
International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

81

Fast Arabic Query Matching for Compressed Arabic Inverted

Indices

Ameen A. Al-Jedady
1
, Mohammed N. Al-Kabi

2
 and Izzat M. Alsmadi

1

1
Dept. of Computer Information Systems, IT & CS Faculty,

Yarmouk University, Irbid, Jordan

2
Faculty of Sciences and IT, Zarqa University, Zarqa, Jordan

 ameen_on@yahoo.com, ialsmadi@yu.edu.jo, mohammedk@zpu.edu.jo

Abstract

Information retrieval systems and Web search engines apply highly optimized techniques

for compressing inverted indices. These techniques reduce index sizes and improve the

performance of query processing that uses compressed indices to find relevant documents for

the users' queries.

In this paper, we proposed a novel technique for querying compressed Arabic inverted

indices in search engines. The technique depends on encoding Arabic terms stored in the

inverted indices of Web search engines and information retrieval systems. This minimizes the

storage space required for those terms in the index and decrease the number of comparisons

needed for query matching in the query processing stage. The number of comparisons is

decreased by minimizing the number of bytes that represent the terms in the index and

applying the same encoding technique to the keywords of the query. The results showed a

38% reduction in total size of the index. The average number of comparisons to find a word is

also decreased in the new index. Both sequential and binary searches were decreased by:

13.58%, and 38.63% respectively relative to the total number of comparisons of each

keyword in the query.

Keywords: Querying compressed Arabic terms, index compression, index querying, integer

coding, fast query matching

1. Introduction

The amount of information the web is providing to users is tremendous and it is

continuously getting larger which demands the need to have a robust and reliable

information retrieval system. There are several important factors affecting the operation

of any information retrieval system, including the amount of resources that the system

has, and the way it uses them to satisfy its users' needs. This is accomplished by either

an easy-to-use interface with high quality results it produces, or the fast response to the

user's queries. Web Search engines need to process thousands of queries per second and

return the results in less than one second, out of tens of millions of documents. Web

Search engines are facing huge performance challenges, especially with the continuous

growth of information on the Web. This means that the need for optimized systems is

growing and there is a lot of researches around space optimization [1, 2, 4] performance

optimization [7, 25] and query processing optimization [19].

Data compression generally aims to create a compact form of the original stream of

data. Most compression techniques are based on looking for repetitive items to be

substituted with a compact form. There are two types of data compression: lossless

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

82

compression and lossy compression [19, 21]. This study is based on Huffman encoding

which is one of the famous lossless compression techniques, where a stream of bits is

generated for each letter [11, 21].

Compression techniques have their pros and cons. The pros are focused on reducing

the space needed to store the compressed materials. This is beneficial in the case of

scarce disk space, besides improving caching, and as a consequence of reducing the

needed size of storage, the seek time and transfer costs are decreased. While the main

disadvantages of using these techniques are summarized by the need for decoding

before we can use them, a considerable time is needed to decode the compressed

materials, beside the need to encode them in the cases of updates [19, 22, 26]. However,

we would not face the problem of decoding in our study since we use Huffman code to

convert the index terms as well as the words of the query into integers to reduce their

size and to do the matching process as well.

The inverted index records consists of two components the vocabulary and the

inverted list [19]. The vocabulary is the word from the document collection and the

inverted list is the information about the location of that word in the documents

collection, its position, frequency, etc. Each term or word in the index has an inverted

list containing index postings that contains information about the occurrences of the

term in particular documents (e.g. through providing their IDs). It also includes other

information such as the location of the word within that document. For example {207,

2, 26, 33} might mean that the word occurs twice in document 207 at positions 26 and

33 from the beginning of the document [23].

Some studies proposed solutions such as caching index [25] and compression of

index files [1, 2, 19, 26]. In this paper, we focus on the space optimization of inverted

indices and their impact on the performance of the query matching process.

The searchers are usually interested in the result lists generated by the search

engines, not the way their requests were processed. So there is no need to store the

keywords as the searchers understand if there are other better ways to do that such as

encoding the vocabularies of the index as well as the user's queries and then perform

the matching process.

Our study focuses on encoding the terms of the index file, in particular the Arabic

terms to minimize the number of bytes to save each term. This leads to minimizing the

index file while minimizing the overall index size. Eventually, the number of

comparisons in the query matching will be minimized. We will analyze the encoding

technique and its effect in improving the space reduction and query processing

optimization.

