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Abstract 
 

Querying a database is a common task for most database systems. To query a database is 

to find some answers from stored data. Traditional database systems return exactly what is 

being asked. This is a method of direct query answering and users are required to construct a 

query intelligently and properly. To remove the burden of intelligence from the database 

users, the concept of intelligent or cooperative query answering has emerged. The process of 

intelligent query answering consists of analyzing the intent of query, rewriting the query 

based on the intention and other kinds of knowledge, and providing answers in an intelligent 

way. Intelligent answers could be generalized, neighborhood or associated information 

relevant to the query. This concept is based on the assumption that some users might not have 

a clear idea of the database content and schema. Therefore, it is difficult to pose queries 

correctly to get some useful answers. Producing answers effectively depends largely on users' 

knowledge about the query language and the database schema. Knowledge, either intentional 

or extensional, is the key ingredient of intelligence. In order to improve effectiveness and 

convenience of querying databases, we design a systematic way to analyze user's request and 

revise the query with data mining models and materialized views. The models obtained from 

the automatic knowledge extraction process is a set of association rules discovered from the 

database contents. Materialized views are pre-computed and normally aggregated data from 

base tables to speed up the processing of frequently asked queries. This paper presents the 

knowledge acquisition method focusing on association pattern mining, its implementation, 

and a systematic method of rewriting query with association patterns and materialized views. 

We perform preliminary efficiency tests of the proposed system. The experimental results 

demonstrate the effectiveness of our system in answering queries sharing the same pattern as 

the available knowledge and the pre-computed views. 
 

Keywords: Query answering, Query optimization, Association mining, Materialized views, 

Erlang programming, Deductive database 
 

1. Introduction 
 

Since the emergence of data mining as a new research area two decades ago, it has 

been argued among database researchers that the database management system (DBMS) 

should support both data processing and data mining tasks [3, 4, 5, 9]. With the data 

mining functionalities, a database can contain not only data contents and schemas, but 

also data models which are generalized information induced from the data contents. By 

providing such an extension framework of the DBMS, users can manipulate and access 

data models in the same manner as querying and processing the data contents. To 
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achieve this aim, a number of database system extensions, such as the IBM intelligent 

miner [17] and Microsoft OLE DB for data mining [20], have been implemented. 

Besides the front-end support for mining database contents, we propose that the next 

generation DBMS should also utilize the data mining models at the back-end part to 

support query answering and optimization. The purpose of query optimization is to 

rewrite a given query into an equivalent one that uses less time and resources. 

Equivalence is defined in terms of identical answer sets. Semantic knowledge such as 

integrity constraints and data mining models can be used to transform a query into an 

optimized one. Recent advance on semantic knowledge utilization has moved toward 

the setting of cooperative or intelligent query answering [11, 16]. 

The process of intelligent query answering consists of analyzing the intent of a 

query, rewriting the query based on the intention and other kinds of knowledge, and 

providing answers in an intelligent way [19]. Intelligent answers could be generalized, 

neighborhood or associated information relevant to the query. This concept is based on 

the assumption that some users might not have a clear idea of the database contents and 

schemas. Therefore, it is difficult to pose queries correctly to get some useful answers . 

Knowledge, either intentionally or extensionally stated, is the key ingredient of 

intelligence. Many researchers [2, 7, 16, 19] propose to integrate data mining 

techniques as a knowledge discovery engine to serve an intelligent query answering 

purpose. We extend this idea by incorporating both data mining models and 

materialized views in the query answering system. 

Data mining models are generalized rules discovered from databases and stored as 

tables, whereas materialized views are view relations computed and stored in the 

database as well. We consider data mining models and materialized views as semantic 

constraints capable of transforming queries to be processed intelligently. 

We design a query optimizing and answering system using a platform of deductive 

database that can be easily integrated with induced knowledge obtained from the 

constrained association mining program implemented with the Erlang language. The 

remainder of the paper is organized as follows. Section 2 presents related work. Section 

3 explains architecture and implementation of the proposed system. Section 4 discusses 

the experimentation and its results. Section 5 concludes the paper and indicates our 

future work. 

 

2. Related Work 
 

Evaluating queries efficiently and intelligently requires an important step of query 

rewriting and modification. Query rewriting is a basic step in query processing aiming 

at transforming a given query into another more efficient one that uses less time and 

resources to execute. A rewritten query normally produces the same answer set as the 

original query. 

Query modification [7] interprets query rewriting in a more relaxing way as a query 

refining process to produce answers that might be a superset of the expected answers. 

The advantage of query relaxation is the increased possibility of obtaining desired 

answers when users have limited knowledge about the problem domain and the database 

schemas. 

