
International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

135

Semantic-based Query Answering Supported by Association Patterns

and Materialized Views

Nittaya Kerdprasop and Kittisak Kerdprasop

Data Engineering Research Unit, School of Computer Engineering,

Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand

nittaya@sut.ac.th, kittisakThailand@gmail.com

Abstract

Querying a database is a common task for most database systems. To query a database is

to find some answers from stored data. Traditional database systems return exactly what is

being asked. This is a method of direct query answering and users are required to construct a

query intelligently and properly. To remove the burden of intelligence from the database

users, the concept of intelligent or cooperative query answering has emerged. The process of

intelligent query answering consists of analyzing the intent of query, rewriting the query

based on the intention and other kinds of knowledge, and providing answers in an intelligent

way. Intelligent answers could be generalized, neighborhood or associated information

relevant to the query. This concept is based on the assumption that some users might not have

a clear idea of the database content and schema. Therefore, it is difficult to pose queries

correctly to get some useful answers. Producing answers effectively depends largely on users'

knowledge about the query language and the database schema. Knowledge, either intentional

or extensional, is the key ingredient of intelligence. In order to improve effectiveness and

convenience of querying databases, we design a systematic way to analyze user's request and

revise the query with data mining models and materialized views. The models obtained from

the automatic knowledge extraction process is a set of association rules discovered from the

database contents. Materialized views are pre-computed and normally aggregated data from

base tables to speed up the processing of frequently asked queries. This paper presents the

knowledge acquisition method focusing on association pattern mining, its implementation,

and a systematic method of rewriting query with association patterns and materialized views.

We perform preliminary efficiency tests of the proposed system. The experimental results

demonstrate the effectiveness of our system in answering queries sharing the same pattern as

the available knowledge and the pre-computed views.

Keywords: Query answering, Query optimization, Association mining, Materialized views,

Erlang programming, Deductive database

1. Introduction

Since the emergence of data mining as a new research area two decades ago, it has

been argued among database researchers that the database management system (DBMS)

should support both data processing and data mining tasks [3, 4, 5, 9]. With the data

mining functionalities, a database can contain not only data contents and schemas, but

also data models which are generalized information induced from the data contents. By

providing such an extension framework of the DBMS, users can manipulate and access

data models in the same manner as querying and processing the data contents. To

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

136

achieve this aim, a number of database system extensions, such as the IBM intelligent

miner [17] and Microsoft OLE DB for data mining [20], have been implemented.

Besides the front-end support for mining database contents, we propose that the next

generation DBMS should also utilize the data mining models at the back-end part to

support query answering and optimization. The purpose of query optimization is to

rewrite a given query into an equivalent one that uses less time and resources.

Equivalence is defined in terms of identical answer sets. Semantic knowledge such as

integrity constraints and data mining models can be used to transform a query into an

optimized one. Recent advance on semantic knowledge utilization has moved toward

the setting of cooperative or intelligent query answering [11, 16].

The process of intelligent query answering consists of analyzing the intent of a

query, rewriting the query based on the intention and other kinds of knowledge, and

providing answers in an intelligent way [19]. Intelligent answers could be generalized,

neighborhood or associated information relevant to the query. This concept is based on

the assumption that some users might not have a clear idea of the database contents and

schemas. Therefore, it is difficult to pose queries correctly to get some useful answers .

Knowledge, either intentionally or extensionally stated, is the key ingredient of

intelligence. Many researchers [2, 7, 16, 19] propose to integrate data mining

techniques as a knowledge discovery engine to serve an intelligent query answering

purpose. We extend this idea by incorporating both data mining models and

materialized views in the query answering system.

Data mining models are generalized rules discovered from databases and stored as

tables, whereas materialized views are view relations computed and stored in the

database as well. We consider data mining models and materialized views as semantic

constraints capable of transforming queries to be processed intelligently.

We design a query optimizing and answering system using a platform of deductive

database that can be easily integrated with induced knowledge obtained from the

constrained association mining program implemented with the Erlang language. The

remainder of the paper is organized as follows. Section 2 presents related work. Section

3 explains architecture and implementation of the proposed system. Section 4 discusses

the experimentation and its results. Section 5 concludes the paper and indicates our

future work.

2. Related Work

Evaluating queries efficiently and intelligently requires an important step of query

rewriting and modification. Query rewriting is a basic step in query processing aiming

at transforming a given query into another more efficient one that uses less time and

resources to execute. A rewritten query normally produces the same answer set as the

original query.

Query modification [7] interprets query rewriting in a more relaxing way as a query

refining process to produce answers that might be a superset of the expected answers.

The advantage of query relaxation is the increased possibility of obtaining desired

answers when users have limited knowledge about the problem domain and the database

schemas.

Early research in query modification [7, 11] has focused on rewriting the query using

generalization concept, neighborhood, and type abstraction hierarchy. The work of Han

et al [16] is among the early research in intelligent query answering that incorporates

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

137

data mining techniques to rewrite users' queries. Their query relaxation approach

employed the notion of generalization to build concept hierarchy.

