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Abstract 

Microarray gene expression techniques and tools have become of a substantial importance 

and widely used to analyze the protein-protein interaction (PPI) and gene regulation network 

(GRN) research in recent years since it can capture the expressions of thousands of genes in 

a single experiment. Such dataset poses a great challenge for finding association rules in a 

faster way because of the presence of large number of columns but a small number of rows. 

Therefore, to meet the challenge of high volume of gene expression and the complexity of 

microarray data, various data mining methods and applications have been proposed for 

analyzing gene expressions. However, it is not trivial to extract biologically meaningful 

information from the huge amount of gene expression data in understanding of gene 

regulation networks and cellular state, because most cellular processes are regulated by 

changes in gene expression. Association rule mining techniques are helpful to find 

relationship between genes, but most of the developed association rule mining algorithms are 

based on main memory and single processor based techniques which are not capable of 

handling ever increasing large data and producing result in a faster way. In this paper, we 

proposed a MapReduce framework for mining association rules from a huge microarray gene 

expression dataset on Hadoop; which not only overcomes of the main memory bottleneck but 

also highly scalable in terms of increasing data size. When we apply this new method to the 

mice lungs and spinal cord microarray compendium data, it identifies a majority of known 

regulons as well as novel potential target genes of numerous key transcription factors. 

Extensive experimental results show that our proposed approach is efficient for mining high 

confident association rules from large microarray gene expression datasets in terms of time 

and scalability.   

 

Keywords: Microarray Data, Gene Expression, MapReduce, Hadoop, Association Rules, Bioinformatics, 

Parallel Processing 
 

1. Introduction and Motivations 

Bioinformatics is a promising new field which applies computing technology in the 

molecular biology and develops algorithms to analyze biological data. Since biological data, 

such as DNA, protein sequence, gene expression dataset exist in huge volumes and reveal 

biological information as well, it is important to develop effective methods to compare and 

align DNA or protein sequences and find relationship between gene expression data. Gene is 

a segment of DNA sequence, which contains the formula for the chemical composition of one 

particular protein; hence genes serve as the blueprints for proteins and some additional 

products. Nowadays, the expression levels of thousands of genes, possibly all genes in an 
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organism, can be measured simultaneously in a single experiment using a microarray. This 

new technology gives rise to a challenge to interpret the meaning of this immense amount of 

biological information formatted in numerical matrices. A key step in the analysis of gene 

expression data is to find association and correlation relationship between gene expression 

patterns [1, 17-19]. Also, using microarray data can reveal the structure of the transcriptional 

gene regulation processes, which is called reverse engineering [2].  

In microarray gene expression data analysis, it is often of interest to identify genes that 

share similar expression profiles with a particular gene such as a key regulatory protein. 

Multiple studies have been conducted using various correlation measures to identify co-

expressed genes. While working well for small datasets, the heterogeneity introduced from 

increased sample size inevitably reduces the sensitivity and specificity of these approaches. 

This is because most co-expression relationships do not extend to all experimental conditions. 

With the rapid increase in the size of microarray datasets, identifying functionally related 

genes from large and diverse microarray gene expression datasets is a key challenge [22].  

Although successful in analyzing small datasets, the above mentioned correlation or 

distance measures will be less helpful for searching large datasets, such as microarray 

compendium data. This is because for most functionally related genes, tight correlation only 

occurs under specific experimental conditions. Therefore global correlation measures taken 

across diverse experimental conditions will be significantly reduced, and thus undermine its 

ability to recognize functional related genes. Given the microarray compendium scenario, we 

hypothesized that statistically significant correlation can still be detected using Microarray, but 

strong correlation will be confined to a subset of samples/experimental conditions [22].  

Many researchers have focused to construct the gene regulatory network using association 

rules mining method. Traditional methods [3-5, 17-19] for finding association rules firstly 

extract frequent itemsets, and then mine high confident association rules from frequent 

itemsets. Literature [6] was proposed to mine frequent itemsets by using sample enumeration, 

which explores the enumeration space by constructing projected transposed tables 

recursively. However, it has some limitations, for example: (i) when the microarray dataset is 

dense, it is very time consuming. (ii) It keeps the historical frequent closed patterns in 

memory, which limits the scalability (iii) generated patterns can not reveal the complex gene 

regulation from microarray data. 