Early research in query modification [7, 11] has focused on rewriting the query using 

generalization concept, neighborhood, and type abstraction hierarchy. The work of Han 

et al [16] is among the early research in intelligent query answering that incorporates 
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data mining techniques to rewrite users' queries. Their query relaxation approach 

employed the notion of generalization to build concept hierarchy. 

Lin et al [19] proposed to integrate neighborhood information and data mining rules 

discovered from the databases to rewrite the queries. Muslea [21] introduced the LOQR 

algorithm to learn some knowledge about the problem domain using a small subset of 

the database. Then the learned information is used to relax the constraints in the query 

that originally returns an empty answer. Aragao and Fernandes [3] proposed a unified 

foundation for query answering and knowledge discovery. The combined system is 

called CIDS (Combined Inference Database Systems). 

The integration of knowledge discovery and query answering system is also the basis 

of our research. However, we propose to extend the idea by incorporating not only the 

knowledge discovered from databases, but also the materialized views in the process of 

query rewriting and answering. 

Materialized views are pre-computed data that are stored in the database. Answering 

queries using views has long been extensively studied [1, 6, 8, 10, 14, 15, 22]. 

Materialized views can provide useful information in query processing especially in the 

context of web searching applications. We thus design our system to employ both 

learned knowledge and materialized views to refine the given query.  

 

3. The Design and Implementation of Semantic-based Query Optimization 
 

Our design of intelligent query answering system includes the semantic  optimizer to 

utilize materialized views and data mining models as major sources of knowledge in 

semantically transforming the users’ queries. The framework of the optimizer and its 

algorithm are provided in Figures 1 and 2, respectively. 

 

 

Figure 1. A Framework of Semantic-based Query Optimizer 
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Input:     a database D, 

               a set of semantic rules S, 

               a set of materialized views V, 

               current user’s query Q 

Output:  a new query Q’ 

Steps: 

1.      Extract conditions C from the user’s query Q  

2.      For each c  C 

3.            Search for applicable semantic rules from S by 

3.1                 assert c as a temporary database fact 

3.2                 search for predicates in S that are related to c 

3.3                 report searching result as an answer set A 

4.      If A is empty, then return Q; otherwise proceed to the next step 

5.      Form a new query Q’ by 

5.1         Construct a head of query clause with C appeared as arguments 

5.2         Construct clause body with applicable materialized view from V 

5.3         Conjunct a clause body with predicates appeared in A 

6.     Return a new query Q’ 

Figure 2. Semantic Query Optimization Algorithm 
 

Semantic rules as mentioned in the framework and in the algorithm are association 

rules [2] induced from the database contents and constrained to induce only knowledge 

relevant to users’ queries. The association mining component is implemented with the 

Erlang programming language [13]. The program is written to search for association 

rules with confidence 1.0, that is, 100% correct. Main part of the source code can be 

displayed as follows: 
 
main() -> 
     NameList=mylib:read_file( "ipum.NAMES"," ,.\t:|" ), 
     mylib:text_file(write,NameList,filetemp), 

     [H|Tail]=NameList, [F,C|T]=lists:reverse(H),NewClass=[F|T], % make_nornal_class 
     LL=[NewClass|Tail], 
     [A1|A2]=map(fun([H|_])->H end, LL),AttrName=A2++[A1], 
     [P1|P2]=lists:map(fun(L)->allPossibleAttr(L) end,LL),%swap class to the last 
     PossibleValue=P2++[P1], 
     mylib:text_file(write,PossibleValue,filetemp1), 
     mylib:text_file(write,AttrName,filetemp2),AllInput=input(AttrName), 
           %% write fact to file 
     {_,IO}=file:open("factc.pl",[write]), 
     lists:map(fun(EachR)->to_prolog(EachR,IO) end,AllInput), 

     _=file:close(IO), 
     DB=myToSet(AllInput),  MinSup=inputSup(AllInput), mylib:c(20,MinSup), 
     mylib:text_file(write,AllInput,allinput), 
     Items=my_flat(PossibleValue), 
     AllL=apriori1(DB, Items,MinSup), 
     format("~n   END ~n").  
 
my_flat([H|T]) -> H++my_flat(T); 
my_flat([]) -> []. 

