
International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

37

Research of Formal Verification for SQL Operations in Top Level

Specification of a Secure Database

Zhipeng Wang, Hong Zhu and Meiyi Xie

Computer School of Sci & Tec, Huazhong University of Sci & Tec,

Wuhan, Hubei, China, 430074

{hkdwzp, whzhuhong}@gmail.com, xiemeiyi@sina.com

Abstract

A high security level DBMS requires a formal specification and verification on the security

model and top level specification design. The specification and verification towards SQL

operations are important especially. In this paper, based on the security model and top level

specification, we propose a novel approach to solve the specification and verification issues

towards SQL operations. Firstly, we formally define the SQL operations in FTLS; then, we

give the definitions of the simple SQL operations and propose a method to verify those simple

SQL operations; finally, we transform the verification of the SQL operations in FTLS to the

verification of the component simple SQL operations. The process of verification shows that

our approach makes a comprehensive specification of SQL operations and simplifies the

verification procedure.

Keywords: Security Model; Formal Top Level Specification; SQL Operation; Formal

Verification

1. Introduction

When developing a high security level (rated as B2 and above in TCSEC [1], or EAL5 and

above in CC [2]) system, formal specification and verification are needed. And as the

criterions require, when developing such a high security level DBMS, we need to make

formal specification and verification in both Security Model and Formal Top Level

Specification (FTLS). A secure DBMS is an extension of the traditional DBMS, e.g. the

subjects and objects are bounded with security levels; the definitions of entity integrity and

referential integrity are extended, etc. The FTLS of the secure DBMS includes the formal

specification and verification of SQL operations, which is important for verifying whether the

implementation is consistent with security requirements. Nowadays, SQL statements are more

and more complex, and the specification and verification of SQL operations are therefore

more difficult. So it is of great significance to propose an approach for the specification and

verification of SQL operations in FTLS.

Teresa F.Lunt et al. have done a series of research from security model, FTLS to

verification policies in SeaView project [5, 6]. However, because of the database technology

limitations, they only researched the simple SQL operations. For example, one can use a

select statement for create a new table, i.e. a create statement can include select clauses. They

didn’t consider this situation, but only considered the security level of subject and object, the

data integrity, etc. in simple create statement. Nowadays, there is some research for

specification and verification of SQL operations. Li Xu-shuai et al. give a definition of the

formal semantics of the SQL query, and propose a way to prove the equivalence of two SQL

queries [3]. Li Hai-long et al. establish a model to define the SQL query based on the

knowledge of complier construction principles and logic algebra, and verify the SQL query

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

38

[4]. The current research has a main problem: there isn’t sufficient research on specification

and verification of complex SQL operations, which are very common in modern DBMS.

1.1. The Problems

A secure DBMS model is an extension of BLP security model. The FTLS is designed on

top of the secure DBMS model. There are following problems in formal specification and

verification of SQL operations in FTLS.

Firstly, SQL statements in modern DBMS are more and more complex, which increases the

difficulty of verification. For example, a query may include multi-table join, nested

subqueries, correlated subqueries, which can access the database and change the database

states. We need to record all these accesses in the specification and verification. The

complexity of the operations increases the complexity of specification and verification.

Secondly, because FTLS is designed on top of model, a trivial way for its verification is to

make a mapping between the model and the FTLS. Unfortunately, the operation rules in

FTLS are not corresponding to those in the model. There exists the situation that one rule in

the model maps multiple SQL operations. So it is a problem to make a comprehensive and

clear specification of the SQL operations in FTLS.

Thirdly, most proof tools and languages, such as Gallina, Z, Isabella, PVS, etc. are not

competent for complex structures [7-11]. We take the nested structures of different types as an

example. Struct A includes struct B and struct C, and C includes A. This structure is hard for

proof tools mentioned above to express for verification. However, it is common in complex

SQL statements. A select statement may include a having clause and a where clause, which

may also include select statements. The limitations of the proof tools make the verification

problems more difficult.

1.2. Our Contributions

Focusing on the problems above, our work is to make a comprehensive and clear

specification of the SQL operations in FTLS, and make it easier for verification using proof

tools. Our contributions are as follows:

 We propose an approach for the specification of SQL operations in FTLS, and give the

rules to transform the SQL statements to this specification.

 On top of the specification, we give the definitions of the simple SQL operations, and

propose a method to verify those simple SQL operations. Then we transform the

verification of the SQL operations in FTLS to the verification of the component

simple SQL operations.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce the

security model of the secure DBMS. In Section 3, we introduce the FTLS and formally

specify the SQL operations in FTLS. We also give the rules to transform the SQL statements

to those specifications of SQL operations. In Section 4, we verify the SQL operations in

details, and discuss some problems in verification. In Section 5, we review the related work of

formal specification and verification in SQL and different systems. Finally, in Section 6 we

conclude the paper.

2. Security Model for Secure DBMS

Formal security model is the base of the formal specification and verification for a system.

BLP (Bell-LaPadula) model [12] is an early designed security model for multi-level security

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

39

system but still used widely today. According to the features of the secure DBMS, Zhu Hong

etc. extended the BLP model for a database system in [13]. They added the integrity

constraint of the database, modified some operation rules, etc. and verified the security of the

model. It is the basic model of our work. We will briefly introduce this security model in

security policy, basic elements, safety properties, state transition rules and security

definitions.

2.1. Security Policy

The security policy of a system is a set of strict rules for system behavior according to the

security requirements. It decides the safety properties. In secure DBMS, the system assigns

each subject with a security level to indicate his/her capability to access information, and each

object with a security level to indicate its confidentiality. The security policy in secure DBMS

is: information can only flow from low security level objects to high security level subjects. If

a subject wants to read from and write to an object, he/she must have the same security level

with the object. Because of this security policy, we need to verify all the operation rules to

make it sure that there is no information flow from high security level objects to low security

level subjects.