Lin et al [19] proposed to integrate neighborhood information and data mining rules

discovered from the databases to rewrite the queries. Muslea [21] introduced the LOQR

algorithm to learn some knowledge about the problem domain using a small subset of

the database. Then the learned information is used to relax the constraints in the query

that originally returns an empty answer. Aragao and Fernandes [3] proposed a unified

foundation for query answering and knowledge discovery. The combined system is

called CIDS (Combined Inference Database Systems).

The integration of knowledge discovery and query answering system is also the basis

of our research. However, we propose to extend the idea by incorporating not only the

knowledge discovered from databases, but also the materialized views in the process of

query rewriting and answering.

Materialized views are pre-computed data that are stored in the database. Answering

queries using views has long been extensively studied [1, 6, 8, 10, 14, 15, 22].

Materialized views can provide useful information in query processing especially in the

context of web searching applications. We thus design our system to employ both

learned knowledge and materialized views to refine the given query.

3. The Design and Implementation of Semantic-based Query Optimization

Our design of intelligent query answering system includes the semantic optimizer to

utilize materialized views and data mining models as major sources of knowledge in

semantically transforming the users’ queries. The framework of the optimizer and its

algorithm are provided in Figures 1 and 2, respectively.

Figure 1. A Framework of Semantic-based Query Optimizer

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

138

Input: a database D,

 a set of semantic rules S,

 a set of materialized views V,

 current user’s query Q

Output: a new query Q’

Steps:

1. Extract conditions C from the user’s query Q

2. For each c  C

3. Search for applicable semantic rules from S by

3.1 assert c as a temporary database fact

3.2 search for predicates in S that are related to c

3.3 report searching result as an answer set A

4. If A is empty, then return Q; otherwise proceed to the next step

5. Form a new query Q’ by

5.1 Construct a head of query clause with C appeared as arguments

5.2 Construct clause body with applicable materialized view from V

5.3 Conjunct a clause body with predicates appeared in A

6. Return a new query Q’

Figure 2. Semantic Query Optimization Algorithm

Semantic rules as mentioned in the framework and in the algorithm are association

rules [2] induced from the database contents and constrained to induce only knowledge

relevant to users’ queries. The association mining component is implemented with the

Erlang programming language [13]. The program is written to search for association

rules with confidence 1.0, that is, 100% correct. Main part of the source code can be

displayed as follows:

main() ->
 NameList=mylib:read_file("ipum.NAMES"," ,.\t:|"),
 mylib:text_file(write,NameList,filetemp),

 [H|Tail]=NameList, [F,C|T]=lists:reverse(H),NewClass=[F|T], % make_nornal_class
 LL=[NewClass|Tail],
 [A1|A2]=map(fun([H|_])->H end, LL),AttrName=A2++[A1],
 [P1|P2]=lists:map(fun(L)->allPossibleAttr(L) end,LL),%swap class to the last
 PossibleValue=P2++[P1],
 mylib:text_file(write,PossibleValue,filetemp1),
 mylib:text_file(write,AttrName,filetemp2),AllInput=input(AttrName),
 %% write fact to file
 {_,IO}=file:open("factc.pl",[write]),
 lists:map(fun(EachR)->to_prolog(EachR,IO) end,AllInput),

 _=file:close(IO),
 DB=myToSet(AllInput), MinSup=inputSup(AllInput), mylib:c(20,MinSup),
 mylib:text_file(write,AllInput,allinput),
 Items=my_flat(PossibleValue),
 AllL=apriori1(DB, Items,MinSup),
 format("~n END ~n").

my_flat([H|T]) -> H++my_flat(T);
my_flat([]) -> [].

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

139

to_prolog(Fact,IO) ->
 io:format(IO,"~n~p(",[rec]),
 print_fact(IO,Fact),io:format(IO,").% ",[]).

print_fact(IO,[H]) -> io:format(IO,"~p",[list_to_atom(H)]) ;
print_fact(IO,[H|T]) -> io:format(IO,"~p,",[list_to_atom(H)]),print_fact(IO,T).

apriori1(DB,Items,Min) -> %% findSup(Set,ListOfSet)
 mylib:text_file(append,myToList(DB),apriori1),mylib:text_file(append,Items,apriori1),
 C1=[{from_list([X]),findSup(from_list([X]),DB)}|| X<-Items],
 CkPrint=[{to_list(FS),Sup} || {FS,Sup}<-C1],
 L1=[{FS,Sup} || {FS,Sup}<-C1,Sup>=Min],
 LkPrint=[{to_list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-L1],
 mylib:text_file(write,CkPrint,lkfile),
 K=2, LS=[FS||{FS,_}<-L1],
 AllSet=aprioriAll(L1,DB,LS,K,Min),
 mylib:term_file(write,AllSet,"set.raw").

inputSup(AllInput)->Total=length(AllInput),
 {_,Per}=io:read(" input percent> "),
 MinSup=Total*Per/100 .

aprioriAll(AllL,_,[],_,_) -> format("~nfinal set=~p~n",[AllL]),AllL; % return final Set
aprioriAll(AllL,_,[_],_,_) -> format("~nfinal set=~p~n",[AllL]),AllL;
aprioriAll(AllL,DB,LS,K,Min) -> Com=combi(LS),
 C_=myDistinct(usedCombi(Com,K)),
 Ck=[{X,findSup(X,DB)}|| X<-C_],mylib:c(35,Min),
 Lk=[{FS,Sup} || {FS,Sup}<-Ck,Sup>=Min],
 LkS=[FS||{FS,_}<-Lk],
 LkPrint=[{to_list(FS),Sup,Sup/length(DB)*100} || {FS,Sup}<-Lk],
 format("~nK=~w-~p, has ~w set ~n ",[K,LkPrint,length(LkPrint)]),
 aprioriAll(AllL++Lk,DB,LkS,K+1,Min) .