 



International Journal of Database Theory and Application 

Vol. 5, No. 1, March, 2012 

 

 

139 

 

to_prolog(Fact,IO) -> 
      io:format(IO,"~n~p(",[rec]), 
      print_fact(IO,Fact),io:format(IO,").% ",[]). 
    
print_fact(IO,[H]) -> io:format(IO,"~p",[list_to_atom(H)]) ; 
print_fact(IO,[H|T]) -> io:format(IO,"~p,",[list_to_atom(H)]),print_fact(IO,T). 
 
apriori1(DB,Items,Min) -> %% findSup(Set,ListOfSet) 
    mylib:text_file(append,myToList(DB),apriori1),mylib:text_file(append,Items,apriori1), 
    C1=[{from_list([X]),findSup(from_list([X]),DB)}|| X<-Items ], 
    CkPrint=[ {to_list(FS),Sup} || {FS,Sup}<-C1], 
    L1=[{FS,Sup} || {FS,Sup}<-C1,Sup>=Min], 
    LkPrint=[ {to_list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-L1], 
    mylib:text_file(write,CkPrint,lkfile), 
    K=2, LS=[FS||{FS,_}<-L1], 
    AllSet=aprioriAll(L1,DB,LS,K,Min), 
    mylib:term_file(write,AllSet,"set.raw"). 

 
inputSup(AllInput)->Total=length(AllInput), 
     {_,Per}=io:read(" input percent> "), 
     MinSup=Total*Per/100 . 
   
aprioriAll(AllL,_,[],_,_) -> format("~nfinal set=~p~n",[AllL]),AllL;  % return final Set 
aprioriAll(AllL,_,[_],_,_) -> format("~nfinal set=~p~n",[AllL]),AllL; 
aprioriAll(AllL,DB,LS,K,Min) -> Com=combi(LS),   
      C_=myDistinct(usedCombi(Com,K)), 
      Ck=[{X,findSup(X,DB)}|| X<-C_],mylib:c(35,Min), 
      Lk=[ {FS,Sup} || {FS,Sup}<-Ck,Sup>=Min], 
      LkS=[FS||{FS,_}<-Lk], 
      LkPrint=[ {to_list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-Lk], 
      format("~nK=~w-~p,  has ~w set ~n  ",[K,LkPrint,length(LkPrint)]), 
      aprioriAll(AllL++Lk,DB,LkS,K+1,Min) .  
  
allPossibleAttr([H|T]) -> [H++ET||ET<-T]. 
 
input(AttrName) ->  LinesList=mylib:read_file( "ipums-1999-1Krecords.bak"," ," ), 

      Zip=map( fun(EachL)->lists:zip(AttrName,EachL) end,LinesList ), 
      UsedData=map(fun(LineOfTuple)->concat_line_tuple(LineOfTuple) end,Zip).  
  
% shift([a,b,c]) --> [b,c,a]  
shift([H|T]) -> T++[H].  
 
genR(_,Max,Max) -> []; 
genR(L,N,Max) -> {H,T}=lists:split(N,L), [{H,T}]++genR(L,N+1,Max). 
  
% genRule([2,3,5],3,3). 
genRule(_,0,_)->[]; 
genRule(L,Count,Len)-> genR(L,1,Len)++genRule(shift(L),Count-1,Len). 
findConf({H,B},AllL)  -> {H,B,searchL(set(H++B),AllL)/searchL(set(H),AllL) }. 

 
% main1() is for creating rules. 
main1() ->  
      format("~n------------START-create rules--------------"), 
      {_,[AllL]}=file:consult("set.raw"), 
      AllAsso2=[list(X)|| {X,_} <-AllL,length(list(X))>1 ], 
        %gen Rules 

      AllRuleGen=lists:flatten([genRule(L,length(L),length(L))||L<-AllAsso2]), 
      AllRuleConf=[findConf(X,AllL)||X<-AllRuleGen], 
      format("~nAllRule=~p ,~nThere are ~p rules ",[AllRuleConf,length(AllRuleConf)]), 
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      mylib:text_file(write,AllRuleConf,allrule), 
      Sorted= lists:sort(fun({_,_,C1},{_,_,C2})->C1>=C2 end,AllRuleConf), 
      mylib:text_file(write,Sorted,"allsortedrule.txt"), 
      Conf1=lists:filter(fun({A,B,C})->C==1.0 end,Sorted), 
         %% write to file 
         %%% create prolog file Rules+Facts 
      {_,IO}=file:open("rules.pl",[write]), 
      lists:map(fun(EachR)->transform_to_prolog(EachR,IO) end,Conf1), 
      _=file:close(IO), 
      mylib:text_file(append,length(Conf1),"allsortedrule.txt"), 
      mylib:text_file(append,length(Sorted),"allsortedrule.txt"), 
      format("~n-----------end main1() process ----------------") . 
         %%% create prolog file Rules+Facts 
 
transform_to_prolog({Body,Head,Conf},IO) -> 
       if (length(Head)==1) -> [Head1]=Head, 
                                          io:format(IO,"~np(~p):-",[list_to_atom(Head1)]), 

                                          print_body(IO,Body), io:format(IO,"% Conf=~p",[Conf]); 
           true -> io:format("") 
       end. 
 
print_body(IO,[H]) -> io:format(IO,"p(~p).",[list_to_atom(H)]) ; 
print_body(IO,[H|T]) -> io:format(IO,"p(~p),",[list_to_atom(H)]),print_body(IO,T). 
 