2.2. Basic elements

The DBMS is abstracted as a state machine [13]. V represents the set of database states v.

v = (B, M, F, S, O): this five-tuple describes a database state, in which:

S: represents the set of subjects. s∈S is a subject, and it often indicates a session or a user

in database.

O: represents the set of objects. o∈O is an object, and it can be a database, a schema, a

table, a tuple, a procedure, etc. The minimal granularity of the object for security level is tuple.

The hierarchy of the objects is: database, schema, table, tuple make up a tree.

F: represents the set of security level functions. It includes two security level functions: fc

and fo, which return the security level of a subject and an object respectively.

X_OP = {r, w, e, a, c}: represents the set of access types. r represents read-only access, w

represents read-write access, e represents execute access, a represents write-only access, and c

represents control access.

M: represents the set of access rights. It is the subset of (S×O×X_OP). The element (s, o,

x_op) in M means subject s has the x_op access right to the object o.

B: represents the records of accesses. It is the subset of (S×O×X_OP). The element (s, o,

x_op) in B means subject s has done the x_op access to the object o.

2.3. Safety Properties

The BLP model defines three security properties: Discretionary-Security Property,

Simple-Security Property and Star-Security Property. In addition, according to the secure

DBMS features, there are three integrity constraints in the secure DBMS model:

Object-Compatibility Property: a state v satisfies Object-Compatibility Property, if and

only if in v, if object o2 is the father of object o1, it must satisfy fo(o1) ≥ fo(o2).

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

40

It means the security level of an object must dominate the security level of its father. For

example, the security levels of the tuples in a table must be equal or greater than the security

level of this table. To a subject, if he/she can not access a table because of the low security

level, he/she can neither access the tuples in this table.

Entity-Integrity Property: a state v satisfies Entity-Integrity Property, if and only if in v, for

any tuples o1 and o2 in an arbitrary table, their primary keys can not be NULL, and either fo(o1)

≠fo(o2), or their primary keys are different.

Here the security level is added into the traditional entity integrity. Subjects with different

security levels can use the same primary key. This can avoid the covert channel caused by the

primary key and ensure the safety of the information flow.

Reference-Integrity Property: a state v satisfies Reference-Integrity Property, if and only if

in v, for any tuples o1 and o2, if o1 is referenced by o2, then either o2’s foreign key is NULL, or

its value must be the same with o1’s primary key’s value and fo(o1)=fo(o2).

The Reference-Integrity Property only allows the reference between tuples with the same

security level. It is similar to the meaning of Entity-Integrity Property.

2.4. State Transition Rules

There are 10 state transition rules in BLP model to guarantee the safety properties [12].

Based on the features of the secure DBMS, Zhu Hong etc. modified these rules and proposed

10 state transition rules corresponding to select, update, insert, alter, delete, drop, create,

execute, grant, revoke in database. The details are represented in [13], which you can refer to

if you are interested.

2.5. Security Definitions

The security definitions are as follows:

Definition 1. Safe State. A safe state is a state v∈V that satisfies all safety properties.

Definition 2. Safe Operation. If the state vi is the pre-state of an operation and vi+1 is the

post-state of the operation, and they are both safe states, then the operation is a safe operation.

Definition 3. Safe System. A safe system is a system in which all the states are safe, which

means the initial state of the system v0 is safe, and if any state vi that can be transited from v0

is safe, after arbitrary operation, the post-state vi+1 is also safe.

Based on these definitions, Zhu Hong etc. specified and verified the extended DBMS

model using COQ tool, and ensured the safety of the model [13].

3. Formal Top Level Specification for Secure DBMS

3.1. Introduction

The Formal Top Level Specification (FTLS) for secure DBMS is specified in formal

languages (Gallina, Z, etc.), and consists of three parts: System State, Safety Properties and

SQL Operations. The mapping between security model and FTLS is described in Table 1:

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

41

Table 1. Mapping between Security Model and FTLS

FTLS Security Model

System

State

(VF)

Objects Set (s_ObjectSet) Corresponding to O

Data Dictionary (s_DD) Corresponding to S, M, F

User Data (s_UD) No corresponding, for integrity constraint

Access Set (s_B) Corresponding to B

Safety Properties The same as in security model

SQL Operations Details of the state transition rules in security model

The security definitions in security model is also suitable for FTLS.

3.2. System State

The system state in FTLS includes the details of the system implementation, e.g. how to

store access rights, how to present integrity constraint of the user data, etc. There are four

elements in the system state: objects set, data dictionary, user data and access set. As shown in

Table 1, VF = (s_ObjectSet, s_DD, s_UD, s_B), and is formalized like this (in COQ):

Record State : Set := st {

s_ObjectSet : object_set;

s_DD : DD;

s_UD : UserData;

s_B : (set accessB) }.

The objects set s_ObjectSet corresponds to O in the security model. s_DD is the

description of the data dictionary, which stores the access rights (corresponds to M in the

security model), security levels of subjects and objects (corresponds to F in the security

model), etc. s_UD records the values of the user data, which is used for integrity constraint

verification, because the minimal granularity of the object is tuple, and data items are not in

the objects set. s_B corresponds to B in the security model.

