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Abstract 

Spatial Partitioning Fragmentation (SPF) is a popular method to partition data in 

Distributed Spatial Databases (DSDBs). The issue of cross-border queries is an inherent 

problem however with distributed spatial data queries based on partitioning fragmentation 

given a continuity and strong correlation of geospatial data. In the case of partitioning 

fragmentation, a global spatial join can be translated into multiple sub-joins, and then 

divided into 2 groups: Cross-Border Joins (CBJs) and Non-Cross-Border Joins (NCBJs). The 

CBJ approach is essential for process efficiency in a distributed spatial query. A compound 

join based on a topological relationship inquiry and a buffering analysis is a crucial class of 

spatial queries.  This article studies compound join optimization for spatial queries in a 

DSDB, and proposes a set of theorems and rules for the optimization of CBJs, contributing a 

removal rule and a filtering rule. This article supplies a Partition Fragmentation Join 

Strategy (PFJS) to resolve the compound join problem based on these rules. Experimental 

results show that the PFJS can improve the efficiency of CBJs, when compared with the Naive 

Join Strategy (NJS) or the Spatial Semi-Join Strategy (SSJS). The PFJS contributes to the 

optimization of spatial compound joins.  
 

Keywords: Spatial compound join; topological relation; buffer analysis; partitioning 

fragmentation; distributed spatial database 
 

1. Introduction 

The production, management, maintenance and application of spatial data are 

distributed in a Geographic Information System (GIS). These distribution features 

predispose a move toward distributed database systems. One of the challenges for a 

distributed spatial database is the performance of distributed queries  [1]. The spatial 

join is an important operation that affects the efficiency of spatial queries [2]. Spatial 

join optimization therefore is a crucial problem to be addressed when optimizing spatial 

queries.  

Differing from the horizontal and vertical fragmentation evident in a traditional 

distributed database, distributed spatial database fragmentation can be classified as 

partitioning or layer fragmentation [3]. Partitioning fragmentation (spatial partition or 

horizontal fragmentation) involves decomposition of spatial data for the same 

geographical coverage to database tables stored at different sites. Layer fragmentation 

(thematic fragmentation or vertical fragmentation) involves storage of spatial data for 
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the same geographical coverage at different sites within different thematic layers. In 

fact, data can be distributed through a combination of these two methods. In 

partitioning fragmentation, distributed spatial data management has some special  

characteristics, which include cross-border spatial correlation issues and cross-border 

seamless query problems.  
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Figure 1. Cross-border Query Issues in a DSDB with SPF 

In Figure 1, spatial data are partitioned by 3 regions, and 3 fragments s1, s2, and s3 

are produced. These fragments are distributed at site A, B, and C respectively. From 

Figure 1, we observe that to query spatial objects adjacent to b5 stored in Site B, the 

objects a1 and a2 in Site A are necessarily involved. Moreover, a line L is in fragment 

s3 at site C, to query spatial objects within a buffer radius r1 from L, the objects in Site 

B may become involved. In addition, the length of the buffer radius can be variable, 

thus, buffer zone inquiries may involve those fragments not adjacent to each other. For 

example, as shown in Figure 1, if a buffer radius increases to r2, A buffer zone query for 

line L in fragment s3 may cross fragment s2 to reach s1. All these queries are called 

cross-border spatial queries. This cross-border problem in query processing generated 

by spatial correlation does not exist in centralized databases.  

This article focuses on optimization of compound queries, a specific type of cross-

border query. Assuming that there are two spatial relations, City and River: 

City (Name, ProvName, Pop, Shape) 

River (Name, Length, Shape) 

City has these attributes; city name (Name), province name (ProvName), urban 

population (Pop) and geometry (Shape), while River has these attributes; river name 

(Name), river length (Length) and geometry (Shape). To query all cities within a 

distance of 20 km from the Changjiang River with a population of more than 100,000, 

the following SQL statement Q1 can be used:  

Q1: Select C.Name  

       From City C, River R  

        Where Intersects ( C.Shape , Buffer( R.Shape, 20)) = TRUE  AND  

        R. Name = ''Changjiang'' AND  C.Pop > 100000  
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In this query, a buffer operation is used to obtain the buffer zone, and the Intersects 

predicate is used to determine whether a city intersects with the buffer zone. Therefore, 

the query Q1 is called a compound query that combines a buffer analysis and a 

topological relationship query. The query Q1 is also called a compound join because it 

involves two arguments.  

This article addresses join optimization of compound queries based on SPF. Research 

related to spatial queries including the spatial topological relationship join and the 

distributed spatial join is presented in the next section. Section 3 proposes join 

optimization principles for compound spatial queries. Section 3.1 presents a description 

of the decomposition of a spatial query when spatial data are par titioned by region. The 

definitions of the Cross Border Join (CBJs) and Non-Cross-Border Join (NCBJs) are 

also presented in this section. Section 3.2 introduces the predicates of the spatial 

topological relationship. A classification of spatial joins and a  definition of the 

compound join are provided in this section. Sections 3.3-3.5 present a set of detailed 

concepts, theorems, and rules for compound query fragment join optimization. In 

Section 4, the Partitioning Fragmentation Join Strategy (PFJS) for compound queries is 

discussed in detail, the formalized transformation rule in the PFJS is presented, and the 

complexity of the PFJS is analyzed. Section 5 elaborates on the design of experiments 

to test the proposed theory and strategy. Two strategies from the literature are compared 

with the PFJS in this section. The experimental results show that the PFJS performs 

better than the other strategies. Section 6 presents the conclusions drawn from this 

research. 
 

2. Related Work 

In a centralized spatial database, the optimization of a spatial query employs two-

step methods involving filtering and refinement [4, 5]. 

In the first step, filtering, complex spatial objects are given approximations.These 

approximate objects are used for the query. The target objects in the filtering step are 

not accurate results of the original query, but candidates that need to be refined in the 

second step. At present, Minimum Bounding Rectangles (MBRs) are the most 

commonly used approximation of spatial objects. MBRs in general, are, stored in 

spatial indices for example, an R/R* tree [6, 7] or a quad tree [8]. The second step is 

refinement. Refinement deploys a geometric algorithm to obtain accurate query results. 