set(X) -> from_list(X).  
list(X) -> to_list(X). 
searchL(Set,[{Set,Val}|_])   ->  Val; 
searchL(Set,[{_Another,_}|T])  -> searchL(Set,T); 
searchL(_Set,[]) ->  1  .% Cannot find Set   
 
concat_line_tuple(LineOfTuple) -> map(fun({A,B})->A++B end, LineOfTuple). 
 
myToSet(L) -> [from_list(X)||X<-L]. 
myToList(SL) -> [to_list(S)||S<-SL]. 
 
findSup(_,[]) -> 0;  

findSup(Set,DB) -> [H|T]=DB,  
      Cond = is_subset(Set,H), 
      if Cond -> 1+findSup(Set,T); 
         true -> findSup(Set,T) 
      end. 
 
myDistinct(List) -> to_list(from_list(List)). 
 
combi([H|T]) -> [[H,Te] || Te<-T]++ combi(T); 
combi([]) -> []. 
 
usedCombi([H|T],K) ->  Union=union(H), 
      Len=ordsets:size(Union), 

      if Len==K -> [Union|usedCombi(T,K)]; 
          true -> usedCombi(T,K) 
      end ; 
usedCombi([],_) -> []. 

  

 %-----------  end of association rule mining program ------------------ 
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4. Experimentation and Query Answering Results 
 

On a series of experimentation, we draw a sample set containing 1,000 data records 

from the IPUMS-USA database which has been made available to public by Minnesota 

Population Center [18]. This database contains the United States socio-economic data 

of the year 1999 with household and person information as shown in Figure 3. The 

household records contain information such as value of household unit, monthly rental 

payment, family total income, and other related information. Detail information of the 

household records is given in Table 1, and its example data records are shown in Figure 

4. For the person records, the information is about education, employment status, 

occupation, income and other personal information. The details are in Table 2 and its 

record examples are in Figure 5. 

 

 

 

Figure 3. The IPUMS-USA Database and its Variables (or attributes) as 
Appeared in the Household and Person Records 
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Table 1. Attribute Details of the Household Records 

Attribute  Name  Description 

1 ID Record-ID 

2 gq Group quarters status 

3 gqtypeg Group quarters type -- general 

4 farm Farm status 

5 ownershg Ownership of dwelling -- general 

6 value Value of housing unit 

7 rent Monthly rental payment 

8 ftotinc Family total income 

9 nfams Number of families within each household unit 

10 ncouples Number of married couples 

in a household 

11 nmothers Number of mothers within each household unit 

12 nfathers Number of fathers within each household unit 

13 momloc Mother’s location in the household (a variable that indicates whether 

the person’s mother lived in the same household and, if so, gives the 

number of mother) 

14 stepmom Probable step/adopted mother (whether a person’s mother was likely 

to have been the person’s stepmother or adoptive mother) 

15 momrule Rule for linking mother 

16 poploc Father’s location in the household (a constructed variable to identify 

social relationship such as stepfather, adoptive father, as well as 

biological father) 

17 steppop Probable step/adopted father 

18 poprule Rule for linking father 

19 sploc Spouse’s location in household (a constructed variable that indicates 

whether the person’s spouse lived in the same household and, if so, 

gives the person number of the spouse) 

20 sprule Rule for linking spouse 

21 famsize Number of own family members in household 

22 nchild Number of own children in the household 

23 nchlt5 Number of own children under age 5 in household 

24 famunit Groups of related individuals in the household 

25 eldch Age of eldest own child in household 

26 yngch Age of youngest own child in household 

27 nsibs Number of own siblings in the household 

28 relateg Relationship to household head -- general 

29 age Age of a person 

30 sex Sex of a person 

31 raceg Race -- general 

32 marst Marital status 

33 chborn Number of children ever born to each woman 

34 bplg Birthplace -- general 
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table1(1,gq_1,gqtypeg_0,farm_1,ownershg_1,value_6,rent_0,ftotinc_3,nfams_1,ncouples_1,

nmothers_0,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_2,sprule_1,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_1,age_6,sex_1,raceg_1,marst_1,chborn_0,bplg_1).%  

table1(2,gq_1,gqtypeg_0,farm_1,ownershg_1,value_6,rent_0,ftotinc_3,nfams_1,ncouples_1,

nmothers_0,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_1,sprule_1,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_2,age_6,sex_2,raceg_1,marst_1,chborn_4,bplg_1).%  

table1(3,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_2,nchild_1,nchlt5_0,famunit_1,eldch_1,yngch