3.3. Safety Properties

The safety properties in FTLS are the same as in the security model and are expressed as

follows (in COQ):

Simple-Security Property (SimpleSecurity (v : State)), Star-Security Property

(StarSecurity (v : State)), Discretionary-Security Property (DiscretionarySecurity (v :

State)), Object-Compatibility Property (ObjectCompatibility (v : State)), Entity-Integrity

Property (EntityIntegrity (v : State)), Reference-Integrity Property (ReferenceIntergrity (v :

State)).

These properties are the invariance in verification. As the Definition 1 describes, a state is

safe if and only if it satisfies all these six safety properties, i.e. (in COQ)

Definition SecureState (v : State) := SimpleSecurity v /\ StarSecurity v /\

DiscretionarySecurity v /\ ObjectCompatibility v /\ EntityIntegrity v /\ ReferenceIntergrity v.

According to Definition 3, if we want to verify that the system is safe, we should first

verify that the initial state of the system v0 is safe. In FTLS, the initial state v0 = (O0, DD0, Φ,

Φ), in which the user data and the access set are Φ. Because the initial access set s_B is Φ,

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

42

Simple-Security Property, Star-Security Property and Discretionary-Security Property are

satisfied obviously. Because the initial user data s_UD is Φ, Entity-Integrity Property and

Reference-Integrity Property are also satisfied. Because the only object in the initial objects

set is the new created database, Object-Compatibility Property is then satisfied. So the initial

state of the system v0 is safe.

3.4. SQL Operations

The operation set in FTLS is OP = {select_op, insert_op, update_op, delete_op, create_op,

alter_op, drop_op, grant_op, revoke_op, execute_op}, in which there are all the SQL

operations. Compared to the transition rules in the security model, the SQL operations in

FTLS are more detailed and closer to the DBMS implementation.

In the base of system state specification and initial state verification, we can verify the

whole FTLS. The key step is to verify whether arbitrary SQL operation is safe, so it is very

important to specify the SQL operations. In this paper, considering the standard SQL syntax

and the implementation of DBMS, we take select and update operations as examples to

specify the SQL operations in FTLS in the view of security. First, these two SQL operations

are normal and representative for everyday use. Second, they are also typical from the view of

verification. As union, intersection and difference are only the operations for the results and

not so complex, we won’t consider these three operations in this paper. As the SQL operations

for views can be translated to the operations for the base tables, we won’t consider the

operations for views neither.

Definition 4. s_tc. A first-in-last-out list whose elements are 2-tuple of <t, c>, which mean

<table, where_clause>. The list records all the tables and their where clauses for filtering

tuples in select operation.

Definition 5. select operation. A select operation is specified by this 3-tuple of <v, s, s_tc>,

in which:

v∈VF; s is a subject, whose information can be got from s_DD; s_tc is as specified in

Definition 4.

Definition 6. update operation. An update operation is specified by this 6-tuple of <v, s, o,

c, s_tc, s_av>, in which:

v and s are the same as in Definition 5; o∈ s_ObjectSet, represents the target table in update

operation; c represents the potential where clause in update operation, and if there is no where

clause, c is denoted as 1 (which means the condition is true); s_tc records the tables and their

where clauses for filtering tuples in the potential select clause, and if there is no select clause,

s_tc is denoted as Ф; s_av is a list whose elements are 2-tuple of <att, value>, which mean

<attribute, value>, the list records all the attributes and their new values in update operation.

In the above definitions of SQL operations, v, s, o, c are single element, and all others are

linear lists. This specification is easy to deal with for proof tools. However, SQL statements

are often nested and complex themselves. It is a problem to transform the complex SQL

statements to the specification as in Definition 5 in FTLS. So we will give the details of the

rules for transformation.

3.5. SQL Statements Transformation

Before transformation, we need to analyse the syntax of SQL statements to confirm the

components of each SQL statement, then we give the rules to transform these components to

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

43

the specifications above. We still use select and update statements as examples for

transformation.

1. Syntax analysis

The SQL92 standard specifies the complete SQL syntax. However, from the view of

security, some components in SQL statements are needless. For example the order by clause

in select statement has nothing to do with the security and can be ignored in our analysis. The

following shows the refined components of each SQL statements.

(1) select statement

A select statement consists of these components: {select_list, from_clause, where_clause,

having_clause}, in which:

select_list represents the column objects for selection and can be column name or

select_clause. from_clause can be one or more tables, or select_clause. where_clause can be

NULL, or include simple expression (contains no select_clause), or include complex

expression (contains select_clause); having_clause is the same as where_clause.

(2) update statement

An update statement consists of these components: {object, set_clause, where_clause}, in

which:

object represents the table object for update. set_clause represents the target columns and

new values for update (a set whose elements are 2-tup of <attribute, value>). where_clause is

the same as in select statement above.

2. Transformation rules

We denote the current state for SQL operation as v and the subject for SQL operation as s

in the specification, and use the following rules for transformation.

Rule 1. select statement transformation.

① If select_list is column names, let them go; if select_list is select_clause, use Rule 1.

② There are three cases for from_clause:

a. If from_clause is a single table name t, then we treat the where_clause of this statement

as c, and add <t, where_clause> into the s_tc list. If there is no where_clause (where_clause is

NULL), c is marked as 1, which means the expression for filtering is true.

b. If from_clause involves more than one tables, t1,…,ti…, i.e. the statement includes

multi-table join, then we treat the conditions in the where_clause relevant to each table as

c1,…,ci…, and add <t1, c1>,…,<ti, ci>… into the s_tc list.

c. If from_clause includes select_clause, then we use Rule 1 to handle the select_clause.

③ If where_clause is NULL or includes only simple expression, let it go; if where_clause

includes complex expression, use Rule 1 to handle the select_clause therein.

