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Abstract 

Periodic pattern mining has gained a great attention in the past decade. Previous studies 

mostly focus on synchronous periodic patterns. The literature proposes many methods for 

mining periodic patterns. Nevertheless, asynchronous periodic pattern mining has gradually 

received more attention recently. In this paper, we propose an efficient 2-D linked structure 

and the OEOP (One Event One Pattern) algorithm to discover all kinds of valid segments in 

each single event sequence. Then, referring to the general model of asynchronous periodic 

pattern mining proposed by Huang and Chang, this study combines these valid segments 

found by OEOP into 1-patterns with multiple events, multiple patterns with multiple events 

and asynchronous periodic patterns. The experimental results show that these algorithms 

have good performance and scalability. 
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sequential pattern 
 

1. Introduction 

Pattern mining is an extensively studied topic in the research of data mining. Researchers 

have introduced and implemented various pattern-mining models for different applications. 

For transaction databases, there are frequent itemset mining [1, 2] and sequential pattern 

mining [3, 4]. For event sequence databases, there is frequent episode mining [5, 6, 7].  

Periodic patterns commonly appear in all kinds of time-series databases. For instance, 

trajectories of objects, weather, tides, stock market prices, DNA sequences, etc. The 

discovery of patterns with periodicity is of great importance and has rapidly developed in 

recent years. The periodic pattern mining models include full-cycle periodic pattern mining 

[8], segment-wise periodic pattern mining [9], partial periodic pattern mining [10], frequent 

partial periodic pattern mining [10], and asynchronous periodic pattern mining [11, 12, 13 , 

14, 15]. 

Yang, et al., [11] first proposed the concept of the asynchronous periodic patterns to deal 

with disturbances in data sequences. They aimed to discover the longest periodic 

subsequence that contains a small disturbance. To accelerate the mining process of 

discovering asynchronous periodic patterns, this study proposed an efficient linked list 

structure and the OEOP (One Event One Pattern) algorithm to discover all kinds of valid 

segments in each single event sequence. Afterwards, by calculating the offsets of the valid 1-
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pattern segments, the proposed MEOP (Multiple Events One Pattern) algorithm and MEMP 

(Multiple Events Multiple Patterns) algorithm merged them into multiple-event patterns. 

Finally, the proposed APP (Asynchronous Periodic Patterns) algorithm produced 

asynchronous periodic patterns. 
 

2. Problem Definition 

This section defines the problem of asynchronous periodic pattern mining. The problem 

definition and notations are similar to [15] with minor modification. 

Let },,,{
21 n

eeeE  be a set of all events. An eventset X  is a nonempty subset of E . An 

eventset with k  events is called a k -eventset. A sequence D is an ordered list of eventsets. 

For example, },,,{ dcbaE  , },,{ cbaX  is a 3-eventset, 

}),,,{},}{,,{},,,{},{},,}{,}{,,({ dcbadcadcaadcbadcabdcacbcbaD   is a sequence. 

Definition 1. A pattern with period l  is a nonempty sequence ),,,(
21 l

pppP  , where 

1
p  is an eventset and 

i
p  is either an eventset or *, for li 2 . The symbol * indicates a 

“don’t care” position. A pattern P  is called an i-pattern if exactly i positions in P contain 

eventsets. For example, ,*),*},,({ cbba  is a 3-pattern with period 5. 

Definition 2. For two patterns ),,,(
21 l

pppP   and ),,,( ''

2

'

1

'

l
pppP   with the same 

period l, 'P is a specialization of P  if and only if '

ii
pp   or *

i
p , for li 1 . For 

example, let ,*),*,( caP  , ,*),},,({' cbbaP   is a specialization of P . 

Definition 3. For pattern ),,,(
21 l

pppP   with period l and a sequence of eventsets 

),,,(
21 l

dddD  , we say that P matches D if and only if 
ii

dp   or *
i

p , for li 1 . 

D is also called a match of P . For example, let ,*),*,( caP  , }),{},,,{,},,({ dbcbabbaD   

is a match of P . 

