
International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

17

A Robust Tree Induction Method Based on Heuristics and Cluster

Analysis

Nittaya Kerdprasop and Kittisak Kerdprasop

Data Engineering Research Unit, School of Computer Engineering,

Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand

nittaya@sut.ac.th, kittisakThailand@gmail.com

Abstract

Data mining is the process of extracting useful and yet unknown information such as

patterns or associations hidden in stored data. Among various existing techniques applied to

search for interesting patterns, decision tree is one of the most popular tools used for data

mining. Most data mining techniques are data-driven, however, data repositories of interest

in data mining applications can be very large and noisy. Noise is a random error in data.

Noise in a data set can happen in different forms: misclassification or wrong labeled

instances, erroneous or distorted attribute values, contradictory or duplicate instances having

different labels. All kinds of noise can more or less affect the learning performance. The most

serious effect of noise is that it can confuse the learning algorithms to produce complex and

distorted results. The long and complex results are due to the attempt to fit every training

data instance, including noisy ones, into the concept descriptions. This is a major cause of

overfitting problem. Most learning algorithms are designed with the awareness of overfitting

problem due to noisy data. Prepruning and postprocessing are two major techniques applied

to avoid growing a decision tree too deep down to cover the noisy training data. These

techniques are tightly coupled to the tree induction phase. We, on the contrary, design a

loosely coupled approach to deal with noisy data. Our noise-handling feature is in a separate

phase from the tree induction. Both corrupted and uncorrupted data are clustered and

heuristically selected prior to the application of tree induction engine. We observe from our

experimental study that tree models produced from our approach are as accurate as the

models generated by conventional decision tree induction approach. Moreover, upon highly

corrupted data our approach shows a better performance than the conventional approach.

Keywords: Robust tree induction, Noise tolerance, Noisy data, Heuristics, Cluster analysis

1. Introduction

Recent advances in digital information storage and data acquisition technologies have

made it possible to acquire and store large volumes of data. Extracting useful knowledge from

such large volumes of data needs an automatic data mining approach. Decision tree induction

is a popular method for mining knowledge from data by means of decision tree building

and then representing the end result as a classifier tree . Popularity of this method is due

to the fact that mining result in a form of decision tree is interpretability, which is more

concern among casual users than a sophisticated method but lacking of

understandability [6]. A decision tree is a hierarchical structure with each internal node

containing a decision attribute, each node branch corresponding to a distinct attribute

value of the decision node, and the class of decision appears at the leaf node [3]. The

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

18

goal of building a decision tree is to partition data with mixing classes down the tree

until each leaf node contains data instances with pure class.

When a decision tree is built, many branches may be overly expanded due to noise in

the training data set. Noisy data contain incorrect attribute values caused by many

possible reasons, for instance, faulty data collected from instruments, human errors at

data entry, errors in data transmission [1]. Noise in a data set can happen in different

forms: (1) misscalssification or wrong labeled instances (called class noise), (2) erroneous or

distorted attribute values (called attribute noise), (3) contradictory or duplicate instances

having different labels, and (4) missing attribute values. As an example, the first two data

instances in Table 1 [11] contain a class noise such that a class label ‘N’ is wrongly recorded

as ‘P.’ If noise occurs in the training data, it can lower the performance of the learning

algorithm [14]. The serious effect of noise is that it can confuse the learning algorithm

to produce too specific model because the algorithm tries to classify all records in the

training set including noisy ones. This effect is demonstrated in Figure 1.

Table 1. A Training Data Set with class noise in the first and second Instances

No. Attributes Class

 Outlook Temperature Humidity Windy

1 sunny hot high false N P

2 sunny hot high true N P

3 overcast hot high false P

4 rain mild high false P

5 rain cool normal false P

6 rain cool normal true N

7 overcast cool normal true P

8 sunny mild high false N

9 sunny cool normal false P

10 rain mild normal false P

11 sunny mild normal true P

12 overcast mild high true P

13 overcast hot normal false P

14 rain mild high true N

Figure 1. A Decision Tree Built from a Correct Data Set (left) versus a Tree
Induced from Noisy Data (right)

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

19

Learning from noisy data leads to the problem known as overfitting [4, 8, 13]. General

solution to this problem is a tree pruning method to remove the least reliable branches,

resulting in a simplified tree that can perform faster classification and more accurate

prediction about the class of unknown data class labels [4, 8, 10].

Most decision tree learning algorithms are design with the awareness of noisy data.