④ If having_clause is NULL or includes only simple expression, let it go; if having

_clause includes complex expression, use Rule 1 to handle the select_clause therein.

Rule 2. update statement transformation.

① Treat the target table object as o in the specification of update operation.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

44

② Add the 2-tup of <attribute, value> in the set_clause to the s_av list.

③ Treat the where_clause as c in the specification of update operation. If there is no

where_clause (where_clause is NULL), c is marked as 1, which means the expression for

filtering is true; If where_clause includes only simple expression, let it go; if where_clause

includes complex expression, use Rule 1 to handle the select_clause therein to form the s_tc.

For example, an update statement “set the price to 100 for the goods whose type is wine” is

as follows:

UPDATE sell

SET sell.price = 100

WHERE sell.id = (SELECT id FROM store WHERE store.type = ‘wine’);

According to Rule 2, we treat the table “sell” as o in the specification of update operation,

take “{<price, 100>}” as s_av, and treat “sell.id = (SELECT id FROM store WHERE

store.type = ‘wine’)” as c; for the select_clause in its where_clause, we use Rule 1 to

transform it to {<store, store.type = ‘wine’>} and take it as s_tc. At last, the update statement

is transformed to the specification in Definition 6 as: <v, s, sell, sell.id = (SELECT id FROM

store WHERE store.type = ‘wine’), {<store, store.type = ‘wine’>}, {<price, 100>}>.

4. Analysis and Verification for SQL Operations

In section 3.4, we give the definitions of SQL operations in the view of security. As

mentioned above, this multi-tuple specification only including linear lists and single element

is much easier to deal with for proof tools than the original nested and complex SQL

statements. However, as the verification process is very complex, we will do some further

simplification. First, we give the definitions of simple SQL operations, and propose a method

to verify those simple SQL operations. Then we transform the verification of the SQL

operations in FTLS to the verification of those component simple SQL operations. We also

give the proof of the correctness of this approach. The same as above, we use select and

update operations as examples for the analysis and verification.

4.1. Analysis and Verification for Select Operation

1. Analysis of simple select operation

Definition 7. simple select operation. A simple select operation is specified by this

4-tuple of <v, s, t, c>, in which:

v∈VF; s is a subject, whose information can be got from s_DD in v; t∈ s_ObjectSet, whose

type is table; c represents the where_clause for filtering tuples which includes only simple

expression (contains no clause).

In secure DBMS, simple select operation rule is: If the object table t for select exists, and

subject s has the select_op privilege on t, and the security level of s dominates the security

level of t, then filter the tuples in t based on the security level and c, and for the qualified

tuple o, add (s, o, select_op) to the s_B in the state; otherwise the operation fails and the state

stays unchanged.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

45

Figure 1 shows the specification of simple select operation rule.

Figure 1. Specification of Simple Select Operation Rule

v represents the pre-state of the operation, and v* represents the post-state. After the

operation succeeds, the first three parts of v* are the same as in v. select_addB(o) means that

for the qualified tuple o, add (s,o,select_op) to the s_B in the state. objType(t) = table means

the type of t is table. HavePriv(v,(s,t,select_op)) is the function to judge whether s has the

select_op privilege on t. fc(v,s) and fo(v,t) are the functions to get the security levels of subject

s and object t respectively. o∈ includedby(t) means o is the object included by t. c(o) = true

means o satisfies the filtering condition c. For readability, the specifications and verifications

are all written improved on the original COQ codes.

2. Verification of simple select operation

According to Definition 2, the object for verifying an operation is that on the premise

pre-state of the operation is safe, the post-state of the operation is also safe, i.e. SecureState(v*)

= true. We will verify each safety property.

As an example for Simple-Security Property, Figure 2 shows the lemma of Simple-Security

Property for simple select operation.

Figure 2. Lemma of Simple-Security Property for Simple Select Operation

s is the subject of the operation, t is the table object of the operation, and c is the condition

for filtering tuples. BasicProperties includes some basic properties relevant to the database,

such as a table and its tuples belong to the same database, a table and its tuples are father and

sons, etc. These properties seem obvious, but the verification will not succeed without them,

which shows the rigor of the proof tool. select is as specified in Figure 1.

This lemma shows: if the pre-state satisfies the Simple-Security Property, after the simple

select operation, the post-state also satisfies the Simple-Security Property. The verification of

this lemma is the verification of the Simple-Security Property for the simple select operation.

We list some of the common commands for verification in COQ: unfold, intros, inversion,

rewrite, elim, replace, apply, symmetry, destruct, generalize, auto, etc. Other verifications of

simple operations are similar to the verification of the simple select operation, which we will

not show here any more.

3. Analysis and verification of select operation

Comparing definition 5 with definition 7, we can find that the difference between select

operation and simple select operation is: the specification of select operation includes s_tc,

Lemma selectSP:

if BasicProperties(v) = true /\ SimpleSecurity(v) = true

select(v,s,t,c) = v*

then SimpleSecurtiy(v*) = true

select(v, s, t, c):

if objType(t) = table ∧ HavePriv(v,(s,t,select_op)) = true ∧

fc(v,s) ≥ fo(v,t)

then  (o∈includedby (t) /\ c(o) = true /\ fc(v,s) ≥ fo(v,o)),

v*= ((s_ObjectSet v), (s_DD v), (s_UD v), select_addB(o))

else v*=v

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

46

which is a list whose elements are 2-tuple of <t, c>, while there is only one t, c in the

specification of simple select operation.

Figure 3 shows the specification of select operation rule.