 Literatures [8] and [9] describe two algorithms called FARMER and Top-k covering rule 

groups respectively that are specially designed to discover association rules from microarray 

datasets. Instead of finding individual association rules, FARMER and top-k discovers upper 

bounds of interesting rule groups by performing depth-first row enumeration using chi-square 

value. Although experiments on real biological datasets show faster mining time [8] and [9] 

than previous approaches; however, the FARMER cannot handle activation and inhibition 

support of genes to generate frequent items [1].  

Recently SAW [1], was proposed to generate high confident association rules without 

using frequent itemsets. This method first generates all paired rules, and then strong 

association rules are produced by combing them using the forward and backward combined 

approach. Although this method can avoid some unnecessary computing; however, it 

produces huge amount of paired rules including invalid rules, in paired rules as well as 

forward and backward combined step. Besides, this method cannot perform mining 

operations in a faster way because of column enumeration approach [20]. Therefore, it needs 

different level wise pruning techniques; hence it shrinks the memory space exponentially.  

On the other hand, microarray data gets bigger and reaches larger as the web based 

applications have grown in the world. Before the web did not exist, we did not have enough 

publically available microarray data to analyze with the limited volumes of data. However, 
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collecting and analyzing large datasets with the existing file systems and Relational Database 

Management Systems (RDBMS) are not sufficient to store and handle the data efficiently. 

Besides, the legacy computing power and platforms were not useful for the big data. There is 

an increasing interest in approaches to data analysis in scientific computing as essentially 

every field is seeing an exponential increase in the size of the data deluge. The data sizes 

imply that parallelism is essential to process the information in a timely fashion [20, 21]. This 

is generating justified interest in new runtimes and programming models that, unlike 

traditional parallel models, directly address the data-specific issues where we assume that 

data is partitioned and transmitted to the computing nodes in advance. Therefore, it is 

important to efficiently partition and distributes the data to other nodes for parallel 

computation. In this environment lot of message passing and I/O operation occurs due to 

MPI. Experience has shown that the initial (and often most time consuming) parts of data 

analysis are naturally data parallel and the processing can be made independent with perhaps 

some collective (reduction) operation [20, 21].  

From the above discussion, we can conclude that i) main memory and single processor 

based hardware resources are not capable of handling ever increasing gene expression dataset. 

Since, the gene expression dataset could not be fit into the main memory. ii) The traditional 

Apriori or FP like [3-5] algorithms is not suitable. iii) The traditional parallel and distributed 

data mining algorithms are also not suitable, since, these also poses very impractical to use 

distributed systems for large datasets mining [8]. This structure has motivated the important 

MapReduce [11] paradigm and many follow-on extensions. But, MapReduce [11-13] is 

relatively new and suitable platform to mine these sorts of datasets, since it only needs to 

share and pass support of an individual candidate itemset rather passing the itemset itself. 

Therefore, communication cost is low compared to existing approaches. Another 

advantageous thing is memory requirement is not a major concern in a MapReduce 

framework and Hadoop/MapReduce based applications also has been developed recently for 

bioinformatics research [20, 21].  

Our contributions in this work can be summarized as follows: (i) we proposed a cloud 

based MapReduce framework for mining association rules from large microarray gene 

expression dataset for the first times ever (ii) we developed an algorithm namely ‘BMR 

algorithm’ which not only mines our desired association rules but also highly scalable in 

terms of increasing data load; (iii) we optimized the effectiveness of SAW algorithm [2] 

using vertical data layout format instead of horizontal layout format. iv) We have showed 

how to efficiently and vertically partition the microarray dataset and perform our MapReduce 

based computation on Hadoop. 

The rest of this paper is organized as follows: The problem formulation and related 

knowledge is illustrated in Section 2. Section 3 presents our proposed approach. We devised 

some experimental results in section 4. Finally we conclude at section 5.  

 

2. Problem Statement and Background Study  
 

2.1. Analysis of Microarray Dataset  

The microarray dataset can be seen as a matrix, denoted by real expression numbers shown 

in Table 1. The columns denote different samples [2] and rows denote genes. In order to mine 

frequent patterns, microarray data need to be converted each gene expression number into one 

of the three numbers: 1, -1 and 0, which denotes expressed, depressed and non-expressed, 

respectively, as shown in table 2. Since existing methods [2-5] of finding association rules 

from a large data set have been adapted or directly applied to gene expression data, these 
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association rules mining algorithms have been proven useful for identifying biologically 

relevant association among the genes.  