This study presents a new encoding technique for Arabic terms in the inverted index,

assuming that we have an optimized document ordering so that any other compression

technique can also be used for compressing the other elements of the index file besides

the compression of the terms in the index.

2. Related Work

The continuous daily accumulation of vast amount of information on different Web

sites, motivate Web search engines to access and collect the largest possible number of

these Web pages in order to achieve one of the main key components adopted by Web

search engines which is called comprehensiveness. It affects directly the quality of the

results of the Web search engine pages to different queries, since these pages may

contain references to Web pages not already crawled by the spiders of Web search

engines. Therefore Web search engine spiders are continuously visiting the different

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

83

Web sites and collecting a vast amount of information to enable their users to search

over this gigantic amount of information. Consequently, Web search engines have to

adapt optimized compression techniques to minimize the space and to speed up the

process of retrieving information. There are many studies that present different

techniques to compress the inverted index of Web search engines such as: [7, 19, 22,

23, 26].

[16] presented a comprehensive survey to the new direction of compressing indices,

where the study started by showing that full text indices provide a speedy search over a

giant poll of textual documents. The disadvantage of this approach is definitely the

space overhead. The new emerged trend in recent years focuses on designing

compressed indices exploiting the full-text compression [15, 16].

Compressed text indexing as a new technique is addressed by [9] study, where the

researchers presented the design, implementation and an evaluation of this new

technology. The base ideas that these indexes are depend on are presented. Also Pizza

& Chili Web site is used because many of the compression techniques are already

implemented and ready for use as final software. So the tests are conducted to reveal

the best of these techniques. The main target of this extensive study is to discover the

practical relevancy of this new technology.

Several researchers have discussed Word-based compression techniques. [4] study is

one of the pioneering researches that proposed a new local adaptive data compression

scheme. It presented a word-based compression technique that is based on “Move to the

Front” (MTF) compression technique, which yields good compression ratios. They

proved that their scheme always performs better than Huffman coding method. This

study was followed by a study, which was conducted by [13] to compress semi-static

words and separators as well, and based on Prediction by Partial Matching (PPM)

technique. PPM technique is a context based technique, which yields good compression

ratios.

[14] presented a fast technique to compress and decompress words and separators.

The study claims a significant speed of decompressing arbitrary portions of the text,

beside the ability to search within a compressed text without the need to

decompression.

Compression of Arabic text was studied by several researchers such as [12] and [17].

[12] studied the compression of Arabic text by mapping the Arabic text to binary format

then applying the file splitting technique. This technique showed a considerable

reduction in the size of large Arabic text. [17] continued the research to use the

previous techniques with hybrid dynamic coding to compress the small Arabic text

while minimizing memory overhead. The results showed a reasonable compression ratio

for short Arabic text.

[3] presented a new multilayer approach for compressing Arabic text; where features

of Arabic language being exploited to effectively minimize the storage space. Three

layers are used by researcher according to the category of the Arabic word: derivative

layer, non-derivative layer, functional words layer, where each of these layers will

adopt a different compression technique. The fourth layer which is called Mask layer is

used to decompress the Arabic text back to its original state depending on layer. Using

multilayer approach helps to maximize compression ratio relative to typical techniques.

[10] study used Dynamic Huffman coding to compress Arabic and English text,

where the compression ratios for Arabic text was better (or higher) than those of

English text. Their test results revealed also that an increase in file size will lead to an

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

84

increase in the compression ratio, and definitely the frequency of terms within text

affects compression ratios positively.

[26] presented in their tutorial the main techniques used to design and implement

high-performance text indexing algorithm. This technique is also mentioned in 1, 2, 5,

8, 20, 22, 23]. [26] mentioned that inverted file indices can be compressed through the

use of compact storage of integer techniques.

[6] described a new document representation model, where a tree data structure is

used for related documents, to index shared contents once, instead of indexing each

document separately. The researchers showed that this representation model can be

encoded within the inverted index, in a way that reduces the size of the index

significantly.

[15] study proved that combining three known techniques (i.e. inverted index

compression, block addressing and compressed text which permits direct search)

outperforms using these techniques separately. The tests on the hybrid technique

showed that it is 7 times faster than Glimpse which is a known system that adopts block

addressing. The percentage of text compression is less than 40% of the original size of

text, while there are many compression techniques with compression ratio below 30%

of the text size. They showed that the optimal block size for 1GByte of text is 4,000

words.