Figure 3. Specification of Select Operation Rule

s_tc is the list specified in definition 4. “::” is the symbol for concatenation. tc :: ltc

represents the list by concatenating the list ltc to the element tc (which means tc is the first

element in the new list). (fst tc) represents the first element (table) in the 2-tuple tc, while (snd

tc) represents the second element (condition) in the 2-tuple tc. Other symbols are the same as

in the specification of simple select operation rule.

The object for verifying select operation is the same as for simple select operation, which

is on the premise pre-state of the operation is safe, the post-state of the operation is also safe.

The difference is: the post-state of the select operation is more complex to describe. As

specified in Figure 3, we need to analyse each element in the list s_tc, and add each result for

the analysis together to form the final post-state v*.

As s_tc is a first-in-last-out list, the node taken out prior is the one added into the list later,

which represents the deeper select clause in the select statement (it doesn’t matter which table

is prior in the same hierarchy for table join). So we can simplify the verification of the select

operation. First we take out all the nodes <ti, ci> from the list s_tc sequentially, and form the

simple select operations <v, s, ti, ci> with state v and subject s. Then we invoke the

verification of simple select operation mentioned above to verify those simple select

operations in order, which is easier, so that we can transform the verification of select

operation to those of sequential simple select operations. In this way, the first verified clause

is the deepest select clause, while the last verified is the main select clause.

For example, the transformation, analysis and verification of the select statement:

SELECT ts.sname, tsc.score, (SELECT AVG(score) FROM tsc WHERE cno = '100001')

Average FROM ts, tsc WHERE ts.sno=tsc.sno AND tsc.cno = (SELECT cno FROM tc

WHERE cname = 'Chinese');

is like this:

select(v, s, s_tc):

case s_tc

nil => v

tc :: ltc =>

{

if objType(fst tc) = table ∧ HavePriv(v,(s,(fst tc),select_op)) = true ∧ fc(v,s) ≥

fo(v,(fst tc))

then  (o∈includedby (fst tc) /\ (snd tc)(o) = true /\ fc(v,s) ≥ fo(v,o)),

v*= ((s_ObjectSet v), (s_DD v), (s_UD v), select_addB(o)) ∪ select(v, s, ltc)
else v*= ((s_ObjectSet v), (s_DD v), (s_UD v), (s_B v)) ∪ select(v, s, ltc)

}

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

47

SELECT ts.sname, tsc.score, (SELECT AVG(score) FROM tsc WHERE cno = '100001') Average FROM ts,tsc

WHERE ts.sno=tsc.sno AND tsc.cno = (SELECT cno FROM tc WHERE cname = 'Chinese')

where_clause

ts.sno=tsc.sno AND tsc.cno =

(SELECT cno FROM tc WHERE

cname = 'Chinese')

having_clause

NULL

having_clause

NULL

select_list

AVG(score)

having_clause

NULL

select_list

cno

1.Ignore ts.sname, tsc.score, for “SELECT

AVG(score) FROM tsc WHERE cno =

'100001'”, use Rule 1.

3.Add <ts, 1>, <tsc, tsc.cno = (SELECT

cno FROM tc WHERE cname =

'Chinese')> into s_tc.

4.Let “ts.sno=tsc.sno” go. For the “SELECT cno

FROM tc WHERE cname = 'Chinese'” in

“tsc.cno = (SELECT cno FROM tc WHERE

cname = 'Chinese')”, use Rule 1.

6.having_clause is NULL

2.In this clause, select_list is a column name, from_clause is a table

name tsc, where_clause includes only simple expression,

having_clause is NULL. So we add <tsc, cno='100001'> into s_tc.

5.In this clause, select_list is a column name, from_clause is a table

name tc, where_clause includes only simple expression,

having_clause is NULL. So we add <tc, cname='Chinese'> into s_tc.

select_list

ts.sname, tsc.score, (SELECT

AVG(score) FROM tsc WHERE cno =

'100001') Average

from_clause

tsc

from_clause

ts, tsc

from_clause

tc

where_clause

cname='Chinese'

where_clause

 cno ='100001'

Figure 4. Example for Transformation, Analysis and Verification of Select
Operation

As depicted in Figure 4, first we use Rule 1 in section 3.5 to transform the original

statement to the specification as in definition 5 like this: <v, s, {<tc, cname=’Chinese’>, <tsc,

tsc.cno=(SELECT cno FROM tc WHERE cname=’Chinese’)>, <ts, 1>, <tsc,

cno=’100001’>}> . Then as described in this section, we take out the nodes from the list s_tc

in the above specification sequentially, and form the 4 simple select operations: <v, s, tc,

cname=’Chinese’>, <v, s, tsc, tsc.cno=(SELECT cno FROM tc WHERE cname=’Chinese’)>,

<v, s, ts, 1>, <v, s, tsc, cno=’100001’>. At last we invoke the verification of simple select

operation to verify these simple select operations in order.

4. The correctness of the verification of select operation

The following theorem shows the correctness of the verification of select operation

mentioned above.

Theorem 1. The approach to transform the verification of select operation to those of

sequential simple select operations is correct.

Proof. From the analysis of select operation, we can see that the change of the successful

operation on the state is for s_B, i.e. to add the (s,o,select_op) to the s_B in the state for those

qualified tuple o. And which o is qualified is decided by t, c and the security levels. From the

specifications of select operation and simple select operation, we can see that the proof of

Theorem 1 is the same as the correctness proof of the approach to transform the s_tc to each

single <ti, ci> in order for verification. According to Rule 1 in section 3.5, there are two

relationships among the nodes <ti, ci> in the list s_tc: 1) the nested select clause in a lower

hierarchy and the main select clause in a higher hierarchy; 2) the different tables in the same

hierarchy for table join. We will discuss these two cases respectively.