To reduce the grain size of spatial query optimization, Park proposed a two-stage 

optimization strategy—Earlier Separates Filter and Refinement (ESFAR) [9]. ESFAR 

spatial queries are dependent on spatial indices, spatial query optimizations, spatial join 

algorithms and other factors. In the ESFAR method, spatial indices are used to reduce 

the search space, and spatial query optimization algorithms are also adopted to reduce 

execution time by adjusting the implementation steps. In general, spatial join 

algorithms are important to the efficiency of spatial query operations. 

Seamless cross-border spatial queries present inherent problems in a distributed 

spatial database based on partitioning fragmentation., At present, there is an extensive 

body of research available concerning spatial join optimization. However, few studies 

exist on spatial join optimization in a DSDB based on SPF. The existing spatial join 

optimization studies have certain shortcomings: (1) Studies on spatial join predicates 

are not sufficiently comprehensive. Most of these studies use Intersects whose join 

optimizations are not applicable to all spatial topological relationship predicates . For 

example, a topological Disjoint query cannot use the Intersects optimization method —

especially in a distributed partitioning fragmentation context. Disregarding such 
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distinctions leads to incorrect results. (2) There is no existing research on compound 

query optimization involving spatial analysis predicates (Buffer, Distance, Union, 

Intersection, Difference, SymDifference, ConvexHull, etc.) in spatial fragment joins. In 

a distributed database, spatial fragment joins combined with spatial analysis predicates 

may cross certain non-adjacent spatial fragments (as shown in Figure 2). Such fragment 

joins have a significant influence on the performance of queries. (3) In the literature 

concerning centralized spatial database join optimization, several important methods 

have been proposed. The Seed Tree Join [10], Spatial Hash Join [11], and the Slot Index 

Spatial Join [12], can optimize the topological spatial joins on two datasets with a 

single index or no index. These are three-step methods: (1) Partitioning of the join 

datasets with rectangular cells. (2) Joining each pair of datasets of the corresponding 

spatial rectangular regions. (3) Merging these intermediate results to obtain a final 

result. In a DSDB based on partitioning fragmentation, it is impossible to provide 

corresponding regions in cross-border joins, and spatial fragments are not necessarily 

rectangular (as shown in Figures 1 and 2). Therefore, these methods cannot be applied 

to cross-border joins in a DSDB based on partitioning fragmentation. 

Jacox and Samet reviewed studies on spatial join technology [13]. Based on their 

review, it appears that research on distributed spatial joins is quite limited.  Three 

dominant strategies exist for spatial joins with the Intersects predicate in distributed 

spatial query processing. The first one is the Naive Join Strategy [14]. This strategy 

transmits all relationship records from one site to another. The primary problem with 

this strategy is the cost of calculation and transmission. The second strategy is the 

Semi-Join Strategy [14, 15], which uses the traditional distributed join method to 

reduce the transmission cost. In [14], Abel and his colleagues advised the use of a 

Spatial Semi-Join, which is a spatial version of the relational semi-join. Superfluous 

spatial objects are eliminated through semi-joins on spatial approximations. The semi-

join strategy is, in most instances, more efficient than the naive strategy [15]. The third 

strategy is the MR2 (multiple step with remote indices, version 2) [16], which takes full 

advantage of the parallel mechanism inherent in a distributed environment and the local 

spatial indices. Spatial join incurs the highest cost in spatial query processing. The MR2 

strategy enables parallel processing of the geometry, and avoids the cost incurred in the 

construction of spatial indices for remote datasets. The MR2 strategy chooses the 

smaller of the two datasets to be transmitted in the network, and effectively blocks 

objects that do not pertain to the final results from progressing to the next step. The 

MR2 strategy is more efficient than the other two strategies discussed. However, the 

MR2 strategy demands modification of the spatial index. Assuming that an R* tree 

exists within the local site; then the local reference of the R* tree node should be 

revised to the global reference in the DSDB. Therefore, objects in the spatial database 

need to possess their global object identification. The R* tree join algorithm requires 

revision to conform to the references of the global identification. Ramirez’s research is 

based on homogeneous spatial databases and remote spatial index sharing. Index 

sharing is based on the Global Object Identification in a heterogeneous distributed 

database, which is difficult to achieve. Therefore, the adaptability of MR2 is extremely 

restricted. These spatial join strategies do not consider the specificity of partitioning 

fragmentation.  

In a distributed environment, the fragmentation or distribution of spatial data is quite 

important. In [17], Zhu has classified the fragmentation into several categories, such as 

horizontal fragmentation, vertical fragmentation, thematic fragmentation, zonal 

fragmentation and mixed fragmentation. Based on the zonal (partitioning) 
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fragmentation, Zhu discussed the cross-border issues of topological join, and proposed 

a framework to solve topological queries. However, a compound query is more 

complicated and costly than a pure topological query. Further research on this problem 

is necessary and would make a significant contribution. 

In general, the existing research includes a handful of studies on the optimization of 

spatial joins and distributed spatial joins, which are the basis of this study. 

Nevertheless, for compound query optimization involving both spatial join and buffer 

analysis operations, especially in a DSDB based on partitioning fragmentation, the 

current studies cannot meet the requirements for optimization.  
 

3. The Join Optimization Principle for Compound Queries 

When spatial data are divided by regions into multiple sub-datasets and stored in 

different sites, the spatial query must be assigned to these sites for execution. As a 

spatial join has two parameters, it is decomposed into multiple sub-joins. After 

processing all sub-joins, the results are merged for the final result. This section will 

classify spatial joins, and discuss the theory and method of compound join optimization. 
 

3.1 The Classification of Spatial Topological Relationship Predicates and Spatial Joins 

At present, the definition of a topological relationship set includes eight relationships 

based on the 9-Intersection Set Model [18]. The OGC (Open GIS Consortium) have 

developed a geographic information system standard for spatial query [19, 20]. This 

standard emphasizes that a spatial database should implement basic GIS operations. 

More than eight spatial topological relationship predicates exist, including Crosses, 

Disjoint, Within, Contains, Equals, Touches, Intersects, and Overlap  Disjoint, Touch, 

Cross, In (Within) and Overlap are the five basic relationships with characteristics of 

completeness and exclusiveness [21, 22]. Several commercial spatial databases and 

spatial data engines, e.g. Oracle Spatial 11g [23] and ArcSDE 9.2 [24], refer to OGC 

standards in their implementation. 

