performance through optimization technique in distributed

environment which have massive amount of data located at different locations.

International Journal of Database Theory and Application

Vol. 6, No. 3, June, 2013

20

4. Conclusions

In this paper, we have made an attempt to present a detailed review of query optimization

techniques. The main idea behind this research is to review various techniques to implement

query optimization in an effective manner. Query optimization techniques and approaches

primarily focus centralized and distributed databases. The paper also highlighted merits of

these techniques by critically analyzing them with respect to their utility and efficacy. We

have discussed the existing techniques and their implementation for the sake of optimizing

query. We have identified some of the proposed techniques that lead towards achieving the

key benefits of an optimized query as compare to an un-optimized query in terms of its

throughput and response time.

References

[1] Y. Ioannidis, “Query Optimization”, Journal ACM Computing Surveys (CSUR), (1996).

[2] D. Li, L. Han and Y. Ding, “SQL Query Optimization Methods of Relation Database System”, Computer

Engineering and Applications (ICCEA), (2010).

[3] S. Chande and M. Sinha, “Genetic optimization for the join ordering problem of database Queries”, India

Conference (INDICON), (2011).

[4] S. Bellamokanda, R. Ahmand and A. Witkowski, “Enhanced Subquery Optimizations in oracle”, Proceeding

of the VLDB Endowment, (2009).

[5] F. Sun and L. Wing, “Paging Query Optimization of Massive Data in Oracle 10g Database”, Computer and

Information Science and Service System (CSSS), IEEE International Conference, (2011).

[6] A. Mateen, B. Raza and T. Hussain, “Autonomic Computing in SQL Server”, Computer and Information

Science, Seventh IEEE/ACIS International Conference, (2008).

[7] S. Chaudhri, “An overview of query optimization in relational systems”, Proceedings of the seventeenth

ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems, (1998).

[8] A. Hameurlain, “Evolution of Query Optimization Methods: From Centralized Database Systems to Data

Grid Systems”, Proceedings of the 20th International Conference on Database and Expert Systems

Applications, (2009).

[9] X. Lin, “Query Optimization Strategies and Implementation Based on Distributed Database”, Computer

Science and Information Technology, 2nd IEEE International conference, (2009).

[10] E. Zafarani, M. Reza, H. Asil and A. Asil, “Presenting a New Method for Optimizing Join Queries Processing

in Heterogeneous Distributed Databases”, In Knowledge Discovery and Data Mining,WKDD ’10, (2010).

[11] S. Chaudhuri, “Query optimizers: time to rethink the contract?”, Proceedings of the 35th SIGMOD

international conference on Management of data, (2009).

[12] P. Sun, Z. Zhao and Z. Ge, “The research on the query optimization strategy of the VDSI system database”,

Computational Intelligence and Industrial Applications, PACIIA 2009, Asica Pacific Conference, (2009).

[13] M. Gupta and P. Chandra, “An Empirical Evaluation of LIKE Operator in Oracle”, BVICAM’S International

Journal of Information Technology (BIJIT), (2011).

[14] H. Herodotou, N. Borisov and S. Babu, “Query Optimization Techniques for Partitioned Tables”, ACM

SIGMOD International Conference on Management of data, (2011).

[15] G. Antoshenkov and M. Ziauddin, “Query processing and optimization in Oracle Rdb”, The VLDB Journal

The International Journal on Very Large Data Bases, (1996).

[16] P. O’Neil and G. Graefe, “Multi-Table Joins Through Bitmapped Join Indices”, ACM SIGMOD, (1995).

[17] N. Bruno, S. Chaudhuri and R. Ramamurthy, “Power Hints for Query Optimization”, IEEE International

Conference on Data Engineering, (2009).