1) Because s_tc is a first-in-last-out list, the node taken out prior is the one added into the

list later, which represents the deeper select clause in the select statement. So when we take

out the nodes <ti, ci> from the list s_tc sequentially, and form the simple select operations <v,

s, ti, ci> for verification, we are first verifying the select clause in a lower hierarchy and then

the main select clause in a higher hierarchy, which is consistent with the execution of the

select statement. So this is obviously correct.

2) For the table join, the proof is by contradiction. Let Sec(O) be the proposition that it is

secure to add (s, oi, select_op) into s_B for all oi in the tuple set O. Let <t1, c1>, <t2, c2> be the

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

48

nodes in the s_tc list where t1 and t2 are the only tables for join. Let O1 be the tuple set in

which all tuples are qualified for t1, c1 and the security level, and O2 for t2, c2. Let O be the

tuple set in which all the tuples are accessed at last in the original select statement. Then our

proof for this case is simplified like this: Sec(O1) Sec(O2)Sec(O). Because c1 , c2 are the

filtering conditions relevant to each single table t1, t2 respectively, we have OO1O2.

Suppose that Sec(O) is false, then oO, so thatSec(O). As OO1O2, we have oO1

or oO2. Assume that oO1, thanSec(O1), which contradicts the condition Sec(O1). So the

proposition is true. This proof can also be extended to joins for multiple tables.

In conclusion, the approach to transform the verification of select operation to those of

sequential simple select operations is correct. □

4.2. Analysis and Verification for Update Operation

1. Analysis of simple update operation

Definition 8. simple update operation. A simple update operation is specified by this

5-tuple of <v, s, t, c, s_av>, in which:

v, s, t, c are the same as in Definition 7; s_av is a list whose element is 2-tuple of <att,

value>, and represents the attributes and their new values in update operation.

In secure DBMS, simple update operation rule is: If the object table t for update exists, and

subject s has the update_op privilege on t, and the security level of s dominates the security

level of t, then filter the tuples in t based on the security level and c, and check the new values

whether they satisfy the integrity constraint, then for the qualified tuple o, add (s, o,

update_op) to the s_B in the state, and modify the values in user data s_UD; otherwise the

operation fails and the state stays unchanged.

Figure 5 shows the specification of simple update operation rule.

Figure 5. Specification of Simple Update Operation Rule

After the operation succeeds, the first two parts of v* are the same as in v.

update_changeUD(s_av) means that update the user date s_UD in the state according to s_av.

update_addB(o) means that for the qualified tuple o, add (s,o,update_op) to the s_B in the

state. FindPkey(v,t) is the function to find the primary key of table t. FindValue((s_UD

update(v, s, t, c, s_av):

if objType(t) = table ∧ HavePriv(v,(s,t,update_op)) = true ∧ fc(v,s) ≥ fo(v,t)

then  (o∈includedby (t) /\ c(o) = true /\ fc(v,s) = fo(v,o)

/\ (if  (att,val)∈s_av, att∈FindPkey(v,t)

then val  null /\ ( oi∈ includedby (t), oi  o, fo(v,

oi) fo(v,o) \/ FindValue((s_UD v),oi,att) val)

)

 /\ (if  (att,val)∈s_av, att∈FindFkey(v,t)

then val=null \/ ( oj, objType(oj)=tuple,

fa(oj)=FindRefTable(v,t,att), attj=FindRefAtt(v,t,att),

val=FindValue((s_UD v),oj,attj) /\ fo(v, oj)=fo(v,o))

)

)

v*= ((s_ObjectSet v), (s_DD v), update_changeUD(s_av), update_addB(o))

else v* = v

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

49

v),oi,att) is the function to find the value of the attribute att in the tuple oi. FindFkey(v,t) is the

function to find the foreign key of table t. FindRefTable(v,t,att) is the function to find which

table is referenced by the attribute att of the table t. FindRefAtt(v,t,att) is the function to find

which attribute is referenced by the attribute att of the table t.

2. Analysis and verification of update operation

Comparing definition 6 with definition 8, we can find that the difference between update

operation and simple update operation is: the specification of update operation includes s_tc,

which is a list whose elements are 2-tuple of <t, c>, representing the select clauses for

filtering the tuples; while there is only one table t and condition c including only simple

expressions in the specification of simple update operation.

The specification of update operation rule is similar to the specification of simple update

operation rule. In the specification of simple update operation rule, c(o)=true means tuple o is

qualified for the filtering condition c, which is a simple expression; while in the specification

of update operation rule, c is a complex expression that may include select clauses. So we

need to invoke the specification of select operation rule mentioned above to specify the

update operation rule.

The object for verification of update operation is the same as for simple update operation,

which is on the premise pre-state of the operation is safe, the post-state of the operation is also

safe. The difference is: except for the changes caused by the object tuples of the update, the

post-state of the update operation is also effected by the select clause, i.e. the post-state of the

successful update operation is v*= ((s_ObjectSet v), (s_DD v), update_changeUD(s_av),

(update_addB(o)))∪select(v, s, s_tc).

So we can verify the update operation in two steps: first, we invoke the verification of

select operation to verify the s_tc list, which represents the select clauses in the update

operation; then, for the v, s, o, c, s_av, which forms the main clause of the original update

operation, we just verify it as for the verification of simple update operation.

3. The correctness of the verification of update operation

Theorem 2. The approach to transform the verification of update operation to the

verification of select operation and verification of simple update operation is correct.

Proof. The security policy of select operation is “no read up”, i.e. no subject is allowed to

read from any object with a higher security level. This should also be satisfied for the select

clause in the update operation. So it is necessary to invoke the verification of the select

operation to handle the s_tc list in update operation. One can refer to the proof for Theorem 1

for this situation.