The ID3 algorithm [9] uses the pre-pruning technique to avoid growing a decision tree

too deep down to cover the noisy training data. Some algorithms adopt the technique of

post-pruning to reduce the complexity of the learning results. Post-pruning techniques

include the cost-complexity pruning, reduced error pruning, and pessimistic pruning [7],

[11]. Other tree pruning methods also exist in the literature such as the method based on

minimum descriptive length principle [12], and dynamic programming based

mechanism [2].

A tree pruning operation, either pre-pruning or post-pruning, involves modifying a

tree structure during the model building phase. Our proposed method is different from

most existing mechanism in that we deal with noisy data prior to the tree induction

phase. Its loosely coupled framework is intended to save memory space during the tree

building phase and to ease the future extension on dealing with streaming data. We

present the research framework and the detail of our methodology in Section 2. The

prototype of our implementation based on the logic programming paradigm is

illustrated in Section 3. Efficiency of our implementation on noisy data is demonstrated

in Section 4. Conclusion and discussion appear as a last section of this paper.

2. Robust Tree Induction Method

Our proposed system has been named robust-tree induction to enunciate our

intention to design a decision tree induction method with a noise tolerant property. The

framework as shown in Figure 2 is composed of the robust-tree component, which is the

noise tolerant decision tree induction part, and the testing component responsible for

evaluating the accuracy of the decision tree model as well as reporting some statistics

such as tree size and running time.

Noise tolerance of our robust-tree induction method can be achieved through the

selection of the representative data, instead of learning from each and every training

data instance. These selected data are used further in the tree building phase. Training

data are first clustered by clustering module to find the mean point of each data group.

The data selection module then uses these mean points as a criterion to select the

training data representatives. Data around a mean point are considered suitable

representatives of a group. This idea is based on the assumption that data along the

border line of each group might be the outliers or the noisy instances. It is a set of data

representatives that to be used as input of the tree induction phase. Heuristics have to be

applied as a threshold in the representative selection step and as a stopping criterion in

the tree building phase. The algorithms of a main module as well as the clustering, data

selection, and tree induction modules are presented in Figures 3-6, respectively.

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

20

User

Training data

Test data

Robust-tree

induction
Main module

Clustering module

Data selection module

Tree induction module

Testing module

Tree model

Accuracy report

Figure 2. A Framework of the Robust Tree Induction System

Input: Training data set D with class label

Output: A robust tree model M

Steps:

1. Read D and extract class label to check distinctive values K

2. Cluster D to group data into K groups

3. In each group

 3.1 Get mean attribute values

 3.2. Compute similarity of each member compared to its mean

 3.3 Compute average similarity and variance

 3.4 Set threshold T = 2*Variance

 3.5 Select only data with similarity > T

4. Set stopping criteria S for tree building as

 S = K – log [(number of removed data + K) / |D|]

5. Send selected data and criteria S into tree-induction module

6. Return a tree model

Figure 3. Main Module of the Robust Tree Induction System

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

21

Steps:

1. Initialize K means /* Create temporary mean points for all K clusters. */

2. Call find_clusters(K, Instances, Means) /* assign each data to the closest

cluster; reference point is the mean of

cluster */

3. Call find_means(K, Instances, NewMeans) /* compute new mean of each

cluster; this computation is based on current members

of each cluster */

4. If Means NewMeans Then repeat step 2

5. Output mean values and instances in each clusters

Figure 4. Data Clustering Algorithm

Steps:

1. For each data cluster

2. Compute similarity of each member compared to cluster mean

3. Computer average similarity score of a cluster

4. Computer variance on similarity of a cluster

5. Threshold = 2* variance

6. Remove member with similarity score < Threshold

7. Return K clusters with selected data

Figure 5. Heuristic-based Data Selection Algorithm

Steps:

1. If data set is empty /* Case 1 */

2. Then Assert(node(leaf,[Class/0], ParentNode)

3. Exit /* insert a leaf node in a database, then exit */

4. If number of data instances < MinInstances /* Case 2 */

5. Then Compute distribution of each class

6. Assert(node(leaf, ClassDistribution, ParentNode)

7. If all data instances have the same class label /* Case 3 */

8. Then Assert(node(leaf, ClassDistribution, ParentNode)

9. If data > MinInstances and data have mixing class labels /* Case 4 */

10. Then BuildSubtree

11. If data attributes conflict with the existing attribute values of a tree /* Case 5 */

12. Then stop growing and create a leaf node with mixing class labels

13. Return a decision tree

Figure 6. Tree Induction Algorithm

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

22

3. A Logic-based System Implementation

The implementation of a robust tree induction method is based on the logic

programming paradigm using SWI-Prolog (www.swi-prolog.org). Data set takes the

format of Horn clauses as illustrated in Figure 7.