allPossibleAttr([H|T]) -> [H++ET||ET<-T].

input(AttrName) -> LinesList=mylib:read_file("ipums-1999-1Krecords.bak"," ,"),

 Zip=map(fun(EachL)->lists:zip(AttrName,EachL) end,LinesList),
 UsedData=map(fun(LineOfTuple)->concat_line_tuple(LineOfTuple) end,Zip).

% shift([a,b,c]) --> [b,c,a]
shift([H|T]) -> T++[H].

genR(_,Max,Max) -> [];
genR(L,N,Max) -> {H,T}=lists:split(N,L), [{H,T}]++genR(L,N+1,Max).

% genRule([2,3,5],3,3).
genRule(_,0,_)->[];
genRule(L,Count,Len)-> genR(L,1,Len)++genRule(shift(L),Count-1,Len).
findConf({H,B},AllL) -> {H,B,searchL(set(H++B),AllL)/searchL(set(H),AllL) }.

% main1() is for creating rules.
main1() ->
 format("~n------------START-create rules--------------"),
 {_,[AllL]}=file:consult("set.raw"),
 AllAsso2=[list(X)|| {X,_} <-AllL,length(list(X))>1],
 %gen Rules

 AllRuleGen=lists:flatten([genRule(L,length(L),length(L))||L<-AllAsso2]),
 AllRuleConf=[findConf(X,AllL)||X<-AllRuleGen],
 format("~nAllRule=~p ,~nThere are ~p rules ",[AllRuleConf,length(AllRuleConf)]),

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

140

 mylib:text_file(write,AllRuleConf,allrule),
 Sorted= lists:sort(fun({_,_,C1},{_,_,C2})->C1>=C2 end,AllRuleConf),
 mylib:text_file(write,Sorted,"allsortedrule.txt"),
 Conf1=lists:filter(fun({A,B,C})->C==1.0 end,Sorted),
 %% write to file
 %%% create prolog file Rules+Facts
 {_,IO}=file:open("rules.pl",[write]),
 lists:map(fun(EachR)->transform_to_prolog(EachR,IO) end,Conf1),
 _=file:close(IO),
 mylib:text_file(append,length(Conf1),"allsortedrule.txt"),
 mylib:text_file(append,length(Sorted),"allsortedrule.txt"),
 format("~n-----------end main1() process ----------------") .
 %%% create prolog file Rules+Facts

transform_to_prolog({Body,Head,Conf},IO) ->
 if (length(Head)==1) -> [Head1]=Head,
 io:format(IO,"~np(~p):-",[list_to_atom(Head1)]),

 print_body(IO,Body), io:format(IO,"% Conf=~p",[Conf]);
 true -> io:format("")
 end.

print_body(IO,[H]) -> io:format(IO,"p(~p).",[list_to_atom(H)]) ;
print_body(IO,[H|T]) -> io:format(IO,"p(~p),",[list_to_atom(H)]),print_body(IO,T).

set(X) -> from_list(X).
list(X) -> to_list(X).
searchL(Set,[{Set,Val}|_]) -> Val;
searchL(Set,[{_Another,_}|T]) -> searchL(Set,T);
searchL(_Set,[]) -> 1 .% Cannot find Set

concat_line_tuple(LineOfTuple) -> map(fun({A,B})->A++B end, LineOfTuple).

myToSet(L) -> [from_list(X)||X<-L].
myToList(SL) -> [to_list(S)||S<-SL].

findSup(_,[]) -> 0;

findSup(Set,DB) -> [H|T]=DB,
 Cond = is_subset(Set,H),
 if Cond -> 1+findSup(Set,T);
 true -> findSup(Set,T)
 end.

myDistinct(List) -> to_list(from_list(List)).

combi([H|T]) -> [[H,Te] || Te<-T]++ combi(T);
combi([]) -> [].

usedCombi([H|T],K) -> Union=union(H),
 Len=ordsets:size(Union),

 if Len==K -> [Union|usedCombi(T,K)];
 true -> usedCombi(T,K)
 end ;
usedCombi([],_) -> [].

 %----------- end of association rule mining program ------------------

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

141

4. Experimentation and Query Answering Results

On a series of experimentation, we draw a sample set containing 1,000 data records

from the IPUMS-USA database which has been made available to public by Minnesota

Population Center [18]. This database contains the United States socio-economic data

of the year 1999 with household and person information as shown in Figure 3. The

household records contain information such as value of household unit, monthly rental

payment, family total income, and other related information. Detail information of the

household records is given in Table 1, and its example data records are shown in Figure

4. For the person records, the information is about education, employment status,

occupation, income and other personal information. The details are in Table 2 and its

record examples are in Figure 5.