There are certain regularities in the CBJs with different spatial topological predicates. 

Zhu Xinyan classified the spatial topological relationships into two classes, as shown in 

Table 1, for the optimization of topological joins based on Partitioning fragmentation 

[17]. According to the class of a predicate, Zhu preselected a corresponding filterer for 

the joining fragments, thus pure topological queries can be optimized fairly well. 

 

Table 1. The Classification of Spatial Topological Relationship Predicates 

Classification The names of Spatial Topological Relationship 

1
st
 class Within, Contains, Crosses, Equals, Touches, Intersects, Overlaps 

2
nd

 class Disjoint 

 

However, compound queries are more complex than pure topological queries. Once a 

buffer analysis operation is involved in a spatial query, a general filterer based on 

spatial indices fails to function properly.  Thus, this paper reclassifies spatial join 

queries. Not only topological relationship queries, but also the buffer analysis 

operations are considered. The classification is shown in Table 2. Zhu discussed the 

first and second class joins in the case of partitioning fragmentation. Join optimization 

of the third class is emphasized in this article. The join optimization of the fourth class 

is beyond the scope of this article and discussed elsewhere. 
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Table 2. Compound Spatial Joins Classification  

Classification Buffer 

operation 
The name of Spatial Topological 

Relationship 
Query name 

1st class no Within, Contains, Crosses, Equals, Touches, 

Intersects, Overlaps 

Topological-intersect join 

Query 

2nd class no Disjoint Topological-disjoint join 

Query 

3rd class yes Within, Contains, Crosses, Equals, Touches, 

Intersects, Overlaps Compound Query 

4th class yes Disjoint Compound-disjoint Query 

In Section 1, the query Q1 is a third class spatial join. The third class of spatial join 

is just the compound join. Like the ordinary spatial join (the first class), if the data are 

partitioned by regions, then the decomposition of the query and optimization of the sub-

queries is necessary. 
 

3.2 The Cross-border Spatial Query Principle Based on Partitioning Fragmentation 

The global spatial join must be decomposed into sub-joins between each pair of the 

data fragments. Assume that the global spatial relations (or spatial tables) R and S are 

partitioned seamlessly by n polygons p1, p2, ..., pn. If these polygons do not overlap with 

each other, and encompass the entire spatial coverage seamlessly, then the polygon set 

P = {p1, p2, ..., pn} is called a Partition Set.  

The partitioned fragments (PF) of R and S are: 

PFP(R) ＝ {R1, R2, …, Rn},  

PFP(S) ＝ {S1, S2, …, Sn}.  

Here, PF indicates the partitioned fragments, the subscript P represents the Partition Set 

P, and Ri and Si (1 ≤  i ≤  n) indicate the partitioned fragments of R and S respectively 

(as shown in Figure 2 (a) with n = 3). 

To process a cross-border spatial query, the global join is translated into several 

fragment joins in accordance with the allocation rules [25,26]:  

R ⋈
sp S   = iR

1

n

i

 ⋈
sp jS

1

n

j

  =
1, 1

n

i j 

 ( iR ⋈
sp jS )     ………………………   (1) 

where, the symbol ⋈ indicates a join, and sp  is the spatial join predicate, which can be 

a pure topological predicate (the 1
st
 class), or a compound predicate (the 3

rd
 class).  

Zhu has proposed a method to divide the Spatial fragment joins, which are also 

called sub-joins, as depicted in (1), into two groups as follows: 

1     (RGr oup 1： ⋈
1 2) ,    (

sp
S R ⋈ 2 ), ..., ( n

sp
S R ⋈ )n

sp
S  

     ( 1Gr oup 2： R⋈ ), (
sp 2 1S . . . , R ⋈ ), (

sp n 2S R ⋈ ), (
sp 1 2S R ⋈ ),

sp 3S . . . ,        (2) 

      , ( 2R ⋈ ), (
sp n nS . . . , R ⋈ ),  (

sp 1 nS R ⋈ ), (
sp 2 nS R ⋈ )

sp n- 1S  

In Group 1, the two fragments of each sub-join have the same spatial extent; therefore, 

these sub-joins are called same region joins (or non-cross-border joins, NCBJs), as 

shown in Fig. 2(b) The join optimization problems in Group 1 have been resolved in 

centralized databases by existing methods. In Group 2, the two fragments in each sub -
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join do not overlap in their spatial extents; thus, these sub-joins are called different 

regions joins (or cross-border joins, CBJs), as shown in Figure 2(c). When the global 

spatial relation R and S are both partitioned by n regions, the number of fragment joins 

is n
2
; the number of NCBJs is n, and the number of CBJs is n*(n -1).  Thus, the number 

of CBJs is greater than NCBJs and with the increase of regions n, the number of CBJs 

also grows rapidly. So, CBJs have two distinguishing features: (1) The data involved in 

CBJs are distributed; (2) Usually, there is a large quantity of CBJs. 
 

Partition Polygons

P＝{p1,p2,p3}

p1 p2

p3

Global spatial 

database

（a）Partition  set  (n=3)

（c）Group 2：cross-border joins

（b）Group 1：non-cross-border joins
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Figure 2. The Translation of the Global Join to Fragment Joins [17] 
 

Therefore, optimization of CBJs is essential to the efficiency in processing 

compound queries. 
 

3.3 The Buffer Zone Boundary-restricting Theorem of a Spatial Fragment  

In a DSDB, a Compound Query may not only cross the boundaries of adjacent 

fragments, but also cross non-adjacent fragments (as shown in Figure 1). Whereas, the 

allocation rules in equation (1) indicate that, in a global query, more partitioned 

fragments will produce more CBJs. As in the previous analysis, whether or not these 

CBJs with buffer operations are useless cannot be determined statically. Failure to 

determine the uselessness of these CBJs could result in the waste of significant 

transmitting and computing resources. 

Further discussion of optimization problems in compound queries requires certain 

essential definitions: 
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Definition 1. MBR Expansion: Assuming that the lower-left and upper-right point 

coordinates of a spatial object’s MBR are (xmin,ymin) and (xmax, ymax). Then, the MBR 

Expansion with a certain distance d (d > 0) of the object is a rectangle, with its lower-

left and upper-right point coordinates being (xmin - d, ymin - d) and (xmax + d, ymax + d). 