%% Data weather

%

% attribute detail including names and their possible values

%

attribute(outlook, [sunny, overcast, rainy]).

attribute(temperature, [hot, mild, cool]).

attribute(humidity, [high, normal]).

attribute(windy, [true, false]).

attribute(class, [yes, no]).

%

% data detail

%

instance(1, class=no, [outlook=sunny, temperature=hot, humidity=high, windy=false]).

instance(2, class=no, [outlook=sunny, temperature=hot, humidity=high, windy=true]).

instance(3, class=yes, [outlook=overcast, temperature=hot, humidity=high, windy=false]).

instance(4, class=yes, [outlook=rainy, temperature=mild, humidity=high, windy=false]).

instance(5, class=yes, [outlook=rainy, temperature=cool, humidity=normal, windy=false]).

instance(6, class=no, [outlook=rainy, temperature=cool, humidity=normal, windy=true]).

instance(7, class=yes, [outlook=overcast, temperature=cool, humidity=normal, windy=true]).

instance(8, class=no, [outlook=sunny, temperature=mild, humidity=high, windy=false]).

instance(9, class=yes, [outlook=sunny, temperature=cool, humidity=normal, windy=false]).

instance(10, class=yes, [outlook=rainy, temperature=mild, humidity=normal, windy=false]).

instance(11, class=yes, [outlook=sunny, temperature=mild, humidity=normal, windy=true]).

instance(12, class=yes, [outlook=overcast, temperature=mild, humidity=high, windy=true]).

instance(13, class=yes, [outlook=overcast, temperature=hot, humidity=normal, windy=false]).

instance(14, class=no, [outlook=rainy, temperature=mild, humidity=high, windy=true]).

%

Figure 7. A Weather Training Data Set [11] in a Format of Logic-based
Programming

Robust-tree induction system provides two level of noise tolerance: 0 and 1. Level 0

corresponds to ordinary ID3 style [9] without additional noise handling mechanism.

Level 1 is a robust-tree induction with a heuristic-based mechanism to deal with noisy

data. The main module of the system is the module ‘rt’ which can be displayed as a

logic program as follows:

%% Main module: rt

%% ==========

 rt :-

 writeln('Robust tree induction for data classification:'), nl,

 writeln(' There are two level of robustness'),

 writeln(' 0 = = simply ID3 style without noise handling function'),

 writeln(' 1 = grouping data then select representatives to build tree'), nl,

 write(' Please specify level of robustness (and end command with a period): '),

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

23

 read(L),

 write(' Training-data file name (e.g. data-sample.) ==> '),

 read(D), % get data file name as typed by user

 consult(D), % then open and compile that file; data is also a prolog program

 get_time(StartTime),

 % retractall: clear all nodes and node-ID counter in the DB

 % node and counter are two global values of this program

 retractall(node(_, _, _)),

 retractall(counter(_)),

 % findall: make list Attr of all attribute names

 % except attribute class

 findall(A, (attribute(A, _), A \= class), Attr),

 rtree(L, Attr), % then call robust tree building module

 get_time(FinishTime),

 Time is FinishTime-StartTime,

 nl,write('ROBUST-TREE:: robust level '),write(L),write(', '),

 write('Model building time = '), write(Time),writeln(' sec.').

The main module interacts with user to input the file name and to specify the tolerant level

of robust tree. The predicate that deals with robust tree induction is ‘rtree.’ The Prolog

coding of robust tree induction at noise tolerance levels 0 and 1 are presented as the

predicates rtree(0, Attr) and rtree(1, Attr), respectively. The Prolog codes are as

follows:

% --------------------------------------

% start traditional tree-induction with ID3 algorithm

 rtree(0, Attr) :- !,

 % make a list Ins = [1,2,...,n] of all instance ID

 findall(N, instance(N, _, _), Ins),

 % create decision tree, start with the root node

 % set MinInstance in leaf nodes = 1

 % then show model as decision tree once finish building phase

 induce_tree(root, Ins, Attr, 1),

 print_tree_model.

%---

% start clustering before induce a robust tree

 rtree(1, Attr) :- !,

 attribute(class, ClassList),

 length(ClassList, K), % K is for specifying number of clusters

 findall(N, instance(N,_,_),Ins),

 clustering(Ins, K, Clusters, Means), % grouping instances

 select_DataSample(Clusters,K,Means,[],Sample),

 % then select Sample

 removed_Data(Sample, Ins, Removed),

 length(Removed, R),

 length(Ins, I),

 MinInstance is K-log((R+K)/I), % a heuristic to prune tree

 induce_tree(root,Sample,Attr,MinInstance),

 print_tree_model.