 

Table 1. An Example of Microarray 

Gene HiFA1   HiFA2   HiFA3 HiFA4 HiFA5 HiFA6 

A 2.39 0.27 2.04 0.26 1.4 1.23 

B 0.33 0.68 0.46 -0.06 2.16 0.09 

C 1.26 1.70 1.58 1.13 1.13 1.13 

D 0.77 1.01 0.73 0.63 0.34 0.63 

E 0.62 0.99 0.87 0.42 1.42 0.35 

F 0.33 0.25 0.10 2.15 0.15 1.17 

 

Table 2. Converted Microarray Dataset 

Gene HiFA1   HiFA2   HiFA3 HiFA4 HiFA5 HiFA6 

A 1 0 1 0 1 1 

B 0 1 0 0 1 0 

C 1 1 1 1 1 1 

D 1 1 1 1 0 1 

E 1 1 1 0 1 0 

F 0 0 0 1 0 1 

 

2.2 Cloud Technologies and the Services for Analyzing Big Dataset 

Cloud computing is the delivery of computing as a service rather than a product, whereby 

shared resources, software, and information are provided to computers and other devices as a 

utility over a network. Cloud computing entrusts, typically centralized, services with your 

data, software, and computation on a published application programming interface (API) over 

a network. It has a lot of overlap with software as a service (SaaS) [23]. End users access 

cloud based applications through a web browser or a light weight desktop or mobile app 

while the business software and data are stored on servers at a remote location. Cloud 

application providers strive to give the same or better service and performance than if the 

software programs were installed locally on end-user computers. At the foundation of cloud 

computing is the broader concept of infrastructure convergence (or Converged Infrastructure) 

and shared services. This type of data centre environment allows enterprises to get their 

applications up and running faster, with easier manageability and less maintenance, and 

enables IT to more rapidly adjust IT resources (such as servers, storage, and networking) to 

meet fluctuating and unpredictable business demand [23]. 

2.3 Apache Hadoop, HDFS and Relevance of MapReduce to Many-Task Computing  

Thus, Google implemented Google File Systems (GFS), BigTable, and MapReduce 

parallel computing platform, which Apache Hadoop and HBase projects are motivated from. 

Hadoop is the parallel programming platform built on Hadoop Distributed File Systems 

(HDFS) for MapReduce computation that processes data as <key, value> pairs. HBase runs 

on HDFS with Hadoop MapReduce to store and process big data. HBase and Hadoop have 

been adopted dramatically for the enterprise computing because business world always has 

the big data such as log files for web transactions, which is not easy to store and compute. 

Especially, when Amazon AWS supports Hadoop instances, it becomes much easy for people 

http://en.wikipedia.org/wiki/Product_%28business%29
http://en.wikipedia.org/wiki/Utility_computing
http://en.wikipedia.org/wiki/Software_as_a_service
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Mobile_app
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Server_%28computing%29
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to run [11-13]. MapReduce was developed within Google as a mechanism for processing 

large amounts of raw data. This data is so large, so it must be distributed across thousands of 

machines in order to be processed in a reasonable time. This distribution implies parallel 

computing since the same computations are performed on each CPU, but with a different 

dataset. The user of the MapReduce library expresses the computation as two functions: Map 

and Reduce [11-13]. It merges together these values to form a possibly smaller set of values. 

Typically just zero or one output value is produced per reduce invocation. The intermediate 

values are supplied to the user’s reduce function via iterator. This allows us to handle lists of 

values that are too large to fit in the main memory. On the other hand, Hadoop is a popular 

open source implementation of MapReduce, which is a powerful tool designed for deep 

analysis and transformation of very large data sets inspired by MapReduce and Google File 

System [11-13]. It enables applications to work with thousands of nodes and petabytes of data. 

Hadoop uses a distributed file system called Hadoop Distributed File System [11-13], which 

creates multiple replicas of data blocks and distributes them on computing nodes to enable 

reliability and has extremely rapid computations to store data and intermediate results [11-13]. 

In a Hadoop cluster, a master node controls a group of worker nodes on which the Map and 

Reduce functions run in parallel. Apache Hadoop has a similar architecture to Google’s 

MapReduce [11-13] runtime. Hadoop accesses data via HDFS [24], which maps all the local 

disks of the compute nodes to a single-file system hierarchy, allowing the data to be dispersed 

across all the data/computing nodes. HDFS also replicates the data on multiple nodes so that 

failures of nodes containing a portion of the data will not affect the computations which use 

that data. Hadoop schedules the MapReduce computation tasks depending on the data locality, 

improving the overall I/O bandwidth. The outputs of the map tasks are stored in local disks 

until the reduce tasks access them (pull) via HTTP connections. Although this approach 

simplifies the fault handling mechanism in Hadoop; it adds a significant communication 

overhead to the intermediate data transfers, especially for applications that produce small 

intermediate results frequently. Apache Hadoop runs only on Linux operating systems [24].  