The MBR of an object a is denoted as MBR(a), and the MBR Expansion of this 

object with a distance d is written as Expand(MBR(a), d). 

Definition 2. A buffer of spatial objects and a spatial relation: The buffer of a 

spatial object is the object resulting from a buffer operation on the original object with 

a certain distance d (d > 0). The buffer of object a with a distance d is written as 

Buffer(a, d). The buffer of a spatial relation is a collection of objects obtained by 

performing a buffer operation on each object in the spatial relation. The buffer of a 

spatial relation R with a distance d is written as Buffer(R, d).  

The MBR of the buffer of a spatial relationship R is a rectangle and denoted as 

MBR(Buffer(R, d)). 

For any spatial fragment X, the MBR of X is marked as MBR(X). The Expansion of 

MBR(X) is expressed as Expand(MBR(X), d). If the radii of buffer operations on 

different objects in the spatial relation are different from each other, d acquires the 

maximum buffer radius. 

Theorem 1. The buffer zone boundary-restricting theorem of a spatial fragment: 

the MBR of a spatial fragment’s buffer with a certain distance d (d > 0) does not 

exceed the MBR expansion with a distance d (d > 0) of its partitioning region’s 

border.  

Proof: In Figure 3, s is the border polygon of spatial fragment X. The MBR of the 

buffer of s is expressed as MBR(Buffer(s, d)). The MBR Expansion of s is expressed as 

Expand(MBR(s), d). Based on the definitions of MBR and the MBR Expansion, they 

both are rectangles, and can be expressed by lower-left and upper-right corner 

coordinate values. 

Assume that the bounding coordinates of MBR(Buffer(s, d)) in the four directions are 

(XL, YL, XH, YL); then, from the definition of MBR, the bounding values of the buffer 

of s (i.e., buffer(s, d)) in the four directions are (XL, YL, XH, YL). Therefore, based on 

the definition of the buffer operation, the bounding coordinates of s itself in the four 

directions are (XL+d, YL+d, XH-d, YL-d). Then, by the definition of MBR, the 

boundary values of MBR(s) in the four directions are (XL+d, YL+d, XH-d, YL-d). By 

the definition of MBR Expansion, the lower-left and upper-right point coordinates of 

Expand(MBR(s), d) are (XL, YL, XH, YL). Therefore, 

 MBR(Buffer(s, d)) = Expand(MBR(s), d)     ……………………………… (3) 

Assume that PS is the acronym of Point Set 
1
; then, according to the definition of a 

Partition Set (in Section 3.1), PS(X)  PS(s) is true; then, PS(Buffer(X, 

d))  PS(Buffer(s, d)); therefore, PS(MBR(Buffer(X, d)))  PS(MBR(Buffer(s, d))), 

combined with (3), that is, 

 PS(MBR(Buffer(X, d))) PS(Expand(MBR(s), d)) 

                                                           
1
 Point set topological spatial relationship is described in detail by Egenhofer and Franzosa [18]. 
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Therefore, Theorem 1 is proved. 

 

d

MBR(X)

X

MBR(Expand(X,d))

MBR(s) 

s

 

Figure 3. An Illustration of the Proof for Theorem 1 
 

Applying Theorem 1, confirms that the result of the buffer operation on fragment X 

will not exceed the Expand(MBR(s), d); therefore,  a number of useless fragment joins 

from cross-border buffer queries are excluded. An issue that must be pointed out here is 

that MBR(X) and MBR(S) are not necessarily equal; X is fixed, but the partition border 

s might exceed the extent of X. To remove the fragment joins, either MBR(X) or the 

MBR(s) can be chosen and stored in the metadata as the extent property of the spatial 

fragment. One approach involves storage of the MBR of partition border s in the extent 

during fragment partitioning, and the other approach involves recalculation of the MBR 

of the fragment X and then storing it in the extent. In this article, MBR(X) and MBR(s) 

are not distinguished from each other. In the following discussion, both are expressed 

as MBR (X) and represent the extent property of the spatial fragment. 

 

3.4 The Removal Rule for Fragment Joins of a Compound Query 

According to theorem 1, removal rule of a CBJ can be obtained. Usually, only one 

parameter involves a buffer operation in the two CBJ parameters (if two parameters 

both involve buffer operation, it can be turned into a buffer operation based on one 

parameter; the buffer radius is the sum of buffer radii on the two parameters). In order 

to make it easy to discuss, this article distinguishes the two spatial fragments that 

participate in the compound join, and gives their definitions as follows: 

Definition 3. Main Fragment and Secondary Fragment: In partitioning fragmentation, a 

sub-join of a compound join can be expressed as Y ⋈
3

( , )
sp

Buffer X d . Here X, Y are zonal 

fragments; X is the main fragment for the Buffer operation performed, and Y is the secondary 

fragment.  

In this difinition, sp3 means the join is a spatial join and it belongs to the third class (a 

compound join). Based on definition 3, here puts forward the removal rule of the CBJs of a 

compound join. 

Rule 1. The removal rule of the compound join: To perform the compound join of two 

spatial fragments X and Y, assuming X is the main fragment, if the MBR Expansion of the 

main fragment X does not Intersect the MBR of the secondary fragment Y, this fragment join 

can be excluded. Therefore, if the value of the expression Intersects (Expand(MBR(X), d), 

MBR(Y)) is FALSE, the fragment join  Y ⋈
3

( , )
sp

Buffer X d  can be eliminated. 
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The removal rule determines which fragment join will be removed. To illustrate, 

assume that the buffer operation will perform on X in the compound join of X and Y. 

The buffer of X with a radius d is X'. Then, the compound join can be translated into 

the first class of fragment joins, which is a pure spatial topological join of X' and Y. If 

MBR(X') and MBR(Y) do not Intersect, the fragment join can be excluded. Here, 

MBR(X') are equal with Expand(MBR(X), d). Therefore, if the Expansions of X and the 

MBR of Y are disjoint, then the compound join of X and Y is useless and can be 

eliminated.  