When the verification of the select clauses passes, the c in the main update clause is then

confirmed. The security policy of update operation is that a subject can only modify the

object tuple with the same security level. From the specification of the simple update

operation, we can see that the filtering for object tuples includes condition c and the equation

for security levels. Then, for those qualified tuples o, we add (s, o, update_op) to the s_B in

the state and modify the values in user data s_UD. So we need to verify this post-state using

the verification of simple update operation.

In conclusion, the approach to transform the verification of update operation to these two

steps is correct.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

50

4.3. Some Problems in Verification

We wrote twenty thousands lines of COQ codes to analyse and verify a domestic DBMS

including all SQL operations mentioned in Section 3.4. And when we did the verification we

meet some problems. Such as how to make sure that the verification for the post-state really

needs the precondition in the specification of the operation rules, so that the rigor of the proof

is ensured; the FTLS is closer to the implementation of the DBMS than the model, how to

simplify its verification due to the details of the implementation; the function of certain SQL

operations seems conflicted to the security policy, etc. Here we give an example in the

verification of delete operation.

The set s_B in the state represents the records of accesses which we need to analyse for the

verification of Simple-Security Property, Star-Security Property and Discretionary-Security

Property. However, the target tuple of delete operation has already been deleted from the

object set s_ObjectSet after the operation. For the consistency of the state specification, the

relevant element in the set s_B should also be deleted. Then the s_B in the post-state of the

delete operation is the subset of the s_B in the pre-state. So it will be obvious that the

post-state satisfies the safety properties on the premise pre-state satisfies the safety properties

without the specification of the delete operation rule, which is not exactly right. To resolve

this problem, when we verify the operations such as delete and drop, we introduce a

temporary state whose set s_B includes the elements like (s, o, delete_op) and (s, o, drop_op).

After the verification, we only keep the final consistent state. As a result, the qualifications in

the specification of the operation rules can not be skipped in the verification, and the rigor of

the proof is ensured.

5. Related Work

First, we will show some related work of the formal verification for some general systems.

Then for the formal verification of DBMS, especially for the classical SeaView project, we

will give some introduction. At last, we will introduce some relevant work about SQL formal

specification.

5.1. Formal Verification for General Systems

Goguen and Meseguer say that building a secure system should be comprised of four

stages [14]: 1) Determine the security needs of the system; 2) Express those needs as a formal

requirement; 3) Model the system (at least the security relevant components and functions); 4)

Verify that this model satisfies the formal requirement.

Maximiliano Cristia specifies and verifies an extension of a secure, compatible UNIX file

system [15]. The paper indicates that a secure file system should include subjects and their

groups, list of privileges, security level information, files, indices, etc. The operations should

include create, open, close files and folders, etc. The paper also defines the safety properties,

and introduces the concept of state machine. The operations in the file system are treated as

queries or changes to the state. Their target for verification is to verify whether the operation

keeps the security of the state. The specification and verification are also written in COQ

proof tool. However, the target object in their work is file system, which differs a lot from the

DBMS. The latter is more complex in operations. And the transformation and simplification

for verification in our paper is never mentioned before in general systems.

Antonio Coronato, et. al., propose a method to formally specify and verify the correctness

and security of the general application system [16]. They extend the basic formal tools and

introduce static and dynamic verification briefly. However, this paper gives the specification

so abstractly that doesn’t refer to any practical problems in general application systems.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

51

Hejiao Huang, et. al., point out that the security policy design is concerned with the

composition of components in security systems and interactions among them [17]. The paper

addresses the problem in a formal way and uses CPNP to specify and verify security policies

in a modular way. They define fundamental policy properties, e.g. completeness, termination,

consistency, and confluence in Petri net terminology and get some theoretical results.

5.2. Formal verification for DBMS

In the research of formal specification and verification for DBMS, the classical one is the

SeaView model proposed by Teresa F.Lunt et al. [5, 6]. It is a formal security model for

multi-level security RDBMS. The object is to design a multi-level secure DBMS with the A1

security level in TCSEC.

SeaView security policies include mandatory access control policy, discretionary access

control policy, data marker, data consistency, etc. These policies are formalized into two

model layers: the inner layer is MAC model, and the outer layer is TCB model. The MAC

model includes a security kernel that supports the A1 security level. The TCB model is based

on the MAC model and implemented by the extended TCB, which includes the multi-level

security relation abstract, integrity constraint, discretionary authorization, etc. And the

specification of the operations is also in this layer.

However, in SeaView project, only simple SQL operations are considered. For example,

the target object of the update operation they specified is only certain tuples whose primary

keys are already known, while the where clause that may contain complex expressions is not

considered. Actually, the complex clause determines the tuples to be updated and also the

objects whose security levels will be compared, so it has much to do with the security. This is

normal in current complex update operation.

5.3. Formal Specification for SQL

Li Xu-shuai, et. al., define a formal three-valued predicate model EP
M

C based on the

medium logic predicate calculus system MF
M

 to express a SQL query, and also define the

rules by which the SQL query sentences are transformed into EP
M

C [3]. They formally

analyse the SQL query in the semantics. But their object is to prove the equivalence of two

SQL sentences rather than security analysis. And they only consider the SQL query sentence.

Li Hai-long et al. propose a model in which they define a standard SQL clause object

ANSISQLO and build some rules [4]. They analyse the SQL in two phases: formal-rule phase,

in which they generate the ANSISQLO for a SQL sentence by syntax analysis; logic-rule

phase, in which they analyse the constraints for database entities and attributes. They focus on

the simple SQL. Though they mention the complex SQL with nesting SQL syntax, the

analysis is not sufficient.