Figure 3. The IPUMS-USA Database and its Variables (or attributes) as
Appeared in the Household and Person Records

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

142

Table 1. Attribute Details of the Household Records

Attribute Name Description

1 ID Record-ID

2 gq Group quarters status

3 gqtypeg Group quarters type -- general

4 farm Farm status

5 ownershg Ownership of dwelling -- general

6 value Value of housing unit

7 rent Monthly rental payment

8 ftotinc Family total income

9 nfams Number of families within each household unit

10 ncouples Number of married couples

in a household

11 nmothers Number of mothers within each household unit

12 nfathers Number of fathers within each household unit

13 momloc Mother’s location in the household (a variable that indicates whether

the person’s mother lived in the same household and, if so, gives the

number of mother)

14 stepmom Probable step/adopted mother (whether a person’s mother was likely

to have been the person’s stepmother or adoptive mother)

15 momrule Rule for linking mother

16 poploc Father’s location in the household (a constructed variable to identify

social relationship such as stepfather, adoptive father, as well as

biological father)

17 steppop Probable step/adopted father

18 poprule Rule for linking father

19 sploc Spouse’s location in household (a constructed variable that indicates

whether the person’s spouse lived in the same household and, if so,

gives the person number of the spouse)

20 sprule Rule for linking spouse

21 famsize Number of own family members in household

22 nchild Number of own children in the household

23 nchlt5 Number of own children under age 5 in household

24 famunit Groups of related individuals in the household

25 eldch Age of eldest own child in household

26 yngch Age of youngest own child in household

27 nsibs Number of own siblings in the household

28 relateg Relationship to household head -- general

29 age Age of a person

30 sex Sex of a person

31 raceg Race -- general

32 marst Marital status

33 chborn Number of children ever born to each woman

34 bplg Birthplace -- general

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

143

table1(1,gq_1,gqtypeg_0,farm_1,ownershg_1,value_6,rent_0,ftotinc_3,nfams_1,ncouples_1,

nmothers_0,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_2,sprule_1,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_1,age_6,sex_1,raceg_1,marst_1,chborn_0,bplg_1).%

table1(2,gq_1,gqtypeg_0,farm_1,ownershg_1,value_6,rent_0,ftotinc_3,nfams_1,ncouples_1,

nmothers_0,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_1,sprule_1,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_2,age_6,sex_2,raceg_1,marst_1,chborn_4,bplg_1).%

table1(3,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_2,nchild_1,nchlt5_0,famunit_1,eldch_1,yngch

_1,nsibs_0,relateg_1,age_4,sex_2,raceg_1,marst_4,chborn_2,bplg_1).%

table1(4,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_1,stepmom_0,momrule_1,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_2,nchild_0,nchlt5_0,famunit_1,eldch_10,yngc

h_10,nsibs_0,relateg_3,age_1,sex_1,raceg_1,marst_6,chborn_0,bplg_1).%

table1(5,gq_1,gqtypeg_0,farm_1,ownershg_2,value_7,rent_9,ftotinc_3,nfams_2,ncouples_0,

nmothers_1,nfathers_0,momloc_0,stepmom_0,momrule_0,poploc_0,steppop_0,p

oprule_0,sploc_0,sprule_0,famsize_1,nchild_0,nchlt5_0,famunit_2,eldch_10,yngc

h_10,nsibs_0,relateg_11,age_3,sex_1,raceg_1,marst_6,chborn_0,bplg_1).%

Figure 4. Example of Household Records, Each Record has 34 Attributes

table2(1,school_1,educrec_7,schltype_1,empstatg_1,labforce_2,occscore_3,sei_2,

classwkg_2,wkswork2_4,hrswork2_6,yrlastwk_0,workedyr_2,inctot_3,

incwage_3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_6,

migrat5g_1,migplac5_0,movedin_7,vetstat_1,tranwork_10,occupation_2).%

table2(2,school_1,educrec_8,schltype_1,empstatg_1,labforce_2,occscore_2,sei_3,

classwkg_1,wkswork2_3,hrswork2_6,yrlastwk_0,workedyr_2,inctot_2,

incwage_2,incbus_2,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_6,

migrat5g_1,migplac5_1,movedin_0,vetstat_1,tranwork_10,occupation_3).%

table2(3,school_1,educrec_7,schltype_1,empstatg_1,labforce_2,occscore_3,sei_5,

classwkg_2,wkswork2_6,hrswork2_5,yrlastwk_0,workedyr_2,inctot_3,

incwage_3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_2,

migrat5g_2,migplac5_1,movedin_2,vetstat_1,tranwork_10,occupation_2).%

table2(4,school_2,educrec_2,schltype_2,empstatg_0,labforce_0,occscore_1,sei_1,class

wkg_0,wkswork2_0,hrswork2_0,yrlastwk_0,workedyr_0,inctot_1,incwage_4,

incbus_4,incfarm_4,incss_3,incwelfr_3,incother_3,poverty_2,migrat5g_1,mi

gplac5_1,movedin_0,vetstat_0,tranwork_0,occupation_5).%

table2(5,school_1,educrec_7,schltype_1,empstatg_2,labforce_2,occscore_5,sei_8,class

wkg_2,wkswork2_6,hrswork2_0,yrlastwk_10,workedyr_2,inctot_3,incwage_

3,incbus_1,incfarm_1,incss_1,incwelfr_1,incother_1,poverty_4,migrat5g_2,

migplac5_1,movedin_0,vetstat_2,tranwork_0,occupation_2).%

Figure 5. Example of Person Records, Each Record has 27 Attributes

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

144

Table 2. Attribute Details of the Person Records

Attribute Name Description

1 ID Record-ID

2 school School attendance

3 educrec Highest year of school or degree completed

4 schltype School type

5 empstatg Employment status -- general

6 labforce Labor force status

7 occscore Occupational income score

(the median total income in hundreds of dollars)