 

d

X
Y

( ( ), )Expand MBR X d

( )MBR Y

p

( )  Expand( ( ), )   ( )a MBR X d MBR Y 

d

X
Y

p

d d

( )MBR X ( )MBR X

( ) Expand( ( ), )   ( )b MBR X d MBR Y 

( )MBR Y

( ( ), )Expand MBR X d

 

Figure 4. An Instance of Removing Buffer Joins between Fragments 
 

From Figure 4, we observe that the buffer zone of point P exceeds the MBR of 

fragment X. In Figure 4(a), the Expand(MBR(X), d) Intersects with the MBR(Y), and 

the fragment join of X and Y in the cross-border query is to be retained; in Figure 4(b), 

the Expand(MBR(X), d) does not Intersect with MBR(Y); therefore, the fragment join 

of X and Y can be excluded. Rule 1 determines removals or retentions dynamically in 

run-time and removes the useless cross-border joins to optimize a global query. 

Rule 1 can reduce the number of the cross-border fragment joins of a compound 

query in partitioning fragmentation. Rule 1 is the Removal Rule for Fragment Joins 

of a compound query. 

 

3.5 The Filtering Rule for Fragment Joins of a Compound Query 

After the application of the Removal Rule (Rule 1), the fragment joins retained from 

the compound query can be further optimized by reducing the number of spatial objects 

that participate in the buffer and join operations. From Sections 3.3 and 3.4, the MBR 

Expansions of the joined fragments form the basis for determining which CBJs are to be 

removed. Similarly, the MBR Expansions of the joined fragments can be employed as 

the basis of the filtering method for the CBJs. 
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d

X

Y

( ( ), )Expand MBR X d
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Figure 5. The Filtering Window for a Buffer Join 
 

From Figure 5, two fragments X and Y will form a CBJ, while X is the main 

fragment. If the MBR Expansion of X Intersects the MBR of Y, then the fragment join 

of X and Y is retained in the removal step for further processing. If fragment X is to be 

involved in the buffer operation, according to Theorem 1, the buffer result of X does 

not exceed the MBR Expansion of X; therefore, objects in Y that Intersects
2
 any object 

of the buffer result of X must Intersect
3
 Expand(MBR(X), d). Conversely, an object in 

X whose buffer zone Intersects any object in Y must Intersect with Expand(MBR(Y), 

d). Therefore, the Expand(MBR(Y), d) can be used as a window to filter X, which not 

only reduces the number of objects that participate in the fragment join, but also 

reduces the number of objects involved in buffer operations, optimizing the fragment 

join. 

Theorem 2 is given and proved as follows. 

 

X Y

 Expand(MBR Y , )d

( )MBR Y

d

( )MBR X
d

o

d

（Main）
（Secondary

）

o’

 

Figure 6. An Illustration of the Filtering Theorem of the Fragment Join 

 

Theorem 2. The filtering theorem for a compound fragment query. For a 

fragment join of a compound query, if objects in the main fragment that satisfy the 

query must Intersect with the MBR Expansion of the secondary fragment. 

                                                           

2 Here the predicate Intersects can be replaced by any predicates except Disjoint; that is all the predicates belongs 

to the first class of spatial relationship, as described in Table 1. 

3 Here the predicate Intersects cannot be replaced by any other predicates listed in Table 1. 
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Proof: In Figure 6, X is the main fragment and Y is the secondary fragment. Assume 

that X and Y (that include the interior and the boundary of X and Y) can be expressed 

as two point sets:  

 PSX ＝ { P / P ∈ X }，PSY ＝ { P / P ∈ Y } 

Similarly, MBR(X) and MBR(Y) are expressed as two point sets:  

 PSMBR(X) ＝ { P / P ∈ MBR(X)}，PSMBR(Y) ＝ { P / P ∈ MBR(Y) } 

Then, 

 PSY    PSMBR(Y)  …………………………………………………… (4) 

Apagoge is used here. o is an object in X that does not Intersect with Expand(MBR(Y), 

d), and Disjoint(o, Expand(MBR(Y), d)) is true. According to the definitions of the 

MBR Expansion, the Disjoint predicate and the distance between two spatial objects in 

the OGC Simple Feature Access Specification (OGC, SFA Common), it holds that: 

 Distance (o, MBR(Y)) > d  

Combining with formula (4), then: 

 Distance (o, Y) > d, 

Therefore, Disjoint (Buffer (o, d), Y) is true. According to the classification in Section 

3.2, the object o and the objects in Y do not satisfy the third class of spatial relationship 

with buffer radius d. Theorem 2 is proved. 

Theorem 2 demonstrates that Expand(MBR(Y), d) can be applied to filter fragment X, 

and called the Filtering Rule for Fragment Joins of a compound query. 

Rule 2. The Filtering Rule for Fragment Joins:  To process a compound join of 

fragments X and Y, If the join cannot be removed, assuming X is the main fragment,  

before calculating the buffer of the main fragment, the MBR Expansion of secondary 

fragment Y is used to filter main fragment X. 
 

3.6 The Join Optimization Principle for CBJs and its Formalization 

By using the Removing Rule, useless CBJs are removed. The Filtering Rule filters 

and reduces the spatial objects needed to be transmitted and calculated in the buffer 

operation. The Filtering Rule also reduces the spatial objects needed for the calculation 

of spatial topological relations. This is the key idea behind optimization of CBJs. This 

strategy for join optimization is especially aimed toward the spatial data partitioning 

fragment method, and therefore termed the Partitioning Fragments Join Strategy (PFJS). 

If both X and Y are spatial fragments partitioned by two polygons SX and SY, and X 

is the main fragment and the buffer radius is d. from the above discussion, the filter 

3( )f

sp X  is defined as: 

 Y X
X Y3 S S( ) { ( ) |  ,  , S ,  S ,  PF ,  PF , ,   

      Intersects(a, Expand(MBR( ), d))=true }

f

sp X I a X Y X Y a X

Y

         
… (5)  

The filter 3( )f

sp X can be marked as ( ( ), ) ( )f

Expand MBR Y d X , which represents a filter for the 

PFJS. Assuming X and Y are spatial fragments partitioned by two polygons SX and SY.  X is 

the main fragment and the buffer radius is d. The 3

cb

sp  join on X and Y, where cb indicates a 
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cross-border join, can be translated into an equivalent process including the following three 

steps: first, perform the filter operation ( ( ), ) ( )f

Expand MBR Y d X ; second, apply the buffer 

operation with a radius d on the filtered results; and, finally, complete the spatial join ( 3sp ). 