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

24

Figure 8. User Interface of the Logic-based Robust-tree Induction System
Running with the Noise Tolerance at Level 0

The robust tree induction system is invoked by the predicate ‘rt’ as shown in Figure 8. The

built model can be tested for its predictive accuracy by calling the predicate ‘test.’ Running

result in Figure 8 is the robust tree model with zero noise tolerance. Therefore, it generates

the same model as the one we got from the conventional decision tree induction algorithm. At

the noise tolerance level 1, the system can induce a more compact tree model as shown in

Figure 9. Model evaluation results using the training data are shown in Figure 10.

outlook=sunny

 humidity=high

 windy=true => [(class=no)/1]

 windy=false

 temperature=hot => [(class=yes)/1]

 temperature=mild => [(class=no)/1]

 temperature=cool => [(class=yes)/0]

 humidity=normal => [(class=yes)/2]

 outlook=overcast => [(class=yes)/4]

 outlook=rainy

 windy=true => [(class=no)/2]

 windy=false => [(class=yes)/3]

Size of tree: 12 internal nodes and 8 leaf nodes.

ROBUST-TREE:: robust level 0,

Model building time = 0.125 sec.

 outlook=sunny

 humidity=high => [(class=no)/2, (class=yes)/1]

 humidity=normal => [(class=yes)/2]

 outlook=overcast => [(class=yes)/4]

 outlook=rainy

 windy=true => [(class=no)/2]

 windy=false => [(class=yes)/3]

Size of tree: 7 internal nodes and 5 leaf nodes.

ROBUST-TREE:: robust level 1,

Model building time = 0.0940001 sec.

Figure 9. Conventional Decision Tree Model (left) versus the Robust Tree
Model (right)

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

25

?- test.

Test-data file name (e.g. data-sample-test.) ==>

data-weather.

% data-weather compiled 0.00 sec, -512 bytes

Predicting correctly: 13 from 14 cases ==>

Accuracy = 0.928571

 Model Test Time = 0.016 sec.

 ?- test.

Test-data file name (e.g. data-sample-test.) ==>

data-weather.

% data-weather compiled 0.00 sec, 0 bytes

Predicting correctly: 14 from 14 cases ==>

Accuracy = 1

 Model Test Time = 0.0 sec.

Figure 10. Model Evaluation Results of Conventional Decision Tree Model
(left) versus the Robust Tree Model (right)

The robust tree with noise tolerance level 1 can induce a compact decision tree model by

applying the cluster analysis technique to select data representatives and also using heuristics

to stop the tree growing phase. The cluster analysis module and the test module as a Prolog

program are given as follows:

%% Module Clustering

%% ==============

clustering(Ins, K, Clusters, Means) :-

 length(Ins, N),

 initialized_means(N, K, [], MeanPoints),

 % e.g. MeanPoints = [2/1, 3/2]

 % get attributes of initial MeansPoints

 findall(MeanAttr/Cluster, (member(P/Cluster, MeanPoints),

 instance(P, _, MeanAttr)),

 MeansAttrList),

 % e.g. [(size=small,color=red,shape=circle)/1,

 % (size=large,color=blue,shape=circle)/2]

 assign_clusters(MeansAttrList, Ins, K, Clusters,Means).

%

%

assign_clusters(MeansAttr, Ins, K, Clusters,Means) :-

 find_clusters(MeansAttr, Ins, [], InsClusterList),

 find_means(InsClusterList, K, [], TempMeans),

 getRepresentatives(TempMeans,Ins,[],RepList),

 getMeans(RepList,[],NewMeans),

 find_clusters(NewMeans, Ins, [], NewInsClusterList),

 entropy(InsClusterList, K, PreEntropy),

 entropy(NewInsClusterList, K, PostEntropy),

 average(PreEntropy, PreEn),

 average(PostEntropy, PostEn),

 (PostEn >= PreEn, Clusters = InsClusterList, Means = NewMeans, ! ;

 assign_clusters(NewMeans, Ins, K, Clusters,Means),!).

%%

initialized_means(_, 0, Means, Means) :- !.

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

26

initialized_means(N, K, Means, NewMeans) :-

 MeanIns is random(N-1)+1,

 NewK is K-1,

 initialized_means(N, NewK, [MeanIns/K|Means], NewMeans).