_1,nsibs_0,relateg_1,age_4,sex_2,raceg_1,marst_4,chborn_2,bplg_1).%  

table1(4,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_1,stepmom_0,momrule_1,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_3,age_1,sex_1,raceg_1,marst_6,chborn_0,bplg_1).%  

table1(5,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_1,nchild_0,nchlt5_0,famunit_2,eldch_10,yngc

h_10,nsibs_0,relateg_11,age_3,sex_1,raceg_1,marst_6,chborn_0,bplg_1).% 

Figure 4. Example of Household Records, Each Record has 34 Attributes 

 

 

table2(1,school_1,educrec_7,schltype_1,empstatg_1,labforce_2,occscore_3,sei_2, 

classwkg_2,wkswork2_4,hrswork2_6,yrlastwk_0,workedyr_2,inctot_3, 

incwage_3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_6, 

migrat5g_1,migplac5_0,movedin_7,vetstat_1,tranwork_10,occupation_2).%  

table2(2,school_1,educrec_8,schltype_1,empstatg_1,labforce_2,occscore_2,sei_3, 

classwkg_1,wkswork2_3,hrswork2_6,yrlastwk_0,workedyr_2,inctot_2, 

incwage_2,incbus_2,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_6, 

migrat5g_1,migplac5_1,movedin_0,vetstat_1,tranwork_10,occupation_3).%  

table2(3,school_1,educrec_7,schltype_1,empstatg_1,labforce_2,occscore_3,sei_5, 

classwkg_2,wkswork2_6,hrswork2_5,yrlastwk_0,workedyr_2,inctot_3, 

incwage_3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_2, 

migrat5g_2,migplac5_1,movedin_2,vetstat_1,tranwork_10,occupation_2).% 

table2(4,school_2,educrec_2,schltype_2,empstatg_0,labforce_0,occscore_1,sei_1,class

wkg_0,wkswork2_0,hrswork2_0,yrlastwk_0,workedyr_0,inctot_1,incwage_4,

incbus_4,incfarm_4,incss_3,incwelfr_3,incother_3,poverty_2,migrat5g_1,mi

gplac5_1,movedin_0,vetstat_0,tranwork_0,occupation_5).%  

table2(5,school_1,educrec_7,schltype_1,empstatg_2,labforce_2,occscore_5,sei_8,class

wkg_2,wkswork2_6,hrswork2_0,yrlastwk_10,workedyr_2,inctot_3,incwage_

3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_4,migrat5g_2,

migplac5_1,movedin_0,vetstat_2,tranwork_0,occupation_2).%   

Figure 5. Example of Person Records, Each Record has 27 Attributes 
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Table 2. Attribute Details of the Person Records 

Attribute  Name  Description 

1 ID Record-ID 

2 school      School attendance 

3 educrec     Highest year of school or degree completed 

4 schltype    School type 

5 empstatg    Employment status -- general 

6 labforce    Labor force status 

7 occscore    Occupational income score 

(the median total income in hundreds of dollars) 

8 sei         Duncan Socioeconomic Index score to each occupation (SEI 

is the measure of occupational status based upon the income 

level and educational attainment associated with each 

occupation) 

9 classwkg Class of worker -- general 

10 wkswork2   Weeks worked last year, intervalled 

11 hrswork2    Hours  work last week, intervalled 

12 yrlastwk    Year last worked 

13 workedyr    Worked last year 

14 inctot      Total personal income 

15 incwage     Wage and salary income 

16 incbus      Non-farm business income 

17 incfarm    Farm income 

18 incss      Social security income (social security pensions, survivors 

benefits, permanent disability insurance) 

19 incwelfr   Welfare income (federal/state supplemental security income 

payments to elderly, blind, or disabled persons with low 

incomes; families with dependent children) 

20 incother   Other income 

21 poverty    Poverty status (It expresses each family’s total income for the 

previous year as a percentage of the poverty threshold 

established by the Social Security Administration.) 

22 migrat5g   Migration status, 5 years  – general 

23 migplac5   State or country of residence 5 years ago 

24 movedin    Number of years ago that the householder moved into the 

dwelling unit 

25 vetstat    Veteran status 

26 tranwork Means of transportation to work 

27 occupation Occupational classification 

 

To test the efficiency of query optimization with materialized views and data mining 

models, we create a database using the DES system [12]. The DES system provides 

facility to support querying in both the SQL and Datalog languages as shown in Figure 

6. The database stores table1 and Table 2 (Figures 4 and 5) to contain household and 

person information, respectively. Both tables are in the format of Datalog clauses. Data 

mining models used in the experimentation are association rules that are also 

transformed to be Datalog clauses as shown some part in Figure 7 . Examples of 

materialized views used in the experimentation are displayed in Figure 8. 
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Figure 6. The DES System with SQL Support (above) and Datalog Querying 
(below) 
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Figure 7. Part of Semantic Rules Transformed from the Association Mining 
Models 

 

 