The rule is expressed as:  

( )d X ⋈ 
3

( ( ))cb
sp Expand MBR Y

dY X
 

  f
( ( ) , d)

⋈
3sp
Y 

…………………………… (6) 

 

4. Comparison and Analysis of Three Strategies of Compound Queries 

In the case of partitioning fragmentation, a global compound query is decomposed 

into multiple sub-queries (also named as sub-join or fragment-join). These sub-queries 

are homogeneous with the global query. They are all compound queries, but the data 

concerned is quite different. For such a fragment join, Naive Join Strategy, Semi-Join 

Strategy and Spatial Semi-Join Strategy [13] can be used to get the result. Based on the 

discussion in section 3, this article proposes a specific method for CBJs. In order to 

determine the direction of data transmission, assume that two fragments Ri and Sj are 

located at Site A and B, and assume Size(Ri) < Size(Sj). Thus, usually Ri should be 

transmitted from site A to site B for minimal transmission cost.   
 

4.1 Naive Join Strategy (NJS) 

The Naive Join Strategy, put forward by D.J.Abel in 1995, transmits all the records 

of one parameter from one site to another [14]. Then the spatial join algorithm for 

centralized spatial databases is used. The main steps are as follows: 

(a) Transmit Ri from Site A  to Site B;   

(b) Perform buffer operation on Ri at Site B, and obtain Ri';     

(c) Build a spatial index to Ri' at Site B;    

(d) Perform spatial topological join for Ri' and Sj at site B, and obtain the result. 

The method is simple and adaptive when the number of objects in Ri is small. 

Otherwise, it has a high cost for transmission and execution because many useless 

spatial objects are transmitted among sites and their spatial relationships are fruitlessly 

calculated. 
 

4.2 Spatial Semi-Join Strategy (SSJS) 

The Spatial Semi-Join Strategy reduces the cost of transmission. The main 

processing steps are as follows: 

       (a) Perform buffer operation on Ri at Site A, and obtain Ri'; 

       (b) Write Ri' into the database at site A and build a spatial index; 

       (c) Calculate the MBR for every object in Sj at Site B, then get a non-repeating set of 

MBR, called Sj'; 

       (d) Transmit Sj' to Site A; 

       (e) Write Sj' into the database at site A and build a spatial index; 
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       (f)Complete the Spatial Semi-Join operation "Intersects(Ri'.shape, Sj'.shape) = TRUE " 

on Ri' and Sj' at Site A and obtain the join results Ri''; 

       (g) Transmit Ri'' to Site B; 

       (h) Write Ri'' into the database at site B and build a spatial index; 

       (i)  Execute the spatial operation "Intersects(Ri''.shape, Sj.shape)=TRUE " on Ri'' and Sj at 

Site B and obtain the join result Rj'' . 

SSJS is much more complex than NJS. At the step (d), Sj' or Ri' need to be 

transmitted to the other site depending on which one is smaller. The same question is 

considered at step (g). SSJS is more efficient than NJS because it reduces transmission 

costs. 
 

4.3 The Partition Fragments’ Join Strategy (PFJS) 

In the framework of a DSDB, the FPJS needs a data dictionary module. The data 

dictionary and scheduler can be located on the same machine, which are independent of 

local spatial databases. The data dictionary stores important metadata for every 

fragment, including MBR information, the size of fragments, etc. The steps of PFJS are 

as follows: 

        (a)  On the site where the scheduler exists, find the MBRs of fragment Ri  and Sj, 

compute Expand(MBR(Ri), d) and Expand(MBR(Sj), d) (e.g. d=10KM); 

        (b) At Site A, filter fragment Ri with Expand(MBR(Sj), d), obtain the result Ri';  

        (c) At Site B, filter fragment Sj with Expand(MBR(Rj), d), obtain the result Sj';  

        (d) Compare the size of Ri' and Sj', if Size(Ri')<Size(Sj'),transmit Ri' to the B 

site ,otherwise, transmit Sj' to at Site A; 

        (e) Assume that the data transmitted is Ri', compute the buffer for Ri' at site B, then get 

Ri''; 

        (f) Write Ri'' into the database at site B and build a spatial index; 

        (j)  At Site B do spatial topological join for Ri''and Sj', then obtain the result. 

If the dataset transmitted is Sj', calculate the buffer for  Sj' at Site A, then execute the 

intersection similarly. PFJS takes the characteristics of CBJs into account, simplifies 

the solution and ensures optimal efficiency. 
 

4.4 Complexity Analysis of PFJS 

Assume that the global spatial relation R and S are partitioned by n regions. Then, 

both R and S have n fragments. The global join of R and S will have n
2
 sub-joins; the 

number of NCBJs is n, while the number of CBJs is n*(n - 1). The number of CBJs is 

greater than that of NCBJs. The number of CBJs also grows rapidly as n increases. In 

general, NCBJs can be solved efficiently because the relevant datasets are well indexed 

and limited to a single local database. The two datasets of CBJs are usually distributed, 

and the process of the CBJs refers to data transmission, spatial index reconstruction, 

and spatial-related calculation, including calculation of buffer, calculation of spatial 

topological relations, etc. For a CBJ expressed as  

( )id R ⋈
3

cb
sp

iS


,  
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assume that the sizes of Ri, Si are Mi, Ni; then, the cost of the CBJ can be expressed as  

I/O buff tran join

1 1 i i 2 2 i 3 2 i 3 i 4 2 i i

C  = C +C  +C +C

    = C *k *(M  + N ) + C *k *M  + Min(C *k *M , C *N ) + C *k *M *N
   (7) 

In formula (7), the total cost is comprised of I/O cost (C I/O), buffer-calculating cost 

(Cbuff), data transmitting cost (Ctran), and joining cost (Cjoin). For a compound query, 

Cbuff and Cjoin are dominant. In a distributed environment, Ctran may be significant if the 

bandwidth is limited. The costs of three join strategies can be expressed as: 