Some studies focused on the cashing of index files [25], and other papers focused on

the compression of the index with various techniques such as replacing document IDs in

the posting list with the difference between it and the preceding document ID. This

difference is called d-gap and it applies integer compression algorithms. Since the

resulting compression ratio depends on the properties of the sequences of the integers

which depend on the way IDs are assigned to the documents. Studies in this field was

conducted to enhance the d-gap technique through document IDs renumbering [5, 24].

The main idea of document IDs renumbering is to group similar documents together to

decrease the average distance between documents that relates to a particular term,

which will decrease the d-gap. Later on, compress the inverted index using integer

compression algorithms, which improve the compression of inverted index [1]. Some

studies presented a new compression technique [7], and recent studies focused on the

optimization of existing compression techniques to minimize index size while

improving the speed of query processing [24].

[23] study targeted towards the compression of term positions within the indices of

Web Search engines. An exploitation to the most efficient way to access posi tion data

for ranking functions during query execution is also proposed in the paper. Two

effective techniques are proposed: Remaining Page-Adaptive Rice Coding with

Smoothing (RPA-RC-S) and Remaining Page-Adaptive BASC with Smoothing (RPA-

BASC-S), besides statistical methods (Optb-4D, Huff-4D, and LLRUN-4D). The

authors indicated moderate improvements in compression ratios.

2 Methodology and Approaches

This section demonstrates our methodology toward improving the compression

process of Arabic indices of Search engines. Figure 1 shows the high level steps

followed in this approach. Those steps can be described as follows:

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

85

Figure 1. The Overall Methodology Workflow

I. Determine the codeword for each Arabic letter according to its frequency.

The general steps are shown in Figure 2. Choosing a random document is one

option to get a general idea of the frequency of each Arabic letter; although it is

not the most efficient way. We analyzed two documents; one from the Internet

and another one from an old Arabic literature. The analysis result shows that the

percentage of the occurrences of all the letters is almost the same; so we

selected the second document to be used as a reference.

Selecting the document to determine the exact percentage of the occurrences of

each character is vital due to its impact on the length of the code of each

character. However, this is not the main concern or scope of this paper. We

recommend using the current search engine index as a starting point to calculate

the frequency of Arabic letters. Since the index contains each word only once,

each letter is counted as much as it appears in the index, where repetitive words

are eliminated.

Figure 2. The Steps for Determining the Codeword of each Character

After the frequency of each Arabic letter was calculated, the frequency tree was built

according to Huffman coding technique [11, 22] (as shown in appendix A). Then the

frequency table was obtained by traversing the frequency tree from the root to the

leaves that contains the Arabic characters.

II. Modify the indexer to encode the vocabularies.

The search engine spiders are continuously crawling the World Wide Web

(WWW) to collect new and updated Web pages and send them to the indexer for

processing. Our proposed model will alter the way the indexer stores Arabic

vocabularies in the index file. The Query module will also use the same

proposed model to alter the Arabic words to retrieve their locations. It can be

used beside any other compression algorithm for further improvement of the

search engines indices.

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

86

The indexer will neither store the exact Arabic document word in the inverted

file, nor its stem. Rather it will store the numbers represented by the code of the

letters composing the word using the frequency table (Appendix B). Although

the stem of the term is not stored in the index, it can be sent to the stemmer

before encoding it; in case that the stemmer is required in the system. In this

case, the query terms will be sent to the stemmer before encoding each one of

them to search for them in the new index.

As shown in Figure 3, each document was tokenized into words. Characters

of each word were then traversed one by one and each was replaced by its code

from the frequency table [Appendix B]. After completing word processing, the

search was started for codeword in the index. If it exists; a search for the ID of

the current document among its posting list in the index is started. If it exists,

next word is selected, and the process is repeated to the end of the document.

For each word, in case the codeword is in the index while the ID of the current

document is not among its posting list, then its posting list is updated to contain

the current document ID. If the codeword is not in the index then we need to do

two things: first we add the codeword of the current word to the index, second

we add the current document ID to the posting list of the newly added

codeword. The pseudo code for this step is given in Algorithm 2 that contain

calls for Algorithm 1.