%%

find_clusters(_, [], List, List) :- !.

find_clusters(MeanAttrList, [Ins|Rest], CurrentList, NewList) :-

 findall(Cluster/Score, (instance(Ins,_, InsAtt),

 member(MAtt/Cluster, MeanAttrList),

 similarity(MAtt, InsAtt, 0, Score)),

 ClusterScoreList),

 maximum(ClusterScoreList, Cluster/_),

 find_clusters(MeanAttrList, Rest, [Ins/Cluster|CurrentList], NewList).

similarity([],[],S,S) :- !.

similarity([A | RestA1], [A | RestA2], Score, NewS) :-

 NewScore is Score + 1, !,

 similarity(RestA1, RestA2, NewScore, NewS).

similarity([A1| RestA1], [A2|RestA2], Score, NewS) :-

 A1 \= A2,

 similarity(RestA1, RestA2, Score, NewS).

%%

minimum([ClusterScore], ClusterScore) :- !.

minimum([C/S | Rest], Cluster/Score) :-

 minimum(Rest, Clus/Sc),

 (Sc > S, Cluster/Score = C/S ;

 Cluster/Score = Clus/Sc), !.

%%

find_means(_, 0, List, List) :- !.

find_means(InsClusterList, K, CurrentList, NewList) :-

 findall(Ins, member(Ins/K, InsClusterList), InsList),

 findall(Name=Vlist, (attribute(Name,Values),

 Name \= class,

 findall(V/0, member(V,Values), Vlist)),

 AttValueList),

 common_attributes(InsList, AttValueList, AttrList),

 NewK is K - 1,

 find_means(InsClusterList, NewK, [AttrList/K | CurrentList], NewList).

%%

common_attributes([], AttValueList, AttList) :- !,

 findall(A=V, (member(A=VList, AttValueList),

 maximum(VList, V/_)), AttList).

common_attributes([Ins|Rest], AttValueList, AttList) :-

 instance(Ins,_, AttValue),

 count_value(AttValue, AttValueList, NewAttValueList),

 common_attributes(Rest, NewAttValueList, AttList).

%%

count_value([], AVList, AVList) :- !.

count_value([A=V|Rest], AttValueList, NewAttValueList) :-

 member(A=VList, AttValueList),

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

27

 delete(AttValueList, A=VList, TempAttValueList),

 member(V/Count, VList),

 delete(VList, V/Count, TempVList),

 NewCount is Count + 1,

 append([V/NewCount], TempVList, NewVList),

 append([A=NewVList], TempAttValueList, NewAVList),

 count_value(Rest, NewAVList, NewAttValueList).

%%

entropy(_, 0, []) :- !.

entropy(InsCluster, K, Entropy) :- K>0,

 findall(Ins, member(Ins/K, InsCluster), InsList),

 length(InsList, InsLen),

 (InsLen >0,

 compute_info(InsList, InsLen, Info),

 Entropy = [K/Info | RestEntropy];

 Entropy = [K/1 | RestEntropy]),

 NewK is K-1,

 entropy(InsCluster, NewK, RestEntropy).

sum_list([], 0) :- !.

sum_list([H|T], Value) :-

 sum_list(T, NewValue),

 Value is H + NewValue.

%%

getRepresentatives([],_, List, List) :- !.

getRepresentatives([Mean/Cluster | Rest], InsList, Current, NewList) :-

 findall(Ins/Score, (member(Ins, InsList),

 instance(Ins,_,InsAtt),

 similarity(InsAtt, Mean, 0, Score)), InsScoreList),

 maximum(InsScoreList, Instance/_),

 delete(InsList, Instance, NewIns),

 getRepresentatives(Rest,NewIns, [Instance/Cluster | Current], NewList).

%%

getMeans([], List, List) :- !.

getMeans([Ins/Cluster | Rest], Current, NewMeans) :-

 instance(Ins,_, InsAtt),

 getMeans(Rest, [InsAtt/Cluster | Current], NewMeans).

removed_Data(DataSample, InstList ,RemovedData) :-

 findall(D, (member(D, InstList),

 not(member(D, DataSample))),

 RemovedData).