NS 1 i i 2 i 3 i 3 i 4 i i  C  = C *(M + N) + C *M + Min(C * *M, C *N) + C *M*N                 (8) 

SSJS 1 1 i i + 2 i 3 2 i 3 i i

4 2 i i  5 i i

C  = C *k *(M  + N ) + C *M  + (Min(C *k * *M , C *N ) + *N ) 

           + (C *k *M *N + C *M *N )

 
   (9) 

PFJS 1 1 i i 2 2 i 3 2 i 3 i 4 2 i iC  = C *k *(M + N) + C *k *M + Min(C *k * *M, C *N) + C *k *M*N          (10) 

In formula (8-10), C1, C2 and C3 are the average I/O cost, buffer-calculating cost, 

transmitting cost of each object. C4 is the average joining cost of each object pair. C5 is 

the average cost of calculating the spatial topological relation of a MBR and a spatial 

object (generally less than C4).The coefficients k1, k2, k3 and k4 indicate the proportion 

of the relevant data to the whole dataset. α is a coefficient that describes the change of 

data size caused by buffer calculation. Δ indicates the increment of data size in I/O 

operation caused by obtaining the MBRs and executing a Semi-Join; while β indicates 

the average data size of MBR. 

Analysis shows that the complexity of I/O, buffer calculation, and transmission are 

O(n). However, that of joining is O(m*n). If the data set related to fragment join is 

invariable, then α, β, Δ, C1, C2, C3 and C4 are almost fixed. Because of 0≤ k1≤ 1 and 

Δ>0, PFJS is superior in I/O cost. k2 is the key value for CBJ optimization since 0≤  k2

≤ 1. PFJS reduced the cost of buffer calculation, whereas both SSJS and NJS could not 

reduce buffer calculation costs since 0≤  k2≤  1. For the transmission and joining costs, 

SSJS is usually better than NJS, but worse than the PFJS.  The filtration of SSJS and 

PFJS are not done in the same way, and therefore their k2 values are not same. SSJS is 

better than PFJS when PFJS filtration cannot play a good role (k2 is close to 1). 

Considering the characteristics of CBJs, by reducing k2, the PFJS processes CBJs 

efficiently. The time complexity of PFJS is lower than that of NJS and SSJS. 

 

5. Experiments and Analysis 

Experiments were designed to test and verify the performance of PFJS.  A DSDB 

environment was set up. Several data sets were processed then stored in this DSDB. 

Two different spatial queries are selected to prove the applicability of PFJS. The first 

one is a spatial join with a pure partitioning fragmentation, while the second one  with a 

mixed fragmentation.  
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5.1 Experimental Environment and Dataset 

Experiments were performed on four workstations (DELL PowerEdge SC430, CPU 

P4 3.0GHz, memory 2GBytes, disk space 80GBytes) connected through a 100Mbps 

Switch. The operating systems are Windows 2003 Server. The Database Systems 

(DBSs) are Oracle 10G. The Internet Communication Engine (ICE) is employed to 

construct the distributed environment. The Spatial Components built-in Oracle 10G are 

applied to calculate the spatial topological relationship between objects. The 

development platform is Microsoft Visual C++ 2005. A prototype DSDB is developed 

through an agent-based model. The Local Spatial Database Systems are Oracle Spatial 

10g; the prototype has a global schema and a management system, which is also known 

as a Multi-Spatial Database System (MSDBS).  

The data are a part of the fundamental geographical data of China. The scale is 

1:250,000. There are three datasets: Dataset 1 (Regions) is the municipal boundaries of 

thirteen provinces (Beijing, Tianjing, Hebei, Shanxi, Shanghai, Jiangsu, Zhejiang, 

Shandong, Anhui, Hubei, Jiangxi, Hunan, Henan), and are partitioned into three parts. 

They are stored as Regions1 (East China), Regions2 (North China) and Regions3 

(Central China). Dataset 2 (Highways) includes the highways in these three regions, and 

is partitioned into three parts as in Dataset 1; these three parts are stored as Highways1, 

Highways2 and Highways3. Dataset 3 (Railways) includes railway networks of China, 

and not partitioned yet. The objects in Dataset 1 are all polygons and, Dataset 2 and 3 

are polylines. An overview of the entire data is presented in Figure 7.  

 

 

Figure 7. An Overview of All Test Data 
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The details of the datasets are described in Table 3. 

 

Table 3. Fragments Partition and Data Size of All Test Data 

 Regions Highways Railways 

 
Regions1 

(East 
China) 

Regions2  

(North 
China) 

Regions3 

(Central 
China) 

Highways1 

(East 
China) 

Highways2 

(North 
China) 

Highways3 

(Central 
China) 

China) 

 (China) 

Number of 

objects 
8605 4966 7399 1622 925 1040 1763 

Data size 63.0MB 40.5MB 79.0MB 3.4MB 2.4MB 3.3MB 4.0MB 

Site Site 1  Site 2 Site 3  Site 1 Site 2 Site 3 Site 4  

 

5.2 Methodology 

The following two queries were applied to analyze the relationship between the 

partitioning of data and the efficiency of compound join. 

Query 2: 

SELECT  S.name 

FROM  Regions S, Highways H 

WHERE  Intersect(S.shape, Buffer(H.shape, 5, 'unit=KM'))= 'TRUE'； 

Query 3: 

SELECT  S.name, R.name 

FROM  Regions S, Railways R 

WHERE  Intersect(S.shape, Buffer(R.shape, 5, 'unit=KM'))= 'TRUE'； 

The meanings of both queries are similar. However, the extent and the partitioning of 

the datasets are different. This makes the significance of two queries different.  

In Query 2, both datasets were partitioned into three parts in the same way. Then, the 

global query (Query 2) was decomposed into nine sub-queries SQ1–SQ9 according to 

formula (1) in Section 3.1, as depicted in Table 4. The nine sub-queries were divided 

into two groups based on formula (2). SQ1–SQ3 in Group 1 were NCBJs, and dissolved 

by the local Spatial DBMS. SQ4–SQ9 in Group 2 were CBJs, and analyzed. 

