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Abstract 

Cluster and outlier detection has always been one of data mining research interests. Numerous 

approaches have been designed to find clusters and detect outliers in various types of data sets. In this 

paper, we present our research on analyzing data sets with constant changes. We design approaches to 

keep track of status of clusters, the movement of data points, and the updated group of outliers. 

Different from the traditional approaches which are focused on two-dimensional or low-dimensional 

data spaces, we aim to analyze data sets in multi-dimensional data spaces. We also propose to adjust 

the clusters and outliers simultaneously, since they are two concepts that are closely related.  
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1. Introduction 

Everyday a large amount of real data sets are generated in many disciplines. Data mining 

approaches are designed to analyze those data sets. Cluster and outlier detection has always been one 

of the focuses of data mining research. Cluster analysis specializes in techniques for grouping similar 

objects into a cluster in which objects inside a cluster exhibit certain degree of similarities, and 

separates dissimilar objects into different clusters. It is a method of unsupervised learning, and a 

common technique for statistical data analysis used in many fields, including machine learning, data 

mining, pattern recognition, image analysis and bioinformatics. Existing clustering algorithms can be 

broadly classified into four types: partitioning [10–12], hierarchical [21, 7, 8], grid-based [18, 15, 3], 

and density-based [5, 9, 4] algorithms. 

Partitioning algorithms construct a partition of a database of n objects into a set of K clusters, where 

K is an input parameter. In general, partitioning algorithms start with an initial partition and then use an 

iterative control strategy to optimize the quality of the clustering results by moving objects from one 

group to another. Hierarchical algorithms create a hierarchical decomposition of the given data set of 

data objects. The hierarchical decomposition is represented by a tree structure, called dendrogram. 

Grid-based algorithms quantize the space into a finite number of grids and perform all operations on 

this quantized space. These approaches have the advantage of fast processing time independent of the 

data set size and are dependent only on the number of segments in each dimension in the quantized 

space. Density-based approaches are designed to discover clusters of arbitrary shapes. These 

approaches hold that, for each point within a cluster, the neighborhood of a given radius must exceed a 

defined threshold. Density-based approaches can also filter out outliers. 

Each of the existing clustering algorithms has both advantages and disadvantages. The most 

common problem is rapid degeneration of performance with increasing dimensions [9], particularly 

with approaches originally designed for low-dimensional data. To solve the high-dimensional 

clustering problem, dimension reduction methods [3, 2, 14] have been proposed which assume that 

clusters are located in a low-dimensional subspace. 

An outlier is a data point that does not follow the main characteristics of the input data. Outlier 

detection is concerned with discovering the exceptional behaviors of certain objects. It is an important 

branch in the field of data mining with numerous applications, including credit card fraud detection, 
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discovery of criminal activities, discovery of computer intrusion, etc. In many applications outlier 

detection is at least as significant as cluster detection. There are numerous studies on outlier detection 

[19, 17, 20, 13]. 

In this paper, we analyze data sets with constant changes. We design approaches to keep track of 

status of clusters, the movement of data points, and the updated group of outliers. Different from the 

traditional approaches which are focused on two-dimensional or low-dimensional data spaces, we aim 

to analyze data sets in multi-dimensional data spaces. We also propose to adjust the clusters and 

outliers simultaneously, since they are two concepts that are closely related. 

 

2. Related Work 

Numerous approaches have been designed to analyze data sets with constant changes. For example, 

Abrantes etc. [1] proposed a data clustering method that extends well-known static clustering 

algorithms, applying a motion model to track clusters that deform and translate. The method uses 

centroids, or points of reference within the data cluster that are drawn towards the center of clusters. 

The clusters are defined by their relevance to the centroids. In every instance of tracking the previous 

centroids are used to calculate translations and deformations of the cluster, and establish new centroids, 

based on previous calculations. They also demonstrated examples of this process in the context of 

object tracking using pixels and three dimensional linear calculations. 

 Garcia etc. [6] proposed a method for clustering data with a dissimilarity measure and a dynamic 

procedure of splitting, giving examples of the method by using plot graphs of two-dimensional data 

sets. The dissimilarity measure uses the optimum path between each successive datum. The optimum 

path is chosen by finding the shortest distance between two successive vertices. This measure allows 

the clusters to take a unique shape, rather than clustered into quadrants. The optimal partitioning can be 

performed using the previous optimum path as a comparison, so clusters that are dense will be less 

likely to assume outliers or data belonging to another cluster. The authors also described a method to 

scale and smooth the derivatives. 

Irpino etc. [23] proposed algorithms to deal with improving the adaptive distances of clustering data 

in order to overcome the variability of clusters and also the variables within the clusters, based on the 

pre-established Wasserstein distance of clusters.  

Gabrielov etc. [24] presented an inverse cascade model for similar growth clusters using branches to 

describe the coalescence between two or more clusters, with variables within clusters assigned certain 

ranks. 