Figure 8. Example of Materialized Views Used in the Querying Experimentation 
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We test the query processing performance with six kinds of queries (experimental 

results are graphically shown in Figure 9 and summarized in Table 3). Some queries 

(Query1, Query2, and Query3) cannot benefit from the presence of semantic rules 

because the queries’ conditions do not fit the rules. For this case, the system takes more 

time to search for semantic rules than traditional direct querying method. But for some 

queries that fit the rule antecedents, the intelligent method does significantly save the 

database searching time. The details of each query as well as its running time report are 

provided as follows: 

 

Query 1: Ask for the value of farm housholds.  (Null answer; all households are non-farm) 

DES-Datalog> /assert query1(X) :- 

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12, 

A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 
A26,A27,A28,A29,A30,A31,A32,A33,A34),A4=farm_2,X=A6. 

DES-Datalog> query1(X). 

{ } 

Info: 0 tuples computed.   

Total elapsed time: 110 ms. 
 

Search for semantic rules to transform query: (the rule’s predicate is ‘farm_2’)  

DES-Datalog> /assert p(farm_2). 
DES-Datalog> p(C). 

{  p(farm_2) } 

Info: 1 tuple computed.   

Total elapsed time: 295 ms. 

    The query returns the same predicate ‘farm_2’; that means no rules can be applied.  

   Thus, the semantic-based query transformation wastes time = 295 ms. 

Query 2: Ask for the value of non-farm households. 

DES-Datalog> /assert query2(X) :- 

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12, 
A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 

A26,A27,A28,A29,A30,A31,A32,A33,A34), A4=farm_1, X=A6. 

DES-Datalog> query2(X). 

{   query2(value_1),   

    query2(value_2),   

    query2(value_3),   
    query2(value_4),    

    query2(value_5),   

    query2(value_6),   

    query2(value_7) } 

Info: 7 tuples computed.   

Total elapsed time: 1029 ms. 

Search for semantic rules to transform query: (the rule’s predicate is ‘farm_1’) 

DES-Datalog> /assert p(farm_1). 

DES-Datalog> p(C). 
{  p(farm_1) } 

Info: 1 tuple computed.   
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Total elapsed time: 296 ms. 

   The query returns the same predicate ‘farm_1’; that means no rules can be applied.  

   Thus, the semantic-based query transformation wastes time = 296 ms. 

 

Query 3: Ask for total family income for a household unit with two families. 
DES-Datalog> /assert query3(X):-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12, 
A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 

A26,A27,A28,A29,A30,A31,A32,A33,A34),A24=famunit_2,X=A8. 

DES-Datalog> query3(X). 

{   query3(ftotinc_1),   

    query3(ftotinc_2),   

    query3(ftotinc_3) } 
Info: 3 tuples computed.   

Total elapsed time: 906 ms. 

Search for semantic rules to transform query: (the rule’s predicate is ‘famunit_2’)  

DES-Datalog> /assert p(famunit_2). 

DES-Datalog> p(C). 

{  p(famunit_2) } 

Info: 1 tuple computed.   

Total elapsed time: 282 ms. 

    The query returns the same predicate ‘famunit_2’; that means no rules can be applied.  

    Thus, the semantic-based query transformation wastes time = 282 ms. 
 

Query 4: Ask for family size of non-farm households with family income at level 3 (10,000-

99,999 US$). 

DES-Datalog> /assert query4(X):-
table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12, 

A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 

A26,A27,A28,A29,A30,A31,A32,A33,A34),A4=farm_1,A8=ftotinc_3,X=A21. 

DES-Datalog> query4(X). 

{   query4(famsize_1),   

    query4(famsize_2),   
    query4(famsize_3),   

    query4(famsize_4), 

        query4(famsize_5),   

        query4(famsize_6),   

        query4(famsize_7) } 

Info: 7 tuples computed.   
Total elapsed time: 1028 ms. 

Search for semantic rules to transform query:  

(the rule’s predicates are ‘farm_1’ and ‘ftotinc_3’) 

DES-Datalog> /assert p(farm_1). 

DES-Datalog> /assert p(ftotinc_3). 

DES-Datalog> p(C). 
{  p(farm_1),   

   p(ftotinc_3),   
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   p(gq_1),   
   p(gqtypeg_0)  } 

Info: 6 tuples computed.   

Total elapsed time: 594 ms. 

 Semantically transformed query: 

DES-Datalog> /assert query4B(X):-table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10, 

A11,A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24, 

A25,A26,A27,A28,A29,A30,A31,A32,A33,A34), A4=farm_1, 

A8=ftotinc_3, A2=gq_1, A3=gqtypeg_0, X=A21. 

DES-Datalog> query4B(X). 
{  query4B(famsize_1), 

   query4B(famsize_2), 

   query4B(famsize_3), 

   query4B(famsize_4), 

   query4B(famsize_5), 

   query4B(famsize_6), 
   query4B(famsize_7)  } 

Info: 7 tuples computed.   