Consider pattern ),,,(
21 l

pppP   with period l, a original sequence of eventsets 

),,,(
21 m

dddD   with length m, two subsequences ),,,(
111 


liii

dddD   and 

),,,(
112 


ljjj

dddD   of D where mji 1 : 

If 1 liji , 
1

D and
2

D overlap each other .  

If jli  1 , the distance of 
1

D and
2

D  is 1)1(  lij . 

Definition 4. Given a pattern P with period l, a original sequence D , and k subsequences 

k
DDD ,,,

21
  of D , if 

i
D ( )1 ki   matches P and the distance of 

i
D  and

1i
D  

( )11  ki equals 0,  the sequence 
k

DDD 
21

is called a k-segment (or a continuous 

matching block with the repetition k) of P . For example, let ,*),*,( caP  , 

),,,},,{},,,{,},,{,,,,( ccaadbcbabbadcbaS  is a 3-segment of P , since P  matches 

),,,(
1

dcbaD  , }),{},,,{,},,({
2

dbcbabbaD  , and ),,,(
3

ccaaD  . 

Definition 5. A maximum segment S with respect to a pattern P  is called a valid 

segment, if and only if the number of repetitions of S is no less than a given minimum 

repetition (i.e., min_rep). For example, let ,*),*,( caP  and min_rep=3, 

),,,},,{},,,{,},,{,,,,( ccaadbcbabbadcbaS  is a valid segment w. r. t. P . 



Problem Definition. Given a sequence of eventsets D, a minimum repetition min_rep, a 

maximum distance max_dis, an asynchronous periodic pattern P indicates that there exists a 

valid subsequence S with respect to P in D and S is a set of non-overlapping valid segments, 

where each valid segment has at least min_rep contiguous matches of P and the distance 

between any two successive valid segments does not exceed max_dis. Asynchronous 

periodic pattern mining (APPM) discovers all asynchronous periodic patterns in D. 
 

3. Proposed Data Structures and Algorithms 

Figure 1 illustrates the steps of the proposed mining process for asynchronous periodic 

pattern mining. 

 

Data Collection

One Event One Pattern (OEOP) 

Mining for each event

Multiple Events One Pattern 

(MEOP) Mining

Multiple Events Multiple 

Patterns (MEMP) Mining

Data Clearing & 
transformation

Asynchronous Periodic 

Pattern (APP) Mining  

offset of patterns not equalequal

 
Figure 1. Proposed Process for APPM 

 

To accelerate the mining process and properly record the pattern information of the list of 

time instants, we introduce the following three structures, START node, END node, and 

VALID node. By efficiently connecting START nodes and END nodes while processing the 

time instants, we are able to obtain all 1-patterns for the given event for its list of time 

instants.    

START node: A structure consists of three fields. The first field, stime, saves the starting 

time instant of a 1-pattern; the second field, next_s, is a pointer that links to the next START 

node; the third field, list_e, is a pointer linking to an END node.  

END node: A structure consists of four fields. The first field, etime, saves an ending time 

instant of a 1-pattern; the second field, period, records the period of the pattern; the third 

field, rep_num, stores the repetition of the pattern; the last field, next_e, is a pointer that links 

to the next END node. 

VALID node: A 4-field structure to record a valid 1-pattern. The fields, stime, etime, 

period, and rep_num, indicate the starting time instant, the ending time instant, the period, 

and the repetition of the 1-pattern, respectively.  
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The structures of START, END, and VALID nodes are shown in Figure 2. 

 

stime next_s list_e

etime period rep_num next_e

stime etime period rep_num

START structure

END structure

VALID structure
 

Figure 2. The Linked List Structures 
 

3.1 OEOP (One Event One Pattern Mining) Algorithm 

Given a sequence of eventsets D, for each event e, we first generate the list of time 

instants of e, denoted as 
e

TL . The preliminary goal of OEOP is to discover all valid 1-

pattens in 
e

TL .  