Figure 3. The Proposed Process of Indexing the Collection

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

87

Algorithm 1

Input:

Output:

Encode (W, FrequencyTable).

W: An Arabic word.

FrequencyTable: Table that contains the frequency of each

Arabic letter and its code see Appendix B.

Array-of-bytes: An Array of bytes where each byte represent 8

bits of the codeword of W after the encoding.

BEGIN

 FOR EACH character C in W

 word-code += code-of(C in frequencyTable)

 ENDFOREACH

 FOR EACH 8-bit segment in word-code //i.e. divide word-code into segments

of 8 bits

Array-of-bytes += convert(segment to one Byte)

 ENDFOREACH

 RETURN the overall array-of-bytes

END

Algorithm 2

Input:

Output:

Indexer (ArbClct).

ArbClct: Collection of Arabic documents.

currentIndex: either create new of append an existent index file

consist of records of the form (Array-of-bytes  posting list).

Begin

 FOR EACH Document Doc in ArbClct

ID = identification number of Doc

 FOR EACH Word W in current document Doc

 array-of-bytes = Encode(W)

 IF (array-of-bytes not in currentIndex) THEN

 Add array-of-bytes to currentIndex

 Add current Doc.ID to array-of-bytes posting list

ELSE

IF (current Doc.ID not in array-of-bytes posting list)

THEN

 Add current Doc.ID to array-of-bytes posting list

ENDIF

ENDIF

ENDFOREACH

 ENDFOREACH

 Return currentIndex

End

III. Modify the query processor to encode the query before searching the index.

The word(s) of the query must be encoded in the same manner as the index

terms, then we search the index for the codeword of each word in the query and

retrieve the posting list for each one. In case the system pre-processes the words

of the documents before indexing them we will need to pre-process the query in

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

88

the same manner. This means that each word in the query is pre-processed,

stemmed for example before we use algorithm 1 to encode it.

IV. Test the system and analyze the results.

This section provides an initial case study to evaluate the proposed approach

and algorithm. Two Arabic documents named Doc1 and Doc2 are used to

evaluate this novel approach.

First, each document is processed as described in the methodology section.

Table 1 shows the data produced from the processing of the two documents.

Table 1. Summary of the Case Study Results

Encoded term

Number of

bytes

(encoded)

Number

of char’s

Arabic

Index term
Term code word

235 89 147 3 5
 البحث

Search
111010110101100110010011

235 89 177 48 4 6
 البحوث

researches
1110101101011001101100010011

234 251 212 20 4 7
 العربية

Arabic
1110101011111011110101000001010

56 75 32 3 3
 ضغط

compression
001110000100101100100

192 253 128 3 5
 فهارس

Indices
1100000011111101100000

163 250 2 4
 مجال

Field
1010001111111010

172 246 111 96 4 6
 محركات

Engines
1010110011110110011011110110

In the next step, the new index and the old index are evaluated to compare their sizes

as well as the performance of querying their content. Table 2 shows the new index vs.

the old one, taking in consideration that the new index reorders its entries in an

ascending order (as integers).

Table 2. The New Index vs. the Old Index

Old index: New index:

 1, 2البحث

 1, 2البحوث

 1, 2العربية

 1 ضغط

 1فهارس

 1, 2مجال

 1, 2محركات

56 75 321

163 2501, 2

172 246 111 961, 2

192 253 1281

234 251 212 201, 2

235 89 1471, 2

235 89 177 481, 2

Assuming that each Arabic character needs only one byte, the size of the vocabulary

part of the new and old indices is: 23, and 36 bytes respectively. This means that the

reduction in the index size was (1 – 23/36) = 36% of the total size of the terms in the

index. This reduction is corresponding to the decrease in the number of bytes to

represent 6 out of 7 words which is 85% of the terms of the index. The average number

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

89

of comparisons to find a word was also decreased in the new index as shown in Figures

4 and 5. For example to find the word (indices فهارس) using the old index needs 9, and 7

comparisons, while using the new index it needs only 6, and 3 comparisons, using

sequential search and binary search respectively.