Total elapsed time: 94 ms. 

Query processing time saving = 1028-(594+94)= 340 ms. 
 

Query 5: Ask for educational record and total income of female person. (Joining of table1 

and table2) 

DES-Datalog> /assert query5(X,Y):-table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11, 

A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 
A26,A27,A28,A29,A30,A31,A32,A33,A34),table2(B1,B2,B3,B4,B5,B

6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B2

1,B22,B23,B24,B25,B26,B27),A1=B1,A30=sex_2,X=B3,Y=B15. 

DES-Datalog> query5(X,Y). 

{ query5(educrec_0,incwage_4), 

  query5(educrec_1,incwage_1), 
  query5(educrec_1,incwage_2), 

  query5(educrec_1,incwage_3), 

  query5(educrec_1,incwage_4), 

  query5(educrec_2,incwage_1), 

  query5(educrec_2,incwage_3), 

  query5(educrec_2,incwage_4), 
  query5(educrec_3,incwage_1), 

  query5(educrec_3,incwage_2), 

  query5(educrec_3,incwage_3), 

  query5(educrec_3,incwage_4), 

  query5(educrec_4,incwage_1), 

  query5(educrec_4,incwage_2), 
  query5(educrec_4,incwage_3), 

  query5(educrec_4,incwage_4), 

  query5(educrec_5,incwage_1), 

  query5(educrec_5,incwage_2), 

  query5(educrec_5,incwage_3), 

  query5(educrec_5,incwage_4), 
  query5(educrec_6,incwage_1), 
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  query5(educrec_6,incwage_2), 
  query5(educrec_6,incwage_3), 

  query5(educrec_7,incwage_1), 

  query5(educrec_7,incwage_2), 

  query5(educrec_7,incwage_3), 

  query5(educrec_8,incwage_1), 

  query5(educrec_8,incwage_2), 
  query5(educrec_8,incwage_3), 

  query5(educrec_9,incwage_1), 

  query5(educrec_9,incwage_2), 

  query5(educrec_9,incwage_3), 

  query5(educrec_9,incwage_4)  } 

Info: 756 tuples computed.   
Total elapsed time: 10423 ms. 

Transformed query with materialized view: 
DES-Datalog> /assert query5B(X,Y):-

view1(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11, 

V12,V13,V14,V15,V16,V17,V18,V19,V20,V21,V22,V23,V24,V25, 

V26,V27,V28,V29,V30,V31,V32,V33,V34,V35,V36,V37,V38,V39, 

V40,V41,V42,V43,V44,V45,V46,V47,V48,V49,V50,V51,V52,V53, 

V54,V55,V56,V57,V58,V59),V29=sex_2,X=V35,Y=V47. 

DES-Datalog> query5B(X,Y). 
{ query5B(educrec_0,incwage_4), 

  query5B(educrec_1,incwage_1), 

  query5B(educrec_1,incwage_2), 

  query5B(educrec_1,incwage_3), 

  query5B(educrec_1,incwage_4), 

  query5B(educrec_2,incwage_1), 
  query5B(educrec_2,incwage_3), 

  query5B(educrec_2,incwage_4), 

  query5B(educrec_3,incwage_1), 

  query5B(educrec_3,incwage_2), 

  query5B(educrec_3,incwage_3), 

  query5B(educrec_3,incwage_4), 
  query5B(educrec_4,incwage_1), 

  query5B(educrec_4,incwage_2), 

  query5B(educrec_4,incwage_3), 

  query5B(educrec_4,incwage_4), 

  query5B(educrec_5,incwage_1), 

  query5B(educrec_5,incwage_2), 
  query5B(educrec_5,incwage_3), 

  query5B(educrec_5,incwage_4), 

  query5B(educrec_6,incwage_1), 

  query5B(educrec_6,incwage_2), 

  query5B(educrec_6,incwage_3), 

  query5B(educrec_7,incwage_1), 
  query5B(educrec_7,incwage_2), 

  query5B(educrec_7,incwage_3), 

  query5B(educrec_8,incwage_1), 

  query5B(educrec_8,incwage_2), 

  query5B(educrec_8,incwage_3), 

  query5B(educrec_9,incwage_1), 
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  query5B(educrec_9,incwage_2), 
  query5B(educrec_9,incwage_3), 

           query5B(educrec_9,incwage_4)  } 

Info: 33 tuples computed.  

Total elapsed time: 1060 ms. 

Query processing with the transformed query with materialized view: 

                       Time saving = 10423-1060 = 9363 ms. 
 