%%

select_DataSample(_, 0, _, DataSample, DataSample) :- !.

select_DataSample(Clusters, K, Means, TempData, DataSample) :-

 findall(Ins, member(Ins/K, Clusters), InsKList),

 length(InsKList, Len), Len > 0,

 findall(I/Score, (member(I, InsKList),

 instance(I, _, InsAtt),

 member(MAtt/K, Means),

 similarity(InsAtt, MAtt, 0,Score)), IScoreList),

 average(IScoreList, Average),

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

28

 variance(IScoreList, Average,Variance),

 Threshold is (2 * Variance), % a heuristic for stopping tree induction

 findall(Inst, (member(Inst/Sc, IScoreList),

 Sc >= Threshold), InstList),

 append(InstList, TempData, NewData),

 NewK is K-1,

 select_DataSample(Clusters, NewK, Means, NewData, DataSample).

%%

 average(ValueList, E) :-

 findall(S, member(_/S, ValueList), SList),

 sum_list(SList, SValue),

 length(SList, Len),

 (Len=0, E = 0; E is SValue / Len).

%%

variance(ValueList, Avg, Var) :-

 findall(Diff, (member(_/S, ValueList),

 Diff is abs(S-Avg)),

 DiffList),

 sum_list(DiffList, DValue),

 length(DiffList, DLen),

 D is DLen-1,

 (D=0, Var = 0; Var is DValue / D).

% ===== End Clustering =============

%==== Test TREE =========

test :-

 write('Test-data file name (e.g. data-sample-test.) ==> '),

 read(D),

 consult(D),

 get_time(Start), % get all instance ID of test data

 findall(TestIns, instance(TestIns, _, _), TestInsList),

 length(TestInsList, NumTestCase),

 % send all test cases to test_accuracy module

 % with initial correct case = 0

 test_accuracy(TestInsList, 0, Totalcorrect), !,

 Accuracy is Totalcorrect / NumTestCase,

 nl,write('Predicting correctly: '), write(Totalcorrect),

 write(' from '), write(NumTestCase), write(' cases ==> '),

 write('Accuracy = '), writeln(Accuracy),

 get_time(Finish),

 Time is Finish- Start,

 nl, tab(5), write('Model Test Time = '), write(Time), writeln(' sec.').

 %% Module test_accuracy

 %% get all test cases, and

 %% start evaluating correctness of prediction one case at a time,

 %% stop when the lest of test cases is empty,

 %% then report the total number of cases predicted correctly

 test_accuracy([], C, C) :- !.

test_accuracy([Case| Rest], Correct, NextCorrect) :-

 instance(Case, Trueclass, AttList), % get current test case

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

29

 % search tree for predicted class start from root node

 search_decision(root, AttList, Prediction),

 % compare Trueclass and PredictedClass

 % and count correct prediction

 evaluate(Case, Trueclass, Prediction, Correct, NewCorrect),

 % recursively do the same for other cases

 test_accuracy(Rest, NewCorrect, NextCorrect).

search_decision(StartNode, _, Prediction) :-

 node(leaf, Prediction, StartNode), !.

 % return Prediction once leaf node has been found

search_decision(StartNode, AttList, Prediction) :-

 node(NextNode, TestAtt, StartNode),

 member(TestAtt, AttList), !,

 search_decision(NextNode, AttList, Prediction).

evaluate(_, Trueclass, Prediction, Correct, NewCorrect) :-

 % Prediction might be a mixture such as

 % [(class=positive)/2, (class=negative)/1]

 % thus, PredictedClass should be the majority class

 maximum(Prediction, PredictedClass/_),

 (Trueclass == PredictedClass, NewCorrect is Correct +1;

 NewCorrect = Correct).

 %% ======== END Test-Tree======================

4. Experimental Results

On a series of experimentation, we compare sizes of the tree models as well as

predicting accuracy of the robust-tree models with noise tolerance level 0 and 1. To test

the accuracy and the noise tolerant efficiency of the proposed robust -tree induction

system, we use the standard UCI data repository [5] including the monk, audiology,

breast cancer, and vote data sets. Characteristics of these data sets are summarized in

Table 2. Each data set is composed of a separate subset of training and test data. We

prepare each training data set to contain eight levels of noise, that is , 0%, 1%, 5%, 10%,

15%, 20%, 25%, and 30%. The comparison results of conventional decision tree

induction algorithm (ID3 [9]) and the robust-tree induction algorithm in terms of model

size and predicting accuracy are shown in Figures 11 and 12, respectively.