MapReduce programming model comprises of two computation steps (map/reduce) and an 

intermediate data shuffling step, which can be used to implement many parallel applications 

[11-13]. The three steps collectively provide functionality beyond the requirements of simple 

many-task computations (MTC). However, this does not hinder the usability of MapReduce 

to MTC applications. For example, when only a map operation is used, the MapReduce 

programming model reduces to a “map-only” version that is an ideal match for MTC 

applications. Furthermore, with the capability of adding a “reduction” operation MapReduce 

can be used to collect or merge results of the embarrassingly parallel phase of some of the 

MTC applications as well. Our research on applying MapReduce to computations was 

motivated by these observations [11-13]. 

2.3 Mining Association Rules   

Let the data set DM = {t1, t2, tn} be a set of n transactions from microarray dataset after 

transactionization of the microarray dataset in table 1 and shown at table 3. Also suppose I = 

{i1, i2, im} be the set of items. The support of an item X is the number of transactions in DM 

where item X occurs. Item X is a frequent item if and only if the support of X is greater than 

the minimum support threshold. An association rule is described as the form LHS=>RHS 

denoted as R; where LHS and RHS are disjoint itemset. LHS is referred to as the antecedent 

itemset and RHS as the consequent itemset. The support of R is the number of transactions in 

D that contain both LHS and RHS. The confidence of R is the ratio supports (LHS U 

RHS)/support (LHS). A rule which satisfies the minimum support and minimum confidence 

thresholds is said to be a strong association rule.  
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3. Proposed MapReduce Framework  

In this section, we present an efficient algorithm BMR (Bio-MapReduce for association 

rules mining), to generate high confident association rules. First, we describe the input and 

output schemes for the proposed framework. After that we describe the BMR algorithm. 

Finally we describe a step by step example to demonstrate our proposed framework. 
 

Table 3. Key/Value Pairs for the Proposed MapReduce Framework 

Legend: CI is candidate itemset, FI is frequent itemset, SAR is strong association rules and CSAR is for closed 

strong association rules. 

3.1 Proposed Programming Model  

Since microarray dataset is very huge with a large number of columns and small number of 

rows, it is very time consuming process to use horizontal format of the dataset, hence we used 

the concept of vertical format on modified parallel balanced FP-growth [13], as like 

transactional dataset. Before dealing with microarray datasets with MapReduce on Hadoop 

platform we need to convert the gene expression microarray dataset into converted 

microarray as shown by table 2 and after that we transactionize the converted datasets into 

two tuples as gene sample id or GID (i.e. HiFA1, HiFA2,…) and itemset shown by table 3; 

based on the following assumption; we can consider table 2 as a transactional dataset, where 

A denotes the expression number of A is 1, while –A means the value is -1 which cannot be 

seen in this example and 0 means inactive. Then transactionized dataset in disk files are 

splited into smaller segments automatically after stored on HDFS [13-15]. Therefore, after 

splitting the transactionized dataset into smaller segments the master node assign task to idle 

worker nodes. Table 3 has shown the input/output schemes for our proposed MapReduce 

framework. After that worker nodes scan the transactions in the smaller segments as < 

itemset, GID> pairs and generate output as <candi_itemset, support> pairs. These values are 

inputted to reduce phase after sorting and merging operations.  

We use two level pruning- local pruning and the global pruning, using two thresholds 

‘global_min_sup’ and ‘min_conf’. Global pruning is applied on map phase in each segment 

and local pruning is applied in reduce phase. For this purpose we modified the balanced FP-

growth [13] using MapReduce library function using in Java. In reduce phase--1 a worker 

node takes input as <freq_itemset, support> pairs then checks the value of minimum 

confidence for each frequent itemset generated and generate output as <SAR, conf> pairs. In 

reduce phase-2 idle worker nodes find the closed strong association from the strong 

association rules generated in reduce phase 1. Finally the output is stored on the output files 

as <CSAR, conf> pairs. Figure 1 shows the workflow and Figure 2 shows the BMR 

algorithm. 