For each list of time instants 
e

TL  of event e, with the minimal repetition min_rep, 

and the maximal period Lmax, the OEOP algorithm utilizes the new linked list 

structures and generates all valid 1-pattern segments of event e. The details of OEOP 

are as follows: 

 

OEOP Algorithm 

Input: the list of time instants 
e

TL for event e, min_rep, Lmax 

Output: valid segments VS of event e 

Method: 

1. L= null ;       

       //L : the list of Start node allocate a valid array VS 

2. for each time instant t in 
e

TL  do 

3. { 

4.      allocate a START node X; 

5.     X.stime = t ; 

6.     X.next = null; 

7.     X. list_e = null ; 

8.     L.insert(X) ;       // insert X at the end of L 

9.     for each Xi node L do 

10.   { 

11.      for each Yj node in Xi. list_e do 

12.      { 

13.         if ( t -Yj.etime = Yj.period ) 

14.         Yj.etime = t ;   Yj.rep_num++ ; 

15.         if ( t -Yj.etime > Yj.period ) 

16.            { 

17.             if ( Yj.rep_num >= min_rep ) 

18.                   move VS(Yj) ;       



19.                       //insert Yj at the end of VS array 

20.                   free (Yj) ;  // delete Yj 

21.            } 

22.         if ( t-Xi.stime <= Lmax ) 

23.           { 

24.               allocate END node Y; 

25.             Y.etime = t ; 

26.             Y.period = t -Xi.stime ; 

27.            Y.rep_num = 2 ; 

28.             Xi.list_e.insert (Y) ;   

29.             // insert Y at the end of Xj.list_e 

30.            } 

31.       } 

32.  } 

33.  return VS; 

 
3.2 MEOP and MEMP Algorithms 

After obtaining all valid segments of 1-patterns for each event, we record them in 

the following format: (event, startTime, period, rep_num). For example, (A, 1, 2, 4) 

indicates that the 1-pattern for event A starts at time 1, is during period 2, and repeats 

4 times.  

For valid segments of two different events with different starting times, the offsets 

of the two segments are calculated by the formula offset=startTime % period. Two 

segments with the same offset are possibly combined into a multiple-event segment.   

The overlapping section of two valid segments is from min{ei.endTime, ej.endTime} 

to max{ ei.startTime, ej.startTime}, where endTime= startTime+ (rep_num-1) * 

period. If valid segments can be combined, we denote the result as: 

 ({e1,…,en}, max{ei.startTime}, p ,   1/}).max{).(min(  pendTimeeendTimee
ii

). For 

example, the combination of (A, 2, 2, 3) and (B, 2, 2, 3) is recorded as ({A, B}, 2, 2, 

3), which is a multiple-event 1-pattern ({A, B} , *). 

By computing the repetition of the overleaping section of two 1-patterns, MEOP 

(Multiple Event One Pattern) algorithm generates all valid 1-pattern segments with 

multiple events. The details of the algorithm are omitted here.   

Alternatively, two segments with different offsets are possibly combined into a 

multiple-event multiple-pattern segment. Similarly, by computing the repetition of the 

overleaping section of two 1-patterns, the MEMP (Multiple Event Multiple Pattern) 

algorithm generates all valid multiple pattern segments with multiple events. The 

details of the algorithm are also omitted here. 
 

3.3 APP Algorithm 

After obtaining all valid patterns (single or multiple) of multiple events, with the minimal 

repetition min_rep, the maximal period Lmax, and the maximal distance of valid segments 

max_dis, the APP algorithm produces valid asynchronous segments with multiple events. 