Figure 4. Number of Comparisons Needed to Find Each Word in the New
and Old Indices (using sequential search)

Figure 5. Number of Comparisons Needed to Find Each Word in the New
and Old Indices (using binary search)

The decrement in the average number of comparisons for each term was reduced by

(1 – 46/66) = 30.3% for sequential search as shown in figure 4. Also the decrement in

the average number of comparisons for each term using binary search was decreased by

(1 – 35/53) = 34% as shown in figure 5.

3. Experimental Results

The experiment was conducted on 10,100 Arabic text files which were collected

manually from the Wikipedia and some other news websites. We applied the proposed

encoding on the vocabulary of the index which had approximately 152,200 terms. Then

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

90

we analyzed the results, which showed a considerable reduction on the space required

for storing the terms of the index and on the number of bytes representing the word,

which will yield to a faster matching process for the query.

Assuming that each Arabic character is stored in only one Byte (which is not always

true), the reduction of the size of the terms part (not the entire index size) was 38%.

However, it should be considered that 99.17% of the index terms had compression gain

of the proposed encoding method.

The main contribution of this novel technique relies mainly on the decrement of the

number of comparisons, while the reduction in the size of the index is slightly small.

Our investigation to discover the reasons behind the slight reduction in the index size

shows that, the average size of the original word was 6.3 bytes and reduced after

encoding to 3.9 bytes. That makes the percentage of the reduction around 38%.

The investigation also shows that each word in the index is repeated on average in 11

documents, which means that the average posting list size is 11 × 4 bytes which is equal

to 44 bytes. So each record in the old index occupies 6.3 + 44 which is equal to 50.3.

While the record of the new index will occupies 3.9 + 44 which is equal to 47.9. Thi s

means that the reduction of size for the entire index will be limited to 4.76%.

On the other hand, each word in the index was enquired from the old index and the

new one, and number of comparisons for each query was observed. It is noticed that the

average number of comparisons to find the index term using binary search method was

decreased by 38.63% while the average number of comparisons to find the index term

sequentially was decreased by only 13.58%. However, it should be considered that

96%, and 53% of the index terms had comparison gain of the proposed encoding

method, using binary search and sequential search respectively. The sequential search

performance was not significant because the new index reorders the terms by their

codeword rather than sorting them alphabetically.

4. Conclusions and Future Work

In this paper we studied the compression of indices in search engines. Relevant previous

work projects are focused on DocID reassignment and documents reordering to group similar

documents close together. Other papers focused on the compression of integers within the

posting list. In our approach, we focused on the compression of the terms of the index to

reduce the size of the index and to minimize number of comparisons needed to match the

user's query using sequential search and binary search.

The sequential search results can also be improved through building a Huffman tree that

takes into consideration putting most of the first characters of the alphabets at the left hand

side of the tree to make most of their code representations as zeros.

We have noticed that the proposed method produced significant improvements that can be

used to improve earlier approaches. This work motivates a further research on the proposed

model and its improvements to the performance of the information retrieval systems using

methods such as the B-tree. Further studies should also evaluate the impact in the stemming

process and the ability to use fixed codeword for the characters to convert the stemming

process to formal mathematical formulas. This paper also motivates researching the

importance of using old indices to build the frequency table and the frequency tree, and see

how that process can improve the search and query performance. Our future work will cover

the difference between applying Huffman coding to English and applying Huffman coding to

Arabic.

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

91

Acknowledgement

The authors thank Dr. Zakaria Zaatreh and Mr. Amer O. ELMughrabi for their careful

reading and comments.

References

[1] V. Anh and A. Moffat, "Index Compression Using Fixed Binary Codewords", In: Proceedings of the 15th

Australasian database conference (ADC '04), (2004), pp. 61 – 67.

[2] V. Anh and A Moffat, "Inverted Index Compression Using Word-Aligned Binary Codes", Journal of

Information Retrieval, vol. 8, no. 1, (2005), pp. 151 – 166.

[3] A. Awajan, "Multilayer Model for Arabic Text Compression", The International Arab Journal of Information

Technology, vol. 8, no. 2, (2011), pp. 188-196.

[4] J. Bentley, D. Sleator, R. Tarjan and V. Wei, "A Locally Adaptive Data Compression Scheme",

Communications of the ACM, vol. 29, no. 4, (1986), pp. 320 – 330.

[5] R. Blanco and A. Barreiro, "Document Identifier Reassignment Through Dimensionality Reduction", In:

Proceedings of the 27th European Conference on Information Retrieval Research (ECIR 2005), (2005), pp.