Maryam Lotfi Shahreza et al. point out that the theory of the relational databases has much

in common with the mathematical structures central to the Z notation, and formally specify

the applications in DBMS [18]. They first specify the database by UML class diagram in Z.

Then they refine the specification until its corresponding database and program is obtained.

Finally, they get the SQL operations corresponding to the specifications above. However, they

pay more attention on the specification of database applications instead of security.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

52

6. Conclusion

In this paper, we propose a novel approach for the formal specification and verification of

the SQL operations in FTLS of a secure DBMS. First, we formally define the SQL operations

in FTLS and build the rules to transform the SQL sentences to these specifications. Then, on

top of the specifications, we give the definitions of the simple SQL operations, and propose a

method to verify those simple SQL operations. Finally, we transform the verification of the

SQL operations in FTLS to the verification of the component simple SQL operations. We also

give the proof of the correctness of this approach. From the process of the specification and

verification, we can see that our approach makes a comprehensive and clear specification of

the SQL operations in FTLS, and also makes an easier verification for proof tool COQ. So we

resolve the problems of the security verification of FTLS mentioned in the introduction.

To the practical problems in the specification and verification of FTLS, such as the

verification of objects deletion, verification of some specific queries, etc. we also did the

research. And we find that it is very useful to specify and verify the FTLS of a DBMS for

design of a secure DBMS.

References

[1] DEPARTMENT OF DEFENSE, “Trusted Computer System Evaluation Criteria”, DoD 5200.28-STD, (l985).

[2] Common Criteria, “Common Criteria for Information Technology Security Evaluation”, ISO/IEC 15408,

(1999).

[3] X. Li and Y. Mao, “Formal Semantics of SQL”, Microcomputer Development, vol. 15, no. 3, (2005).

[4] H. Li, W. Zhang, X. Li and W. Xiao, “Custom Standard SQL Grammer Analysis Model”, MINI-MICRO

Systems, vol. 24, no. 11, (2003).

[5] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman and W. R. Shockley, “The SeaView Security Model”,

IEEE Transactions on Software Engineering, vol. 16, no. 6, (1990).

[6] R. A. Whitehurst and T. F. Lunt, “The SeaView Verification”, Proceedings of the Computer Security

Foundations Workshop II, (1989) June 11-14; Franconia, NH, USA.

[7] S. Zou and G. Zheng, “Comparison of Z and VDM with B”, Computer Science, vol. 29, no. 10, (2002).

[8] L. Yu and Y. Dajun, “Analysis of Theorem–proving Aiding Tool—PVS”, Computer Engineering, vol. 26, no.

9, (2000).

[9] M. Wenzel, “The Isabelle/Isar Reference Manual”, (2009).

[10] S. Owre, N. Shankar, J. M. Rushby and D. W. J. Stringer-Calvert, “PVS Language Reference”, (2001).

[11] The Coq Development Team, “The Coq Proof Assistant Reference Manual”, (2006).

[12] L. J. LaPadula and D. E. Bell, “MITRE Technical Report 2547”, Volume II [Secure computer systems: rules

of operation], Journal of Computer Security, vol. 4, (1996), pp. 2-3.

[13] Z. Hong, Z. Yi, L. Chenyang, S. Jie, F. Ge and W. Yuanzhen, “Formal Specification and Verification of an

Extended Security Policy Model for Database Systems”, Proceedings of the 3rd Asia-Pacific Trusted

Infrastructure Technologies Conference, (2008) October 14-17; Hubei, China.

[14] J. A. Goguen and J. Meseguer, “Security Policies and Security Models”, Proceedings of the 1982 Symposium

on Security and Privacy, (1982) April 26-28; Oakland, CA, USA.

[15] M. Cristia, “Formal Verification of an Extension of a Secure”, Compatible UNIX File System, Master's

thesis, Instituto de Computación, Universidad de la República, Uruguay, (2002).

[16] Antonio Coronato and G. De Pietro, “Formal Specification and Verification of Ubiquitous and Pervasive

Systems”, ACM Transactions on Autonomous and Adaptive Systems, vol. 6, no. 1, (2011).

[17] H. Huang and H. Kirchner, “Formal Specification and Verification of Modular Security Policy Based on

Colored Petri Nets”, IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 6, (2011).

[18] M. L. Shahreza, A. Moeini and R. O. Mesbah, “Specification and Development of Database Applications

Based on Z and SQL”, Proceedings - 2009 International Conference on Information Management and

Engineering, (2009) April 3-5; Kuala Lumpur, Malaysia.

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

53

Authors

Zhipeng Wang

A PhD student in the School of Computer Sci & Tec, Huazhong

University of Sci & Tec, China. He received the MS degree in

Computer Software and Theory from HUST in 2009. His current

research interests include database security and privacy, formalized

analysis and verification.

E-mail: hkdwzp@gmail.com

Hong Zhu

A Professor in the School of Computer Sci & Tec, Huazhong

University of Sci & Tec, China. She is an expert in the areas of DBMS,

database security and privacy, data management and data mining.

E-mail: whzhuhong@gmail.com

Meiyi Xie

A lecturer in the School of Computer Sci & Tec, Huazhong

University of Sci & Tec, China. She received the PhD degree in

Computer Software and Theory from HUST in 2009. Her current

research interests include database security and privacy,

intrusion-tolerant database, and cloud computing.

E-mail: xiemeiyi@sina.com

International Journal of Database Theory and Application

Vol. 5, No. 3, September, 2012

54