8 sei Duncan Socioeconomic Index score to each occupation (SEI

is the measure of occupational status based upon the income

level and educational attainment associated with each

occupation)

9 classwkg Class of worker -- general

10 wkswork2 Weeks worked last year, intervalled

11 hrswork2 Hours work last week, intervalled

12 yrlastwk Year last worked

13 workedyr Worked last year

14 inctot Total personal income

15 incwage Wage and salary income

16 incbus Non-farm business income

17 incfarm Farm income

18 incss Social security income (social security pensions, survivors

benefits, permanent disability insurance)

19 incwelfr Welfare income (federal/state supplemental security income

payments to elderly, blind, or disabled persons with low

incomes; families with dependent children)

20 incother Other income

21 poverty Poverty status (It expresses each family’s total income for the

previous year as a percentage of the poverty threshold

established by the Social Security Administration.)

22 migrat5g Migration status, 5 years – general

23 migplac5 State or country of residence 5 years ago

24 movedin Number of years ago that the householder moved into the

dwelling unit

25 vetstat Veteran status

26 tranwork Means of transportation to work

27 occupation Occupational classification

To test the efficiency of query optimization with materialized views and data mining

models, we create a database using the DES system [12]. The DES system provides

facility to support querying in both the SQL and Datalog languages as shown in Figure

6. The database stores table1 and Table 2 (Figures 4 and 5) to contain household and

person information, respectively. Both tables are in the format of Datalog clauses. Data

mining models used in the experimentation are association rules that are also

transformed to be Datalog clauses as shown some part in Figure 7 . Examples of

materialized views used in the experimentation are displayed in Figure 8.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

145

Figure 6. The DES System with SQL Support (above) and Datalog Querying
(below)

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

146

Figure 7. Part of Semantic Rules Transformed from the Association Mining
Models

Figure 8. Example of Materialized Views Used in the Querying Experimentation

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

147

We test the query processing performance with six kinds of queries (experimental

results are graphically shown in Figure 9 and summarized in Table 3). Some queries

(Query1, Query2, and Query3) cannot benefit from the presence of semantic rules

because the queries’ conditions do not fit the rules. For this case, the system takes more

time to search for semantic rules than traditional direct querying method. But for some

queries that fit the rule antecedents, the intelligent method does significantly save the

database searching time. The details of each query as well as its running time report are

provided as follows:

Query 1: Ask for the value of farm housholds. (Null answer; all households are non-farm)

DES-Datalog> /assert query1(X) :-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,

A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,
A26,A27,A28,A29,A30,A31,A32,A33,A34),A4=farm_2,X=A6.

DES-Datalog> query1(X).

{ }

Info: 0 tuples computed.

Total elapsed time: 110 ms.

Search for semantic rules to transform query: (the rule’s predicate is ‘farm_2’)

DES-Datalog> /assert p(farm_2).
DES-Datalog> p(C).

{ p(farm_2) }

Info: 1 tuple computed.

Total elapsed time: 295 ms.

 The query returns the same predicate ‘farm_2’; that means no rules can be applied.

 Thus, the semantic-based query transformation wastes time = 295 ms.

Query 2: Ask for the value of non-farm households.

DES-Datalog> /assert query2(X) :-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,
A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,

A26,A27,A28,A29,A30,A31,A32,A33,A34), A4=farm_1, X=A6.

DES-Datalog> query2(X).

{ query2(value_1),

 query2(value_2),

 query2(value_3),
 query2(value_4),

 query2(value_5),

 query2(value_6),

 query2(value_7) }

Info: 7 tuples computed.

Total elapsed time: 1029 ms.

Search for semantic rules to transform query: (the rule’s predicate is ‘farm_1’)

DES-Datalog> /assert p(farm_1).

DES-Datalog> p(C).
{ p(farm_1) }

Info: 1 tuple computed.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

148

Total elapsed time: 296 ms.

 The query returns the same predicate ‘farm_1’; that means no rules can be applied.

 Thus, the semantic-based query transformation wastes time = 296 ms.

Query 3: Ask for total family income for a household unit with two families.
DES-Datalog> /assert query3(X):-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,
A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,

A26,A27,A28,A29,A30,A31,A32,A33,A34),A24=famunit_2,X=A8.

DES-Datalog> query3(X).

{ query3(ftotinc_1),

 query3(ftotinc_2),

 query3(ftotinc_3) }
Info: 3 tuples computed.

Total elapsed time: 906 ms.

Search for semantic rules to transform query: (the rule’s predicate is ‘famunit_2’)

DES-Datalog> /assert p(famunit_2).

DES-Datalog> p(C).

{ p(famunit_2) }

Info: 1 tuple computed.