375 – 387.

[6] A. Broder, N. Eiron, M. Fontoura, M. Herscovici, R. Lempel, J. McPherson, R. Qi and E. Shekita, "Indexing

Shared Content in Information Retrieval Systems", In: Proceedings of the 10th International Conference on

Extending Database Technology (EDBT'06), (2006), pp. 313 – 330.

[7] S. Büttcher and C. L. A. Clarke, "Index Compression is Good, Especially for Random Access", In:

Proceedings of the 16th ACM Conference on Information and Knowledge Management (CIKM 2007),

(2007), pp. 761-770.

[8] J. Chen, P. Zhong and T. Cook, "A Mixed Coding Scheme for Inverted File Index Compression", First IEEE

Workshop on Hot Topics in Web Systems and Technologies, (2006), pp. 1-8.

[9] P. Ferragina, R. González, G. Navarro and R. Venturini, "Compressed Text Indexes: From Theory to

Practice", ACM Journal of Experimental Algorithmics (JEA), vol. 13, (2009).

[10] S. Ghwanmeh, R. Al-Shalabi and G. Kanaan, "Efficient Data Compression Scheme using Dynamic Huffman

Code Applied on Arabic Language", Journal of Computer Science, vol. 2, no. 12, (2006), pp. 887-890.

[11] D. A. Huffman, "A method for the construction of minimum redundancy codes", In: Proceedings of the IRE,

(1952), pp. 1098–1102.

[12] A. R. M. Jardat, M. I. Irshid and T. T. Nassar, "Entropy Reduction of Arabic Text Files", Asian Journal of

Information Technology, vol. 5, no. 6, (2006), pp. 578-583.

[13] A. Moffat, "Word-Based Text Compression", Software—Practice and Experience, vol. 19, no. 2, (1989), pp.

185-198.

[14] E. Moura, G. Navarro, N. Ziviani and R. Baeza-Yates, "Fast and flexible word searching on compressed

text", ACM Transactions on Information Systems, vol. 18, no. 2, (2000), pp. 113–139.

[15] G. Navarro, E. S. De Moura, M. Neubert, N. Ziviani and R. Baeza-yates, "Adding Compression to Block

Addressing Inverted Indexes", Journal of Information Retrieval, vol. 3, no. 1, (2000), pp. 49-77.

[16] G. Navarro and V. Mäkinen, "Compressed Full-Text Indexes", ACM Computing Surveys (CSUR), vol. 39,

no. 1, (2007).

[17] E. Omer and K. Khatatneh, "Arabic Short Text Compression", Journal of Computer Science, vol. 6, no. 1,

(2010), pp. 24-28.

[18] K. Sayood, "Introduction to Data Compression", third edition, Elsevier Inc, PA, (2006).

[19] F. Scholer, H. Williams, J. Yiannis and J. Zobel, "Compression of Inverted Indexes for Fast Query

Evaluation", In: Proceedings of the 25th annual international ACM SIGIR conference on Research and

development in information retrieval (SIGIR 2002), (2002), pp. 222 – 229.

[20] F. Silvestri, R. Perego and S. Orlando, "Assigning Document Identifiers to Enhance Compressibility of Web

Search Engines Indexes", In: Proceedings of the 2004 ACM symposium on Applied computing (SAC ’04),

(2004), pp. 600-605.

[21] P. Wayner, "Compression Algorithms for Real Programmers", Morgan Kaufmann, Los Altos-CA, (2000).

[22] I. H. Witten, A. Moffat and T. C. Bell, "Managing Gigabytes: Compressing and Indexing Documents and

Images", Morgan Kaufmann, second edition, Los Altos-CA, (1999).

[23] H. Yan, S. Ding and T. Suel, "Compressing Term Positions in Web Indexes", In: The 32nd Annual

International ACM SIGIR Conference (SIGIR'09), (2009a), pp. 147-154.

[24] H. Yan, S. Ding and T. Suel, "Inverted Index Compression and Query Processing with Optimized Document

Ordering", In: Proceedings of the 18th international conference on World Wide Web (WWW '09), (2009b),

pp. 401 – 410.

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

92

[25] J. Zhang, X. Long and T. Suel, "Performance of Compressed Inverted List Caching in Search Engines", In:

Proceedings of the 17th international conference on World Wide Web (WWW '08), (2008), pp. 387 – 396.