The details of APP algorithm are as follows: 
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APP Algorithm  

Input: MVS: array with patterns (single or multiple) of multiple events,  

min_rep, Lmax , max_dis 

Output: ASP_seq: valid asynchronous segments with multiple events, in the format of  

       (pattern, start time of segment1, end time of segment1, start time of segment2, end 

time of segment2, period) 

Method: 

1. for mvsi and mvsj in MVS with mvsi.stime> mvsj.stime do  

2. { 

3.      if( 0<( mvsi.etime –mvsj.stime)<=max_dis && 

4.                                mvsi.period = mvsj.period )             //non-overlap 

5.         move ASP_seq (pattern, mvsi.stime , mvsi.etime , mvsj.stime ,  

6.                                                              mvsj.etime , mvsj.period ) 

7.        if( 0>(mvsi.etime –mvsj.stime) && mvsi.period= mvsj.period)    //overlap 

8.       {  

9.             dis = | mvsi.etime –mvsj.stime| / l; 

10.          des1= mvsi.etime -((dis+1)* mvsj.period);             //forwardly shrinking 

11.          des2= mvsj.stime +((dis+1)* mvsj.period);             //backwardly shrinking  

12.          rep1=(des1- mvsi.stime)/ mvsj.period; 

13.          rep2=( mvsj.etime -des2)/ mvsj.period; 

14.          if(rep1>=min_rep)                // forwardly shrinking with repeat >=min_rep 

15.             move ASP_seq (pattern, mvsi.stime , des1 , mvsj.stime ,  

16.                                             mvsj.etime , mvsj.period ); 

17.          if(rep2>=min_rep)                // backwardly shrinking  with repeat >=min_rep 

18.            move ASP_seq (pattern, mvsi.stime , mvsi.etime, des2 ,  

19.                                           mvsj.etime , mvsj.period ); 

20.    } 

21. return ASP_seq; 
 

4. Experimental Results 
 

4.1 Datasets 

GenBank Sequences 

By using the Entrez interface from the National Center for Biotechnology Information 

database, we randomly selected two protein genbank sequences with different data sizes. 

Figure 3 lists the first 1800 symbols in the sequence of the Trema virgata’s genomic DNA 

(AJ131352). The symbols a, g, t, and c represent the purines adenine, guanine, pyrimidines 

thymine, and cytosine, respectively. 

 

    1 atgagcagct cagaagttga caaagttttc  

acagaagagc tggaagctct ggtggtgaaa 

   61 tcatgggctg taatgaagaa gaactctgct  

gaactgggtc ttaaattctt cctcaagtaa 

  121 gtcaagatta tagatagtac actttttatt  

tactttgctt cttttgtaga ctaagttttt 

Figure 3.  AJ131352 GenBank Sequence 



 

Stock Price Series 

Second, we selected the 2008 Taiwan Stock Exchange Capitalization Weighted Stock 

Index (TAIEX) by Taiwan Stock Exchange Co., Ltd. (TSEC) [16] and the 2008 Dow Jones 

Industrial Average Index ($INDU) by Dow Jones & Company [17]. Due to TSEC 

regulations, the daily change of TAIEX is limited to between -7% and 7%. Therefore, we 

transformed both TAIEX and $INDU numerical index series to the symbolic series using the 

following formula: 

Change_rate(i-th day) = (i-th day’s index – (i-1)-th day’s index) / (i-1)-th day’s index  

Event(i-th day) = A, if Change_rate(i-th day)>=3% 

Event(i-th day) = B, if 3% > Change_rate(i-th day)>= 1% 

Event(i-th day) = C, if 1% > Change_rate(i-th day)>= -1% 

Event(i-th day) = D, if -1% > Change_rate(i-th day)>= -3% 

Event(i-th day) = E, if -3% > Change_rate(i-th day) 

For example, in Table 1, the change rate of TAIEX on 2008/01/03 is (8,184.20-8,323.05)/ 

8,323.05≒-0.01668. We set it to be the symbol D. In Table 2, the change rate of $INDU on 

2008/01/03 is (13056.72328-13043.96091)/ 13043.96091≒-0.000978. We set it to be the 

symbol C.  