 

  

I/O Map-1 Map-2 Reduce-1 Reduce-2 

Input: 

key/value pairs  

 

Key: itemset 

Value: GID  

Key: CI 

Value: support 

Key: FI 

Value: support 

Key: AR, 

Value:  

confidence 

Output: key/value 

pairs 

 

Key: CI 

Value: support  

 

Key: FI 

Value: support 

Key:  SAR 

Value: 

confidence 

Key:  CSAR 

Value: confidence 
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Table 4. Transactional Dataset for Table 2 in Vertical Layout Format 

GID (Gene Sample ID) Items 

HiFA1   A, C, D, E 

HiFA2   B, C, D, E 

HiFA3          A, C, D, E 

HiFA4   C, D, F 

HiFA5          A, B, C, E 

HiFA6   A, C, D,F 

 

 
Figure 1. Workflow of the proposed MapReduce framework for mining association 

rules in microarray gene exppression dataset 

3.2 AN EXAMPLE 

Suppose the global_min_sup is 3 and min_conf is 75%. Now according to our proposed 

framework the converted microarray dataset presented in table 3 has been splited into two 

segments on each has three transactions. GIDs 1, 2, 3 are in first segment and transaction 

GIDs 4, 5, 6 are in second segments. Let the master node assigns segment 1 to worker node 

1and segment 2 to worker node 2. Mapper maps the <itemset, GID> pairs and generate output 

as <candi_itemset, support> pairs in map phase 1 and <freq_itemset, support> pairs in map 

phase 2 respectively as intermediate values and inform the master node. Table 5 and 6 shows 

the result of map phase 1 and 7 shows the result of map phase 2. In reduce phase worker 

nodes take input as <freq_itemset, support> pairs then first generate only strong association 

rules then generate closed strong association rules presented by table 8 and 9 as <SAR, conf> 

and <CSAR, conf> pairs respectively. 
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 Table 5. Candidate Itemset: Worker 1 

C. itemset Support C. itemset Support 

A 2 CE 3 

C 3 DE 3 

D 3 ACD 3 

E 3 ACE 2 

AC 2 ADE 2 

AD 2 CDE 3 

AE 2 ACDE 2 

CD 3   

 

Table 6. Candidate Itemset: Worker 2 

 

Table 7. Frequent Itemset: Worker 3 

                  

Table 8. Strong Association Rules: Worker 4 

                    

 

 

  

C. itemset Support C.itemset Support 

A 2 AE 1 

C 3 CD 2 

D 2 CE 1 

E 1 ACD 1 

AC 2 ACE 1 

AD 1   

Frequent itemset Support Frequent itemset Support 

A 4 AC 4 

C 6 CD 5 

D 5 CE 4 

E 4 CDE 3 

DE 3 ACD 3 

AE 3 ACE 3 

AD 3   

Rules  Confidence Rules Confidence Rules Confidence 

A=>C 100% CE=>D 75% AC=>D 75% 

A=>D 75% CE=>A 75% A=>CE 75% 

A=>E 75% D=>C 100% C=>D 84% 

AD=>C 100% DE=>C 100% E=>AC 75% 

AE=>C 100% E=>C 100% E=>CD 75% 

AC=>E 75% E=>A 75% A=>CD 75% 
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Table 9. Closed Strong Association Rules: Worker 5 

Closed Rules Confidence Closed Rules Confidence 

A=>CD 75% AE=>C 100% 

A=>CE 75% AC=>E 75% 

AD=>C 100% AC=>D 75% 

CE=>D 75% DE=>C 100% 

CE=>A 75% E=>AC 75% 

E=>CD 75%   

 

 

Figure 2. The BMR Algorithm using MapReduce 
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4. Experimental Results 
 

4.1 Hardware Configurations 

We used Hadoop version 0.20.0, running on a cluster with 6 machines (1 master, 5 

worker). Master node has 3.7 GHz Intel core-2 duo with 4GB of RAM and each worker 

machine has Pentium-D 2.60GHz processor with 2GB RAM. The balanced FP-growth [16] 

was modified in Java using MapReduce library functions and configured HDFS on Ubuntu-

11.04.  

4.2 Description of the Datasets 

We used the gene expression array of lungs and spinal cord dataset, catalogs of gene 

expression of mice [16]. The expression changes for 8,932 and 11514 genes respectively. The 

mice were of ages 1, 6, 16, and 24 month. Fig.3 shows the compared mining time of SAW [1], 

FARMER [8] and BMR algorithm at different thresholds. Datasets were splited across and 

run on small instances of Hadoop which allows to instantiate for 3 and 5 nodes requested for 

the first and second experiment respectively. We follow the load distribution for the nodes 

according to [16]. Table 10 shows the characteristics of these datasets. 