Our approach is different from the previous work in that, instead of solely focusing on clustering 

analysis, we keep track of the change of clusters and outliers, and always keep them in the most 

updated status. The characteristic of certain data points in clusters and certain outliers are also changed 

dynamically. Furthermore, we design our approach in multi-dimensional data spaces instead of two-

dimensional or low-dimensional data spaces. 

 

3. Analyzing Dynamic Data Sets 

A lot of algorithms have been designed for cluster analysis and outlier detection. It is difficult to 

detect clusters and outlier with a high accuracy for multi-dimensional noisy data sets, especially when 

the data sets change constantly. For example, Figure 1 shows a two-dimensional data set whose data 

points move dynamically over the time. The directions of the movement for certain data points are 

unpredictable. 
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Figure 1. An Example of Dynamic Data Set 
 

In this section we discuss how to design an approach to keep track of the status of clusters, 

the movement of data points, and the updated group of outliers. In order to describe our 

approaches, we shall introduce a few notations and definitions. Let n denote the total number 

of data points and d be the dimensionality of the data space. Let Dk be the kth dimension, 

where k = 1, 2, ..., d. Let the input d-dimensional data set be 

 

  
 

which is normalized to be within the hypercube [0, 1]
d ⊂ R

d
. Each data point Xi is a d-

dimensional vector: 

 

      (1) 

 

Our approach is designed to keep track of the variation of clusters and outliers for a give 

data set with multiple dimensions. For a given step, let the current number of clusters be kc  

and the current number of outliers be ko; let the set of clusters be C = {C1 , C2 , ..., Ckc }, and 

the set of outliers be O = {O1, O2 , ..., Oko}. 

 

For each cluster Ci ∈ C , i=1,2,...,kc, we define its size. For data sets in a two-dimensional 

space, a traditional way is to use the radius to represent how large a cluster is: 
  

    (2) 

    

where mci is the centroid of Cluster Ci , Xp is any data point in Cluster Ci, and d(Xp, mci ) is 

the distance between Xp and mci under certain distance metric, normally Euclidean distance 

for two- dimensional data space. 

However, as the dimensionality of the data space goes higher, the radius of a cluster will 

increase dramatically. This is because as shown in equation 2, the distance between a data 

point in a cluster and its centroid is calculated by d(Xp, mci ) using Euclidean distance, and it 

is well known that Euclidean distance increases very fast when the dimensionality goes 

higher. This is called the “curse of dimensionality”. 

We can also analyze the case in another way. In a two-dimensional data space, a cluster is 

represented by a circle. The volume of the circle for a cluster can be calculated as πr
2
, where r 

is the radius of the cluster. In a multi-dimensional data space, a cluster will be represented by 
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a hyper-sphere S. There may be many empty regions which contain no data, and the bounding 

hyper-spheres of two different clusters may overlap. 

The volume v of the hyper-sphere S in a d-dimensional data space is calculated as 

          

       (3) 

 

   The gamma function Γ (x) is defined as 

 

 

     (4) 

     

where Γ (x + 1) = xΓ (x) and Γ (1) = 1. 

 

From equation 3 and equation 4 we can see that the volume v of the hyper-sphere S for a 

cluster increases dramatically as dimensionality goes higher.  

Here we apply a different approach to define the size of a cluster. Let Dk be the kth 

dimension, where k = 1, 2, ..., d, the lower bound of the value range on Dk be the smallest 

value of the data points on Dk, and the upper bound of the value range on Dk be the largest 

value of the data points on Dk . For a given data set DS in a d-dimensional data space, we 

represent the size of a cluster C in DS as a group of intervals: 

 

    (5) 
 

where lk and hk are the lower bound and upper bound of the value range on Dk , k = 1, 2, ..., 

d. The reason we define the size of a cluster C in this way is that, when the dimensionality 

goes higher, the size of C will not increase dramatically like what the Euclidean distance 

causes. Instead, there will be just more pairs of lower bound and upper bound added in the 

size of the C. 

In our approach, we closely keep track of the change of clusters and outliers based on the 

movement of the data points in a data set DS. Based on how fast the data points in DS change 

their positions and availabilities, a time interval t is assigned to DS. 

 

At each time interval t: 

 

1) For each cluster  ∈ C , we check the change of position for each data point  ∈ , 

and count the number  of data points in  whose new value(s) on a certain 

dimension or certain dimensions are out of the value intervals defined in 

. If a data point no longer exists in DS, i.e., it is deleted 

from DS, it will also be counted into . 

 

If  exceeds a certain threshold, we will modify the intervals in 

 so it will still contain those data points, because in this 

case the majority of data points in  are moving out of the range of , thus the size 

and shape of  need to be adjusted to still form a valid cluster. If  does not exceeds 

the threshold, which means those data points are the minority in , they should be 

removed from . For each of those data points, we will check to see if it resides in 



International Journal of Database Theory and Application 

Vol. 5, No. 3, September, 2012 

 

 

19 

 

the new range of other clusters in C. If it does, we will assign it to the new cluster, 

otherwise, we will assign it as a new outlier. 