In Query 3, the partitioning methods of the two datasets different. The municipal 

boundaries were partitioned in the same way as in Query 2, while the Railways were 

not yet partitioned. Therefore, Query 3 was decomposed into three sub-queries SQ10–

SQ12, depicted in Table 4. SQ10–SQ12 are CBJs. 
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Table 4. The Fragmentation and Sub-queries Qrouping of the Test Queries 

 
Query 2 Query 3 

Sub-Queries Joining Fragments Sub-Queries Joining Fragments 

Group 1: Non-

cross-border 

fragment sub-
queries 

SQ1 Regions1↔ Highways1   

SQ2 Regions2↔ Highways2   

SQ3 Regions3↔ Highways3   

Group 2: Cross-

border fragment 

sub-queries 

SQ4 Regions1↔ Highways2 SQ10 Regions1↔ Railways 

SQ5 Regions1↔ Highways3 SQ11 Regions2↔ Railways 

SQ6 Regions2↔ Highways1 SQ12 Regions3↔ Railways 

SQ7 Regions2↔ Highways3   

SQ8 Regions3↔ Highways1   

SQ9 Regions3↔ Highways2   

 

In the Multi-Spatial-DBMS framework used in this work, a Data Dictionary Module 

(DDM), Agents, and a Scheduler Program (SP) were implemented. In the integration, 

the global schema of Regions, Highways and Railways were mapped to the local 

schemata through the DDM. The MBRs and other information pertaining to each 

fragment used in PFJS were stored in the DDM. The Scheduler collected the mapping 

information from DDM and translated the global queries (Query 2 and Query 3) into 

fragment joins (sub-queries) according to the formulae presented in Section 3.1. Thus, 

each sub-query was implemented by three strategies as depicted in Section 4. The 

results were compared and analyzed.  

In this article, SQ4–SQ12 were implemented with three methods, the Naive Join 

Strategy, Semi-Join Strategy and the PFJS. The costs of these three methods in each 

phase were compared and analyzed, including filtering (FiltTime), buffering 

(BuffTime), transmitting (TranTime), joining (JoinTime), and the total cost (TotalTime).  

 

5.3 Comparison of Performance in Processing a Compound Query with Partitioning 

Fragmentation 

Query 2 is a typical compound query in partitioning fragmentation. Its sub-queries 

SQ4–SQ9 are CBJs. The six sub-queries are implemented by each strategy described in 

Section 4. 

The comparison of the total cost of the six sub-queries performed by three strategies 

is shown in Figure 8. For different sub-queries, the three strategies exhibit different 

performance. Overall, the SJS performs better than NJS, while PFJS improves the 

performance even more. 
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Figure 8. Comparison of the Total Cost of the Three Strategies (in Seconds) 
 
 

 

Figure 9. Comparison of the Overall Costs of the Three Strategies (in Seconds) 
 

The overall results are presented in Figure 9. The costs of the total, filtering, data-

transmitting, buffering and joining are compared. These costs are different in their 

order of magnitude, indicating that the buffering and joining costs are dominant in the 

compound joins, while the filtering and transmission costs are lower. If the data size in 

the compound join is increased, the differences will become more obvious. The time -

consuming characteristic of the spatial operation (spatial joining, buffering) is verified 

here. In a distributed environment, the CPU (BuffTime, JoinTime) and communication 

costs (TransTime) are dominant; in the experiment, LAN was used, however, in the 

WAN, the transmission cost may increase significantly. The NJS did not use any 

filtration optimization, and subsequently all its primary costs are quite high. The spatial 

SJS considers the characteristics of the distributed environment, and reduces the 

transmission and joining costs. The spatial SJS neglects the filtering of the objects 

required for the buffer calculation; therefore, it cannot reduce the buffering cost. PFJS 

considers the buffer calculation in compound queries, and takes partitioning into 

account. The MBR Expansion of the fragment is used for filtering in the PFJS, and 

works efficiently. The number of objects required to perform the buffer calculation and 
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joining are reduced, as well as the objects required to be transmitted. The PFJS obtained 

the greatest efficiency among all three strategies.  
 

5.4 Comparison of Performance in Processing a Compound Query with Mixed 

Fragmentation 

Based on the partitioning and distribution schema of the data, Query 3 was a 

compound query with mixed fragmentation. The sub-queries SQ10–SQ12 are CBJs. The 

three CBJs were implemented with the NJS, SJS and PFJS. 

In the mixed fragmentation case, the overall performance of the PFJS is significantly 

better than that of SJS, as shown in Figure 10. Through an extra filtering in PFJS, the 

buffering and joining calculation costs in the PFJS were greatly reduced. The 

transmission cost was also the lowest among the three strategies. The SSJ reduced the 

joining cost, but did not reduce the buffering cost. The buffering cost is much higher 

than the joining cost for the size of the railway dataset. 
 

 

Figure 10. Comparison of Costs of the Three Strategies with Mixed 
Fragmentation (in Seconds) 

 

In most cases of partitioning fragmentation or mixed fragmentation, the PFJS can 

filter the objects efficiently. The PFJS, nonetheless, is not always the best method for 

compound queries. In certain cases of mixed fragmentation, if the MBRs of the two 

fragments concerned in the sub-queries are very close, the filtering optimization of 

PFJS may not be obvious. In an extreme case, if the MBRs are the same, the filtering 

step of the PFJS is invalid, and then the performance of the PFJS is worse than that of 

the NJS. 
 

6. Summary and Future Prospects 

The cross-border spatial query is an inherent problem in a DSDB based on 

partitioning fragmentation. A key technology is the optimization of CBJs. In this 

article, two approaches to improve CBJs are considered: one is to reduce the number of 

fragment joins (removing the useless fragment joins); the other is to reduce the number 

of objects that participate in the fragment joins. Based on a classification of spatial 

queries, this article proves two theorems and proposes two rules for the optimization of 
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CBJs. The join strategy PFJS is also proposed. Experiments were designed to verify the 

performance of PFJS. The results indicate that PFJS is efficient.  

However, there are limitations in the proposed solution because distributed spatial 

query processing is quite complicated, especially with partitioning fragmentation. Many 

issues must be considered in future research, for example, the selection of sites should 

take the capabilities of the nodes and the networks into account. Questions abound such 

as how to generate a global scheduling plan for optimal or moderate efficiency and 

methods of parallel execution for spatial-related calculations.  
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