Table 2. Summary of Data Sets used in the Robust Tree Experimentation

Data set name # Instances in

training data

Instances in

test data

Predicting

attributes

Classes in

goal attribute

Monk 124 432 6 2

Audiology 150 76 69 24

Breast cancer 191 95 9 2

Vote 300 135 16 2

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

30

0

200

400

600

800

1000

1200

Number of

nodes

0% 1% 5% 10% 15% 20% 25% 30%

Noise level

ID3

Robust-tree

(a) Monk data set

0

100

200

300

400

500

600

700

Number of

nodes

0% 1% 5% 10% 15% 20% 25% 30%

Noise level

ID3

Robust-tree

(b) Audiology data set

0

100

200

300

400

500

600

700

800

900

Number of

nodes

0% 1% 5% 10% 15% 20% 25% 30%

Noise level

ID3

Robust-tree

(c) Breast cancer data set

0

50

100

150

200

250

300

Number of

nodes

0% 1% 5% 10% 15% 20% 25% 30%

Noise level

ID3

Robust-tree

(d) Vote data set

Figure 11. Model Size Comparison of the Robust Tree Induction Against
Conventional Decision Tree Induction

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

31

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 1% 5% 10% 15% 20% 25% 30% Noise level

Pr
ed

ic
tin

g
ac

cu
ra

cy

ID3

Robust-tree

(a) Monk data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 1% 5% 10% 15% 20% 25% 30% Noise level

Pr
ed

ic
tin

g
ac

cu
ra

cy

ID3

Robust-tree

(b) Audiology data set

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0% 1% 5% 10% 15% 20% 25% 30% Noise level

Pr
ed

ic
tin

g
ac

cu
ra

cy

ID3

Robust-tree

(c) Breast cancer data set

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 1% 5% 10% 15% 20% 25% 30% Noise level

Pr
ed

ic
tin

g
ac

cu
ra

cy

ID3

Robust-tree

(d) Vote data set

Figure 12. Predicting Accuracy of the Robust Tree Induction Models
Against Conventional Tree Induction Models

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

32

It can be seen that robust-tree induction can produce a smaller tree model than

conventional decision tree induction algorithm. The predicting accuracy of robust-tree

model is higher than conventional decision tree model on most data sets, except the

monk data set at the noise level 7-18% that the robust-tree model cannot outperform the

conventional decision tree model.

On running time comparison, we record the time to build model in addition to the

time for model testing (in seconds) of conventional decision tree induction against the

robust-tree induction. Comparison results of the four data sets are reported in Table 3.

Table 3. Model Building and Testing Time (in seconds) of the Four Data
Sets

 Noise level Conventional decision tree induction Robust-tree induction

Monk 0% 0.359+0.093=0.488 0.312+0.093=0.405

Data set 1% 0.344+0.141=0.485 0.344+0.094=0.438

 5% 0.343+0.110=0.453 0.297+0.063=0.36

 10% 0.360+0.094=0.454 0.375+0.094=0.469

 15% 0.313+0.110=0.423 0.375+0.078=0.453

 20% 0.766+0.250=1.016 0.797+0.25=1.047

 25% 2.609+0.954=3.563 2.593+0.968=3.561

 30% 2.594+0.859=3.453 2.656+0.906=3.562

Audiology 0% 0.414+0.069=0.483 0.398+0.041=0.439

data set 1% 0.409+0.092=0.501 0.387+0.044=0.431

 5% 0.383+0.077=0.460 0.379+0.038=0.417

 10% 0.397+0.095=0.492 0.361+0.046=0.407

 15% 0.471+0.133=0.604 0.375+0.033=0.408

 20% 1.577+0.181=1.758 0.884+0.059=0.943

 25% 1.965+0.911=2.876 1.726+0.656=2.382

 30% 2.018+0.965=2.983 1.998+0.701=2.699

Breast 0% 0.210+0.011=0.221 0.204+0.008=0.212

cancer 1% 0.197+0.015=0.409 0.213+0.015=0.228

data set 5% 0.274+0.048=0.322 0.186+0.011=0.197

 10% 0.211+0.069=0.280 0.197+0.020=0.217

 15% 0.298+0.053=0.351 0.214+0.029=0.243

 20% 0.323+0.079=0.402 0.231+0.037=0.268

 25% 0.465+0.93=1.395 0.240+0.056=0.296

 30% 0.512+0.104=0.616 0.443+0.077=0.520

Vote 0% 0.414+0.069=0.483 0.398+0.041=0.439

data set 1% 0.409+0.092=0.501 0.387+0.044=0.431

 5% 0.383+0.077=0.460 0.379+0.038=0.417

 10% 0.397+0.095=0.492 0.361+0.046=0.407

 15% 0.471+0.133=0.604 0.375+0.033=0.408

 20% 1.577+0.181=1.758 0.884+0.059=0.943

 25% 1.965+0.911=2.876 1.726+0.656=2.382

 30% 2.018+0.965=2.983 1.998+0.701=2.699

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

33

5. Conclusion

Noisy data can cause serious problem to many learning algorithms in terms of

distorted results and the decrease in predicting performance of the learning results. In

this paper, we propose a methodology to deal with noise in a decision tree induction

algorithm. Our intuitive idea is to select only potential representatives, rather than

applying the whole training data that some values are corrupted, to the tree induction

algorithm.

