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Abstract

We present a prototype web application for children shoes suggestion. We are interested in
attributes of foot and shoes that can comfort the children’s feet. The key attributes are types
of shoes, size, and brands. For the feet, there are width, length, thickness, sole curve, toe and
others. The application has the database that stores these children shoes and foot
characteristics for training. The data mining model is created using decision tree, KNN,
neural net and integrated to the application.
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1. Introduction

For children, there are various kinds of attributes that are needed to consider for buying
their shoes. The children shoes need to be comfort. The size needs to be suitable to them as
well as the shape of the shoes. In this research, we are interested in shoe sizing and major
attributes that affect the decision on buying shoes for Thai students. In particular, we would
like to develop a prototype system that suggests proper shoes for small kids based on certain
criteria.

Data mining is a popular technique used in classification and predictions. Many research
works used it as a tool for decision support system. Palaniappan S. and Awang R. [7]
developed a heart disease decision support system. It used nawe bayes, decision tree and
neural net to model the classifications. It is developed as a web application and used DMX
query tool. C.Y. Ma, Frances, V Buontempo and X. Z Wang [6] used inductive data mining
for historic data analysis. M.J. Aitkenhead [1] developed a co-evolution decision tree method.
It combines an evolution method with the decision tree model for a better classification.
Hudson S., and Ritchie B. [4] used cluster analysis for tourism in Alberta. They applied the
model CRISP-DM. Jiao J. R et. al. [5] developed Kensei Mining which uses association rules
to design user interface. Hsieh C., Huang S. [3] applied data mining technique to design new
products. Apriori algorithm was used here. The attributes investigated are customer needs and
product properties. Prassas G., et. al., [8] data mining for online shopping suggestion. Chen
Y.L., Chen J.M., Tung C.W. [2] applied data mining to see the effect of shelf-space adjacency.

In our paper, we develop a children shoe suggestion system. The data mining engine is
used. Particularly the decision tree, KNN, neural net techniques are applied. We collect
samples data from the neighborhood school from K1-K3 and P1-P3, each of which is 20-30
students. About the students, we collect the student age, shoe shape, sex. About their shoes,
we collect the shoe sizes, brands, and types. Assume the types are student shoes, sport shoes
and leisure shoes. We design the database to save all the student data and shoe attributes.
After the modeling for classification is developed, it is integrated to the web-based system.
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The paper is organized as follows: the next section is the backgrounds. Then we present the
data collection and preparation. Next, in Section 4, we present some results from data mining
and compare the three approaches. In Section 5, the web application is presented and Section
6 presents the conclusion.

2. Backgrounds

Data mining technique is used often with large database, dataware house etc. It is mainly
applied in decision support systems for modeling and prediction. There are several kinds of
data mining: classification, clustering, association, sequencing etc.

Typically, for classification, the classifier model is needed. Data are divided into training
set and test set. The training data is used to create the model. Then the test set applied for
checking the model correctness. Until satisfied, the model is trained and adjusted by training
data. Common techniques used in classification are decision tree, neural network, na'we bayes,
etc.

In this work, we collect the data from one of the public kindergarden school. The school is
a small size. There are 20 boys each in K1, K2 and K3 respectively. There are 30 boys in P1,
P2, and P3 respectively. There are 20 girls each in K1, K2, and K3 respectively. Also, there
are 30 girls each in P1,P2 and P3 respectively. There are 3 types of shoe types such as sport
shoes, student shoes and leisure shoes. We collect 120 pairs of student shoes dividing into 60
boys’ and 60 girl’s, 70 pairs of sport shoes from 35 boys and 35 girls, 50 pairs of leisure
shoes from 25 boys and 25 girls.

We design a form for collecting these data from students. The attributes that are specified
are student information such as name, sex, age, foot information such as sole curve, toes
characteristics, thickess, and height. We also draw the foot figures for left and right sides for
references. The shoe sizes for each type are collected as well. The sample form is shown in
Figure 12 in Appendix. From the data collected, we design an E-R diagram which
corresponds to the database table for the application in Figure 1. Then these data are divided
into training set and test set as in Figure 2.