Total elapsed time: 282 ms.

 The query returns the same predicate ‘famunit_2’; that means no rules can be applied.

 Thus, the semantic-based query transformation wastes time = 282 ms.

Query 4: Ask for family size of non-farm households with family income at level 3 (10,000-

99,999 US$).

DES-Datalog> /assert query4(X):-
table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,

A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,

A26,A27,A28,A29,A30,A31,A32,A33,A34),A4=farm_1,A8=ftotinc_3,X=A21.

DES-Datalog> query4(X).

{ query4(famsize_1),

 query4(famsize_2),
 query4(famsize_3),

 query4(famsize_4),

 query4(famsize_5),

 query4(famsize_6),

 query4(famsize_7) }

Info: 7 tuples computed.
Total elapsed time: 1028 ms.

Search for semantic rules to transform query:

(the rule’s predicates are ‘farm_1’ and ‘ftotinc_3’)

DES-Datalog> /assert p(farm_1).

DES-Datalog> /assert p(ftotinc_3).

DES-Datalog> p(C).
{ p(farm_1),

 p(ftotinc_3),

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

149

 p(gq_1),
 p(gqtypeg_0) }

Info: 6 tuples computed.

Total elapsed time: 594 ms.

 Semantically transformed query:

DES-Datalog> /assert query4B(X):-table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,

A11,A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,

A25,A26,A27,A28,A29,A30,A31,A32,A33,A34), A4=farm_1,

A8=ftotinc_3, A2=gq_1, A3=gqtypeg_0, X=A21.

DES-Datalog> query4B(X).
{ query4B(famsize_1),

 query4B(famsize_2),

 query4B(famsize_3),

 query4B(famsize_4),

 query4B(famsize_5),

 query4B(famsize_6),
 query4B(famsize_7) }

Info: 7 tuples computed.

Total elapsed time: 94 ms.

Query processing time saving = 1028-(594+94)= 340 ms.

Query 5: Ask for educational record and total income of female person. (Joining of table1

and table2)

DES-Datalog> /assert query5(X,Y):-table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,

A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,
A26,A27,A28,A29,A30,A31,A32,A33,A34),table2(B1,B2,B3,B4,B5,B

6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B2

1,B22,B23,B24,B25,B26,B27),A1=B1,A30=sex_2,X=B3,Y=B15.

DES-Datalog> query5(X,Y).

{ query5(educrec_0,incwage_4),

 query5(educrec_1,incwage_1),
 query5(educrec_1,incwage_2),

 query5(educrec_1,incwage_3),

 query5(educrec_1,incwage_4),

 query5(educrec_2,incwage_1),

 query5(educrec_2,incwage_3),

 query5(educrec_2,incwage_4),
 query5(educrec_3,incwage_1),

 query5(educrec_3,incwage_2),

 query5(educrec_3,incwage_3),

 query5(educrec_3,incwage_4),

 query5(educrec_4,incwage_1),

 query5(educrec_4,incwage_2),
 query5(educrec_4,incwage_3),

 query5(educrec_4,incwage_4),

 query5(educrec_5,incwage_1),

 query5(educrec_5,incwage_2),

 query5(educrec_5,incwage_3),

 query5(educrec_5,incwage_4),
 query5(educrec_6,incwage_1),

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

150

 query5(educrec_6,incwage_2),
 query5(educrec_6,incwage_3),

 query5(educrec_7,incwage_1),

 query5(educrec_7,incwage_2),

 query5(educrec_7,incwage_3),

 query5(educrec_8,incwage_1),

 query5(educrec_8,incwage_2),
 query5(educrec_8,incwage_3),

 query5(educrec_9,incwage_1),

 query5(educrec_9,incwage_2),

 query5(educrec_9,incwage_3),

 query5(educrec_9,incwage_4) }

Info: 756 tuples computed.
Total elapsed time: 10423 ms.

Transformed query with materialized view:
DES-Datalog> /assert query5B(X,Y):-

view1(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,

V12,V13,V14,V15,V16,V17,V18,V19,V20,V21,V22,V23,V24,V25,

V26,V27,V28,V29,V30,V31,V32,V33,V34,V35,V36,V37,V38,V39,

V40,V41,V42,V43,V44,V45,V46,V47,V48,V49,V50,V51,V52,V53,

V54,V55,V56,V57,V58,V59),V29=sex_2,X=V35,Y=V47.

DES-Datalog> query5B(X,Y).
{ query5B(educrec_0,incwage_4),

 query5B(educrec_1,incwage_1),

 query5B(educrec_1,incwage_2),

 query5B(educrec_1,incwage_3),

 query5B(educrec_1,incwage_4),

 query5B(educrec_2,incwage_1),
 query5B(educrec_2,incwage_3),

 query5B(educrec_2,incwage_4),

 query5B(educrec_3,incwage_1),

 query5B(educrec_3,incwage_2),

 query5B(educrec_3,incwage_3),

 query5B(educrec_3,incwage_4),
 query5B(educrec_4,incwage_1),

 query5B(educrec_4,incwage_2),

 query5B(educrec_4,incwage_3),

 query5B(educrec_4,incwage_4),

 query5B(educrec_5,incwage_1),

 query5B(educrec_5,incwage_2),
 query5B(educrec_5,incwage_3),

 query5B(educrec_5,incwage_4),

 query5B(educrec_6,incwage_1),

 query5B(educrec_6,incwage_2),

 query5B(educrec_6,incwage_3),

 query5B(educrec_7,incwage_1),
 query5B(educrec_7,incwage_2),

 query5B(educrec_7,incwage_3),

 query5B(educrec_8,incwage_1),

 query5B(educrec_8,incwage_2),

 query5B(educrec_8,incwage_3),

 query5B(educrec_9,incwage_1),

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

151

 query5B(educrec_9,incwage_2),
 query5B(educrec_9,incwage_3),

 query5B(educrec_9,incwage_4) }

Info: 33 tuples computed.