 

Table 10. Characteristics of the Datasets 

Gene expression dataset # Of gene 

expression 

Age (months)** Size of the 

dataset 

Mice age lungs catalog 8, 932 1, 6, 16 and 32 100MB 

Mice age spinal cord catalog 11,514 1, 6, 16 and 32 450MB 
** The mice were of ages 1, 6, 16, and 24 month.  

4.3 Performance Analysis 

In the first experiment we observed that BMR outperforms both FARMER and SAW on 

each threshold shown in Figure 3(a). In the second experiment speed up process has been 

shown by increasing computing worker nodes. Figure 3(b) shows the running time on mice 

lungs datasets across 5 data nodes. We can observe almost 50% improvement on mining time. 

Table 11 and 12 shows execution time per node for the Mapper and reducer nodes 

respectively for min_sup=0.1 and min_conf=0.2 for lungs and spinal cord datasets in second. 

It is noted that we only showed execution time on the time of copying and sorting. 

  

 
Figure 3. Upper: time with change of min_sup & min_conf on mice lungs 

dataset with 3 nodes; Lower: time with 5 worker nodes (speed up) 
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Figure 4. Scalability of the framework with change of min_sup/min_conf on 
mice spinal cord 

 
Figure 4 shows the scalability of the framework on spinal cord dataset with 5 working 

nodes; it implies that more the nodes are, the faster the computation times are. Since the 

algorithm is simply to sort the data set and then convert it to <key, value> pairs, the linear 

result is expected.  

 

 

Figure 5. Performance Bottleneck of the Proposed Framework in Hadoop Small 
Instance with 8 Working  

The performance is linearly increased by adding more nodes for microarray data sets but it 

has limitation. Figure 5 shows that there is a bottleneck in Hadoop small instance, which 

shows that there is a trade-off between the number of nodes and the operations of distributing 

transactions data to nodes, aggregating the data, and reducing the output data for each key so 

that it should not have much performance gain even though adding mode nodes for faster 

parallel computation.  

 
Table 11.  Execution time per node for the Mapper; min_sup=0.1 and 

min_conf=0.2 

# Nodes Execution time (sec.) (Lungs -

110MB)  

Execution time (sec.) (Spinal cord - 

450MB)  

1 1,535  3,312  

2 1,034  2,235  

3 737  1,123  

4 455  825  

5 152  539  
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Table 12.  Execution time per node for Reducer nodes for min_sup=0.1 & 
min_conf=0.2  

# Nodes Execution time (sec.) (Lungs -

110MB)  

Execution time (sec.) (Spinal cord - 

450MB)  

1 853  1,582  

2 663  968  

3 487  758 

4 223  485  

5 92  259  

The output of the proposed framework on Mice lungs and spinal cord as the number of 

closed strong association rules has been shown in table 13 for 5 working nodes. 

 

Table 13. Number of Strong and Closed Strong Association Rules 

Parameters: 

(min_sup/min_conf) 

# Closed Strong Association Rules 

in Datset#1 (Mice lungs) 

# Closed Strong Association Rules in  

Dataset#2 (Mice spinal cord) 

0.4/0.6 2,285 4,786 

0.4/0.7 1,985 3,239 

0.5/0.6 11,46 2,223 

0.5/0.7 833 1,665 

0.6/0.8 322 1,127 

 

5. Conclusions 

Hadoop with MapReduce motivates the needs to propose new algorithms for the existing 

applications that have some efficient algorithms for sequential computation. Besides, it is 

<key, value> based restricted parallel  and distributed computing so that the legacy parallel 

algorithms need to be redesigned with MapReduce framework using some programming 

language Java, Perl or PHP. In this paper, we proposed a MapReduce framework for mining 

association rules from huge gene expression microarray dataset on Hadoop. It overcomes the 

single processor and main memory based rule mining algorithms and highly scalable in terms 

of increasing load. Two experimental results show that our proposed BMR algorithm 

outperforms the latest approaches for mining high confident association rules in terms of time 

and scalability.  The gene expression dataset shows that associated genes can be paired with 

MapReduce approach. Once we have the paired genes, it can be used for more studies by 

statically analyzing them even sequentially, which is beyond this paper. The algorithm has 

been executed on Hadoop small instances with 3 and 5 data nodes. The execution times of the 

experiments show that the proposed algorithm gets better performance while running on large 

number of nodes to a certain point. However, from a certain point, MapReduce does not 

guarantee to increase the performance even though we add more nodes because there is a 

bottle-neck for distributing, aggregating, and reducing the data set among nodes against 

computing powers of additional nodes.  
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