 

Table 1.  Example of TAIEX 

Date TAIEX % Event 

2008/01/02 8,323.05    

2008/01/03 8,184.20 -0.01668 D 

2008/01/04 8,221.10 0.004509 C 

2008/01/07 7,883.37 -0.04108 E 

2008/01/08 7,962.91 0.01009 B 

2008/01/09 8,085.06 0.01534 B 

2008/01/10 8,057.27 -0.00344 C 

 

 

Table 2.  Dow Jones Industrial Average Index ($INDU)  

Date $INDU % Event 

2008/01/02 13043.96091   

2008/01/03 13056.72328 0.000978 C 
2008/01/04 12800.17514 -0.01965 D 
2008/01/07 12827.48825 0.002134 C 
2008/01/08 12589.06756 -0.01859 D 
2008/01/09 12735.30651 0.011616 B 
2008/01/10 12853.09429 0.009249 C 

 

Synthetic data for multiple eventsets  

Both GenBank sequences and transformed stock price sequences only include one event at 

each time instant. For examining the performance of MEMP algorithm, we also artificially 

generated a multiple eventsets sequence, named AM_seq, from a randomly selected GenBank 
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sequence. The basic information of each sequence investigated in the experiments are given 

in Table 3. 

 

Table 3.  Basic Information of Sequences 

Sequence Length Event (count) 

AJ131352 1104 a:331, t:363, g:217, c:191 

X60729 1615 a:474, t:467, g:367, c:307 

2008 TAIEX 248 A:16, B:44, C:111, D: 51, E:26 

2008 $INDU 252 A:18, B:41, C:119, D:20, E:20 

AM_seq 694 A:191, B:331, C:199 

  

4.2 Numbers of valid segments and sub-sequences 

By applying the OEOP algorithm on the X60729 GenBank sequence, the 2008 TAIEX 

sequence and the 2008 $INDU sequence, we obtained valid 1-pattens. Then, by utilizing 

MEMP and APP algorithms, we generated valid sub-sequences. Tables 4-5 list the numbers 

of valid segments and valid sub-sequences for the X60729 GenBank sequence, the 2008 

TAIEX sequence and the 2008 $INDU sequence with min_rep=3, period=3, and max_dis=4. 

 
Table 4.  Numbers of Valid Segments and Sub-sequences of X60729 GenBank 

X60729 number of valid segments number of valid sub-

sequences 
(a, *, *) 65 9 
(t, *, *) 62 9 
(g, *, *) 36 3 
(c, *, *) 18 0 
(a, g, *) 6 0 
(a, *, g) 3 0 
(t, g, *) 4 0 
(c, t, *) 6 0 

 
Table 5.  Numbers of Valid Segments and Sub-sequences of 2008 TAIEX 

2008 TAIEX number of valid segments number of valid sub-sequences 
( B, *, *) 2 0 
( C, *, *) 71 42 
( D, *, *) 7 3 
( C, *, D) 3 0 

 
4.3 OEOP Results 

Figure 4 compares min_rep with the number of valid segments. For both X60729 

GenBank and 2008 TAIEX sequences, the number of valid segments varies almost as the 

inverse of min_rep. In Figure 5, as expected, the increase in the size of min_rep is observed 

with decreasing running time, for both X60729 GenBank and 2008 TAIEX sequences. Fig. 6 

illustrates that the size of the pattern period is not clearly related to the number of valid 

segments for both X60729 GenBank and 2008 TAIEX sequences. 
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Figure 4.  min_rep vs Number of Valid Segments 
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Figure 5.  min_rep vs Running Time 
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Figure 6.  Period vs Number of Valid Segments 
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4.3 MEOP and MEMP Results 

For the synthetic data sequence AM_seq, we calculated the numbers of segments 

including multi-event 1-patterns and multi-patterns by applying MEOP and MEMP 

algorithms. Fig. 7 demonstrates that the numbers of segments and min_rep size are inversely 

related for events {A, B}, {A, C} and {B, C}. 
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Figure 7.  min_rep vs Number of Segments with Multiple Events 
 

5. Conclusions 

In this paper, we proposed an efficient linked list structure and OEOP algorithm to 

discover all kinds of valid segments in each single event sequence. The proposed MEOP and 

MEMP algorithms merge 1-patterns into multi-event 1-patterns or multi-event multi-

patterns. Implementing these algorithms on real datasets, the experimental results show that 

these algorithms have good performance and scalability. 
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