Total elapsed time: 1060 ms.

Query processing with the transformed query with materialized view:

 Time saving = 10423-1060 = 9363 ms.

Query 6: Ask for class of work, occupation, and income of white immigrants moving from

Europe and being a single family unit. (Joining table1 and table2)

DES-Datalog> /assert query6(X,Y,Z):-

table1(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,

A12,A13,A14,A15,A16,A17,A18,A19,A20,A21,A22,A23,A24,A25,
A26,A27,A28,A29,A30,A31,A32,A33,A34),table2(B1,B2,B3,B4,B5,B

6,B7,B8,B9,B10,B11,B12,B13,B14,B15,B16,B17,B18,B19,B20,B2

1,B22,B23,B24,B25,B26,B27), A1=B1, A9=nfams_1, A31=raceg_1,

A34=bplg_4, X=B9, Y=B27, Z=B14.

DES-Datalog> query6(X,Y,Z).

{ query6(classwkg_0,occupation_5,inctot_1),

 query6(classwkg_0,occupation_5,inctot_2),

 query6(classwkg_0,occupation_5,inctot_3),

 query6(classwkg_1,occupation_2,inctot_3),

 query6(classwkg_2,occupation_1,inctot_1),

 query6(classwkg_2,occupation_1,inctot_2),

 query6(classwkg_2,occupation_1,inctot_3),

 query6(classwkg_2,occupation_1,inctot_4),

 query6(classwkg_2,occupation_2,inctot_1),

 query6(classwkg_2,occupation_2,inctot_2),

 query6(classwkg_2,occupation_2,inctot_3) }

Info: 121 tuples computed.

Total elapsed time: 9852 ms.

Transformed query with semantic rules and views:

DES-Datalog> /assert p(nfams_1)
DES-Datalog> p(C)

{ p(famunit_1),

 p(farm_1),

 p(nfams_1) }

Info: 3 tuples computed.

Total elapsed time: 452 ms.

DES-Datalog> /assert query6B(X,Y,Z):-view1(V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,

V11,V12,V13,V14,V15,V16,V17,V18,V19,V20,V21,V22,V23,V24,V25

,V26,V27,V28,V29,V30,V31,V32,V33,V34,V35,V36,V37,V38,V39,V4

0,V41,V42,V43,V44,V45,V46,V47,V48,V49,V50,V51,V52,V53,

V54,V55,V56,V57,V58,V59), V3=farm_1, V8=nfams_1,

V23=famunit_1, V30=raceg_1, V33=bplg_4, X=V41, Y=V59, Z=V46.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

152

DES-Datalog> query6B(X,Y,Z).

{ query6B(classwkg_0,occupation_5,inctot_1),

 query6B(classwkg_0,occupation_5,inctot_2),

 query6B(classwkg_0,occupation_5,inctot_3),

 query6B(classwkg_1,occupation_2,inctot_3),

 query6B(classwkg_2,occupation_1,inctot_1),

 query6B(classwkg_2,occupation_1,inctot_2),

 query6B(classwkg_2,occupation_1,inctot_3),

 query6B(classwkg_2,occupation_1,inctot_4),

 query6B(classwkg_2,occupation_2,inctot_1),

 query6B(classwkg_2,occupation_2,inctot_2),

 query6B(classwkg_2,occupation_2,inctot_3) }

Info: 11 tuples computed. Info:

Total elapsed time: 1015 ms.

Query processing with the transformed query with semantic rules and materialized view:

 Time saving = 9852-(452+1015)= 8385 ms.

Figure 9. Time Comparison of Direct Querying versus Transforming Queries
with Materialized Views and Data Mining Models Prior to Accessing the

Database Contents

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

153

Table 3. Processing Time Summarization of Direct Querying versus
Intelligent Querying Based on Semantic Transformation Using Materialized

Views and Mining Models

Query characteristics Processing time (ms) Reduced

time (ms)

Time usage

efficiency

 Direct

answer

Intelligent

answer

Query1: ask one information with a

single condition, null

answer

110 405 -295 -268.18%

Query2: ask one information with a

single condition

1,029 1,325 -296 -28.76%

Query3: ask one information with a

single condition

906 1,188 -282 -31.12%

Query4: ask one information with

two conditions

1,028 688 340 33.07%

Query5: ask two information with a

single condition

10,423 1,060 9,363 89.83%

Query6: ask three information with

four conditions

9,852 1,467 8,385 85.10%

5. Conclusion

We design and implement a query answering system to provide an integrated and

efficient platform for the next generation database management system. To answer

queries effectively and intelligently, the association mining component and the

materialized view manager are two key players to derive useful knowledge relevant to

the given query. Query rewriter, which is supported by intelligent transformation rules

and co-operated with query executor, is expected to produce answers in an intelligent

way. The preliminary experimental results satisfy the expectation. We are, however,

improving the capability of these components to analyze the user's intent and

preferences to better providing associated information. Extending the scope of this

research towards the distributed environment is also the direction of our future work.