[26] J. Zobel and A. Moffat, "Inverted Files for Text Search Engines", ACM Computing Surveys (CSUR), vol. 38,

no. 2, (2006), pp. 6, doi:10.1145/1132956.1132959.

Appendices

Appendix A: The Frequency Tree

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

93

Appendix B:

This appendix shows table3 of the frequency of Arabic letters from a sample Arabic text

from a story (about 13,185 characters). Huffman code algorithm was run to encode these

letters. The encoding will give the common used letters a shorter code as shown in the

following table which was extracted from the frequency tree [Appendix A]

Table 3. The Frequency Table of Arabic Letters

i
Arabic

Alphabet

Alphabet

Frequency
Percentage

Huffman

Code

1 (alif, "أ") 111 %17.48 2305

2 (laam, "ل") 010 %11.78 1553

3 (miim, "م") 1010 %6.39 843

4 (nuun, "ن") 1001 %6.37 840

5 (yaa’, "ي") 1000 %6.36 839

6 (waaw, "و") 0110 %5.92 780

7 (haa’, "هـ") 0001 %4.09 539

8 (raa’, "ر") 11011 %3.81 503

9 (baa’, "ب") 11010 %3.66 482

10 (faa’, "ف") 11000 %3.45 455

11 (‘ayn, "ع") 10111 %3.42 451

12 (taa’, "ت") 10110 %3.13 413

13 (qaaf, "ق") 01111 %3.07 405

14 (daal, "د") 01110 %3.01 397

15 (kaaf, "ك") 00110 %2.84 374

16 (siin, "س") 00000 %1.95 257

17 (haa’, "ح") 110011 %1.82 240

18 (jiim, "ج") 001111 %1.50 198

19 (taa’ marbuuta, "ة") 001010 %1.19 157

20 (dhaal, "ذ") 001000 %1.06 140

21 (alif maqSuura, "ى") 000010 %1.01 133

22 (xaa’, "خ") 000011 %1.01 133

23 (taa’, "ط") 1100100 %0.79 104

24 (shiin, "ش") 0011101 %0.77 101

25 (daad, "ض") 0011100 %0.74 97

26 (saad, "ص") 0010111 %0.64 85

27 (zaay, "ز") 0010110 %0.62 82

28 (thaa’, "ث") 0010011 %0.60 79

29 (ghayn, "غ") 0010010 %0.56 74

30 (hamza, "ء") 11001011 %0.48 63

31 (yaa’ seat, "ئ") 110010100 %0.23 30

32 (zaa’, "ظ") 1100101011 %0.18 24

33 (waaw seat, "ؤ") 1100101010 %0.07 9

International Journal of Database Theory and Application

Vol. 5, No. 4, December, 2012

94

Authors

Ameen A. Al-Jedady, is a master graduate from Yarmouk

University in Jordan. Originally from Yemen, Mr Ameen had both his

B.sc and master degrees in Computer Information Systems from CIS

department, IT faculty at Yarmouk University in Irbid, Jordan. His main

research focus is in Information retrieval.

Mohammed Al-Kabi, born in Baghdad/Iraq in 1959. He obtained his

Ph.D. degree in Mathematics from the University of Lodz/Poland (2001),

his masters degree in Computer Science from the University of

Baghdad/Iraq (1989), and his bachelor degree in statistics from the

University of Baghdad/Iraq(1981). Mohammed Naji AL-Kabi is an

assistant Professor in the Faculty of Sciences and IT, at Zarqa University.

Prior to joining Zarqa University, he worked many years at Yarmouk

University in Jordan, the Nahrain University and Mustanserya University

in Iraq. AL-Kabi's research interests include Information Retrieval, Web

search engines, Data Mining, Software Engineering & Natural Language

Processing. He is the author of several publications on these topics. His

teaching interests focus on information retrieval, Web programming, data

mining, DBMS (ORACLE & MS Access).

Izzat Alsmadi is an associate professor in the CIS department at

Yarmouk University, Irbid, Jordan. Born in Jordan 1972, Izzat Alsmadi

had his master and phd in software engineering from North Dakota State

University (NDSU), Fargo , USA in the years 2006 and 2008

respectively. His main areas of research include: software engineering,

testing, metrics, and information retrieval.