 

2) For each outlier  in O, we will check to see if the new position of  resides in the 

new range of a cluster  in C. If it does, we will assign  as a new data point in , 

otherwise,  remains as an outlier. 

 

The dynamic cluster-outlier adjustment algorithm is described in Figure 2. 

 

 

Figure 2. Algorithm: Dynamic Data Set Process 

 
3.1 Time and Space Analysis 

Suppose the size of the data set is n and the dimensionality is d. Throughout the process, in 

each time interval, we need to keep track of the change of values of all points, which 

collectively occupies O(dn) space.  

In each time interval, and for each cluster, we need to calculate the value  which is the 

number of data points whose values are out of the value intervals of its cluster. The time 

required for this process is O(dn). Suppose there are  intervals before the algorithm is 

terminated. The processing time is . 
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4. Experiments 

Various experiments were performed to evaluate and demonstrate the effectiveness and 

efficiency of the proposed approach. Our experiments were run on Intel(R) Pentium(R) 4 with 

CPU of 3.39GHz and Ram of 0.99 GB. 

A synthetic data generator was generated to test the scalability of our algorithm over data 

size, dimensionality and time intervals. It produces data sets with normalized distributions. 

The sizes of the data sets vary from 2,500, 5,000, ... to 20,000, with the gap of 2,500 between 

each two adjacent data set sizes, and the dimensions of the data sets vary from 5, 10, ... to 40, 

with the gap of 5 between each two adjacent numbers of dimensions. To simulate the 

dynamic change of the data set, we applied the following strategies: 1) A time trigger was 

designed; 2) Every time the time trigger is randomly turned on: 2.1) A random subset RA of 

data points from the data set are selected to have their values changed, 2.2) A random subset 

RB of data points are removed from the data set, 2.3) A set RC of randomly generated data 

points are inserted into the data set. With these steps the data sets are constantly changing. 

 

 

 

Figure 3. Running Time of the Algorithm on Data Sets with Increasing 
Dimensions 

 

Figure 3 shows the running time of groups of data sets with dimensions increasing from 5 

to 40. 

Each group has a fixed data size (from 2,500, 5,000, ... to 20,000). And we set the time 

interval as 1 second.  

Figure 4 shows the running time of groups of data sets with sizes increasing from 2,500 to 

20,000. Each group has fixed number of dimensions (from 5, 10, ... to 40). 
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Figure 4. Running Time of the Algorithm on Data Sets with Increasing Sizes 
 

 

Figure 5. Running Time of the Algorithm on a Data Set with Increasing Time 
Intervals 

 

And we set the time interval as 1 second. The two figures indicate that our algorithm is 

scalable over dimensionality and data size.  

Figure 5 shows the running time of a data set with 10000 data points and 5 dimensions. 

The time interval changes from 1 to 10 seconds, with the gap of 1 second between each two 

adjacent time intervals. Figure 5 indicates that our algorithm is scalable over the time 

intervals. 

We next evaluate the effectiveness of our proposed approach on read data sets obtained from UCI 

Machine Learning Repository [22]. We use 5 data sets with various format and content to demonstrate 

how approach works on different data. 

The first one is the ionosphere data set, a radar data set collected by system in Goose Bay, Labrador. 

It contains 351 data points and each of data point has 34 dimensions. Two ground truth classes exist in 

the ionosphere data: g as good, and b as bad.  

The second data set is Wine Recognition data set. It contains the results of a chemical analysis of 

wines grown in the same region in Italy but derived from three different cultivars. It contains 178 

instances. Each instance has 13 features which means the data set is defined in a 13 dimensional data 

space. Three clusters are difined with the sizes of 59, 71 and 48. 

The third data set is the glass data set for different glass types. The glass data set contains 214 data 

points in a 9 dimensional data space. There are 7 classes in the glass data.  
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The fourth data set is Ecoli data set for Protein Localization Sites. There are 336 instances, each of 

which having 7 features. 8 clusters are contained in the data set.  

The fifth data set is the well-known iris data set for various iris plant types. It contains 150 data 

points, and each of the data points has 4 dimensions. There are altogether 3 classes in the iris data: 

Irissetosa, Irisversicolor, and Irisvirginica. 

We perform our algorithm on these 5 real data sets. The experimental accuracy on the ionosphere 

data set is 93.3%. The experimental accuracy on the ionosphere data set is 91.6%. The experimental 

accuracy on the ionosphere data set is 88.2%. The experimental accuracy on the ionosphere data set is 

92.4%. The experimental accuracy on the ionosphere data set is 86.5%. From the experimental results 

we can see that our algorithm performs well on various data sets.  

 

4. Conclusions 

In this paper, we present a novel approach to analyzing the dynamic multi-dimensional 

data sets, which always keeps the clusters and outlier in the most updated status when the data 

points in the data sets change their positions and availabilities constantly. We will further 

conduct more experiments on synthetic and real data sets to test and demonstrate the 

efficiency and effectiveness of our approach. 
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