Acknowledgements

This work has been supported by grants from the National Research Council of Thailand

(NRCT) and Suranaree University of Technology via the funding of Data Engineering

Research Unit.

References

[1] Afrati FN, Li C, Ullman JD, “Using views to generate efficient evaluation plans for queries”, Journal of

Computer and System Sciences 73, 5, (2007), pp. 703-724.

[2] Agrawal R, Srikant R, “Fast algorithm for mining association rules”, In: VLDB, (1994), pp. 487-499.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

154

[3] Arago M, Fernandes A, “Logic-based integration of query answering and knowledge discovery”, In: 6th
Flexible Query Answering Systems, (2004), pp. 68-83.

[4] Blockeel H, Calders T, Fromont E, Goethals B, “Mining views: data base views for data mining”, In: IEEE
ICDE, (2008), pp. 1608-1611.

[5] Calders T, Goethals B, Prado A, “Integrating pattern mining in relational databases”, In: PKDD, (2006), pp.
454-461.

[6] Chang J, Lee S, “Query reformulation using materialized views in data warehousing environment”, In: ACM
Int. Workshop on Data Warehousing and OLAP, (1998), pp. 54-59.

[7] Chaudhuri S, “Generalization and a framework for query modification”, In: IEEE ICDE, (1990), pp. 138-145.

[8] Chaudhuri S, Krishnamurthy S, Potamianos S, Shim K, “Optimizing queries with materialized views”, In:
IEEE ICDE, (1995), pp. 190-200.

[9] Chaudhuri S, Narasayya V, Sarawagi S, “Extracting predicates from mining models for efficient query

evaluation”, ACM Trans. Database Systems, vol. 29, no. 3, (2004), pp. 508-544.

[10] Chen CM, Rossopoulos N, “The implementation and performance evaluation of the ADMS query optimizer:

integrating query result caching and matching”, In: EDBT, (1994), pp. 323-336.

[11] Chu W, Chen Q, “A structured approach for cooperative query answering”, IEEE Trans. Knowledge and Data
Engineering, vol. 6, (1994), pp. 738-749.

[12] Datalog Educational System, version 2.0. http://www.fdi.ucm.es/profesor/fernan/DES/.

[13] Erlang Programming Language, release 14. http://www.erlang.org.

[14] Gou G, Kormilitsin M, Chirkova R, “Query evaluation using overlapping views: completeness and
efficiency”, In: ACM SIGMOD, (2006), pp. 37-48.

[15] Halevy A, “Answering queries using views: a survey”, The VLDB Journal, vol. 10, no. 4, (2001), pp. 270-
294.

[16] Han J, Huang Y, Cercone N, Fu Y, “Intelligent query answering by knowledge discovery techniques”, IEEE
Trans. Knowledge and Data Engineering, vol. 8, no. 3, (1996), pp. 373-390.

[17] IBM, IBM intelligent miner scoring, administration and programming for DB2 version 7.1. New York: IBM
(2001).

[18] Integrated Public Use Microdata Series (IPUMS), Minnesota Population Center. http://www.ipums.org.

[19] Lin T, Cercone N, Hu X, Han J, “Intelligent query answering based on neighborhood systems and data
mining techniques”, In: IEEE IDEAS, (2004), pp. 91-96.

[20] Microsoft Corporation, OLE DB for data mining. Redmond, WA: Microsoft Corporation, (2000).

[21] Muslea I, “Machine learning for online query relaxation”, In: ACM SIGMOD, (2004), pp. 246-255.

[22] Srivastava D, Das S, Jagadish HV, Levy AY, “Answering queries with aggregation using views”, In: VLDB,
(1996), pp. 318-329.

Authors

Nittaya Kerdprasop is an associate professor at the school of

computer engineering, Suranaree University of Technology,

Thailand. She received her B.S. from Mahidol University, Thailand,

in 1985, M.S. in computer science from the Prince of Songkla

University, Thailand, in 1991 and Ph.D. in computer science from

Nova Southeastern University, USA, in 1999. She is a member of

ACM and IEEE Computer Society. Her research of interest includes

Knowledge Discovery in Databases, Artificial Intelligence, Logic

Programming, Deductive and Active Databases.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

155

Kittisak Kerdprasop is an associate professor at the school of

computer engineering, Suranaree University of Technology,

Thailand. He received his bachelor degree in Mathematics from

Srinakarinwirot University, Thailand, in 1986, master degree in

computer science from the Prince of Songkla University, Thailand,

in 1991 and doctoral degree in computer science from Nova

Southeastern University, USA., in 1999. His current research

includes Data mining, Artificial Intelligence, Functional and Logic

Programming Languages, Computational Statistics.

International Journal of Database Theory and Application

Vol. 5, No. 1, March, 2012

156