Data selection process starts with clustering to form groups of similar data items in

order to obtain the mean point of each data group. For each data group, the selection

heuristic T = 2 * Variance_of_cluster_similarity will be used as a threshold to select

only data around mean point within this T distance. Data that lie far away from the

mean point are considered prone to noise and outliers; we thus remove them.

The removed data still play their role as one factor of a tree building stopping

criterion, which can be formulated as S = K – log[(number of removed data instances +

K) / D], where K is the number of clusters, which has been set to be equal to the number

of class labels, and D is the number of training data.

From experimental results, it turns out that our heuristic-based decision tree

induction method is robust to data set with a high level of noise. It also produces a

compact tree model. With such promising results, we thus plan to improve our

methodology to be incremental such that it can learn model from steaming data.

Acknowledgements

This work has been supported by grants from the National Research Council of Thailand

(NRCT) and Suranaree University of Technology via the funding of Data Engineering

Research Unit.

References

[1] Angluin D and Laird P, “Learning from noisy examples”, Machine Learning, vol. 2, (1988), pp. 343-370.

[2] Bohanec M and Bratko I, “Trading accuracy for simplicity in decision trees”, Machine Learning, vol. 15,

(1994), pp. 223-250.

[3] Breiman L, Freidman J, Olshen R and Stone C, “Classification and Regression Trees”, Wadsworth (1984).

[4] Esposito F, Malerba D and Semeraro G, “A comparative analysis of methods for pruning decision trees”,

IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 5, (1997), pp. 476-491.

[5] Frank A and Asuncion A, “UCI Machine Learning Repository”, [http://archive.ics.uci.edu/ml]. Irvine,

University of California, School of Information and Computer Science, (2010).

[6] Han J and Kamber M, “Data Mining: Concepts and Techniques”, 2nd ed. Morgan Kaufmann (2006).

[7] Kim H and Koehler G, “An investigation on the conditions of pruning an induced decision tree”, European

Journal of Operational Research, vol. 77, no. 1, (1994), pp. 82.

[8] Mingers J, “An empirical comparison of pruning methods for decision tree induction”, Machine Learning, vol.

4, no. 2, (1989), pp. 227-243.

[9] Quinlan J, “Induction of decision tree”, Machine Learning, vol. 1, (1986), pp. 81-106.

[10] Quinlan J, “Simplifying decision tree”, In: Gaines, B., Boose, J. (eds.) Knowledge Acquisition for Knowledge

Based Systems, vol. 1, Academic Press, (1989).

[11] Quinlan J, “C4.5: Programs for Machine Learning”, Morgan Kaufmann (1992).

[12] Quinlan J and Rivest R, “Inferring decision trees using the minimum description length principle”,

Information and Computation, vol. 80, no. 3, (1989), pp. 227-248.

[13] Schaffer C, “Overfitting avoidance bias”, Machine Learning, vol. 10, (1993), pp. 153-178.

[14] Talmon J and McNair P, “The effect of noise and biases on the performance of machine learning algorithms”,

Int. J. Bio-Medical Computing, vol. 31, no. 1, (1992), pp. 45-57.

International Journal of Database Theory and Application

Vol. 5, No. 2, June, 2012

34

Authors

Nittaya Kerdprasop is an associate professor at the school of

computer engineering, Suranaree University of Technology,

Thailand. She received her B.S. from Mahidol University, Thailand,

in 1985, M.S. in computer science from the Prince of Songkla

University, Thailand, in 1991 and Ph.D. in computer science from

Nova Southeastern University, USA, in 1999. She is a member of

ACM and IEEE Computer Society. Her research of interest includes

Knowledge Discovery in Databases, Artificial Intelligence, Logic

Programming, Deductive and Active Databases.

Kittisak Kerdprasop is an associate professor at the school of

computer engineering, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand,

in 1991 and doctoral degree in computer science from Nova

Southeastern University, USA., in 1999. His current research

includes Data mining, Artificial Intelligence, Functional and Logic

Programming Languages, Computational Statistics.