Query 6: Ask for class of work, occupation, and income of white immigrants moving from 

Europe and being a single family unit. (Joining table1 and table2) 

DES-Datalog> /assert query6(X,Y,Z):-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11, 

A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25, 
A26,A27,A28,A29,A30,A31,A32,A33,A34),table2(B1,B2,B3,B4,B5,B

6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B2

1,B22,B23,B24,B25,B26,B27), A1=B1, A9=nfams_1, A31=raceg_1, 

A34=bplg_4, X=B9, Y=B27, Z=B14. 

DES-Datalog> query6(X,Y,Z). 

{ query6(classwkg_0,occupation_5,inctot_1), 

  query6(classwkg_0,occupation_5,inctot_2), 

  query6(classwkg_0,occupation_5,inctot_3), 

  query6(classwkg_1,occupation_2,inctot_3), 

  query6(classwkg_2,occupation_1,inctot_1), 

  query6(classwkg_2,occupation_1,inctot_2), 

  query6(classwkg_2,occupation_1,inctot_3), 

  query6(classwkg_2,occupation_1,inctot_4), 

  query6(classwkg_2,occupation_2,inctot_1), 

  query6(classwkg_2,occupation_2,inctot_2), 

           query6(classwkg_2,occupation_2,inctot_3)  } 

Info: 121 tuples computed.   

Total elapsed time: 9852 ms. 

Transformed query with semantic rules and views: 

DES-Datalog> /assert p(nfams_1) 
DES-Datalog> p(C) 

{  p(famunit_1),   

   p(farm_1),   

   p(nfams_1)  } 

Info: 3 tuples computed.   

Total elapsed time: 452 ms. 

 

DES-Datalog> /assert query6B(X,Y,Z):-view1(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10, 

V11,V12,V13,V14,V15,V16,V17,V18,V19,V20,V21,V22,V23,V24,V25

,V26,V27,V28,V29,V30,V31,V32,V33,V34,V35,V36,V37,V38,V39,V4

0,V41,V42,V43,V44,V45,V46,V47,V48,V49,V50,V51,V52,V53, 

V54,V55,V56,V57,V58,V59), V3=farm_1, V8=nfams_1, 

V23=famunit_1, V30=raceg_1, V33=bplg_4, X=V41, Y=V59, Z=V46. 
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DES-Datalog> query6B(X,Y,Z). 

{ query6B(classwkg_0,occupation_5,inctot_1), 

  query6B(classwkg_0,occupation_5,inctot_2), 

  query6B(classwkg_0,occupation_5,inctot_3), 

  query6B(classwkg_1,occupation_2,inctot_3), 

  query6B(classwkg_2,occupation_1,inctot_1), 

  query6B(classwkg_2,occupation_1,inctot_2), 

  query6B(classwkg_2,occupation_1,inctot_3), 

  query6B(classwkg_2,occupation_1,inctot_4), 

  query6B(classwkg_2,occupation_2,inctot_1), 

  query6B(classwkg_2,occupation_2,inctot_2), 

  query6B(classwkg_2,occupation_2,inctot_3) } 

Info: 11 tuples computed. Info:  

Total elapsed time: 1015 ms. 

Query processing with the transformed query with semantic rules and materialized view: 

                       Time saving = 9852-(452+1015)= 8385 ms. 
 

 

 

Figure 9. Time Comparison of Direct Querying versus Transforming Queries 
with Materialized Views and Data Mining Models Prior to Accessing the 

Database Contents 
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Table 3. Processing Time Summarization of Direct Querying versus 
Intelligent Querying Based on Semantic Transformation Using Materialized 

Views and Mining Models 

Query characteristics Processing time (ms) Reduced 

time (ms) 

Time usage 

efficiency 

 Direct 

answer 

Intelligent 

answer 

 

Query1: ask one information with a 

single condition, null 

answer 

110 405 -295 -268.18% 

Query2: ask one information with a 

single condition 

1,029 1,325 -296 -28.76% 

Query3: ask one information with a 

single condition 

906 1,188 -282 -31.12% 

Query4: ask one information with 

two conditions 

1,028 688 340 33.07% 

Query5: ask two information with a 

single condition 

10,423 1,060 9,363 89.83% 

Query6: ask three information with 

four conditions 

9,852 1,467 8,385 85.10% 

 

5. Conclusion 
 

We design and implement a query answering system to provide an integrated and 

efficient platform for the next generation database management system. To answer 

queries effectively and intelligently, the association mining component and the 

materialized view manager are two key players to derive useful knowledge relevant to 

the given query. Query rewriter, which is supported by intelligent transformation rules 

and co-operated with query executor, is expected to produce answers in an intelligent 

way. The preliminary experimental results satisfy the expectation. We are, however, 

improving the capability of these components to analyze the user's intent and 

preferences to better providing associated information. Extending the scope of this 

research towards the distributed environment is also the direction of our future work. 
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