In Figure 2, the attributed used to train are age, sex, foot width, foot length, foot thickness,
sold curve, foot type, toe type, and length upto the angle. The last two columns are the brands
and shoe sizes.

3. Data Collection

From the above data collection, we analyze the attributes of the feet as following.

- Foot length. The students for these ages mostly have the same foot length. There are
very few samples that have a distinct foot size.

- Sole curve. Usually, there are three types of sole curve. However, since these are
very small children, the sole curves are in only flat level and small curve.
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- Toe feature. Typically, there are three types: Egyptian style (where left one in the
right side is the longest one and the others are shorter in the decreasing order), Greek
style (where the second one is the longest) and the square style (where every finger is
of the same height). From our data, most of the students are in the Greek style, then
Egyptian style. Then the for the student shoe type, it can be matched with all kinds of
feet. For the sport shoes, by inspecting the head of the shoes, it may be matched only
Greek style feet. For the leisure shoes, by inspecting the head of the shoes, it may
also be matched only Greek style feet.

From our data, we still have problems of insufficient data for children. Most likely,
children in the same area and nationality, have the same style of feet. Also, the available
shoes are very similar to each other. Then, the foot styles are not influence the classification
S0 much.

4. Results and Analysis

We use Weka (http://www.cs.waikato.ac.nz/ml/weka/) tool to create the decision tree.
Figure 3 is an example result for student shoes. In this example, 1) foot length is the most
important attribute. Then it is sole curve (small curve) and sex (female). We obtain
CATCHA _31 (6.0) which is the brand CATCHA, size 31, and there are 6 students on this leaf.
In 2), also, foot length is the most important attribute. Then it is sole curve (small curve) and
sex (male). The shoes are SCS brand whose size is 33 and there are 5 students in this leaf.

In Figure 4, it is the sample results from sport shoes. In 1), only the foot length is used.
We show the path from the root to leaves, ADDA_30(21.0). From our data, thereare 21
children who wear this type of shoes. In 2), the attributes are foot length, sex (male). In the
tree, we step through the foot length attribute first, and then the sex attribute is used. After
that, the foot length attribute is used again. From the result, PAN_36 (3.0) is selected.

In Figure 5, it is the tree for leisure shoes. For 1) and 2), the sex and foot length are the
major attributes for the decision. For 1), we use the sex attribute first, then the foot length is
considered. From the result, we obtain the leaf BATMAN_35 (15.0). There are 15 students on
this leaf. For 2), similarly, the sex and foot length are being used. KITTY_33 (6.0) is the
resulting leaf.

For the given data, we test the accuracy results for different models: KNN, Neural net and
decision tree. These are shown in Table 1. It is seen that the decision tree performs best
among the three models. We suspect this is because the mentioned reason in Section 4.
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Figure 3. Sample Tree Results for Student Shoe Classification
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Figure 4. Sample Tree Results for Sport Shoe Classification
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Table 1. Accuracy for Different Models

Type of shoes Accuracy
NN KNN Decision
tree
Student shoes 53% 56% 82%
Sport shoes 76% 54% 98%
Leisure shoes 80% 55% 99%

The data from this table is taken from the example running of tests in Table 1 shown in
Figures 13-21 in Appendix.

5. Web Application

We develop the web application for suggesting the shoes using our data mining engine as
well. Sample user interface is shown in Figures 6-11. In Figure 6, it is an introductory page.
the user enters his profile about name, date of birth, sex. Then, in Figures 7-8, we show the
shoe types in our database. Figure 9 is an interface for a user profile. The user must register to
enter his information on name, age, and sex. In Figure 10, the user then enters his foot
information such as thickness, length, width, foot types etc. These information are required
for our data mining model. After that, the program reports proper shoes for each type as
shown in Figure 11. The types are student shoes, sport shoes and leisure shoes. The answer is
the brand and size as well as the percentage of accuracy from our database in the last column.
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Figure 6. Sample Introductory Page
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Fig. 11. Suggested Shoes with Accuracy

5. Conclusion

We present an application for children shoes suggestion. The application is developed as a
web application. It includes a data mining engine for predicting the proper shoe brand and
size. The goal of this work is to study the attributes necessary to decide proper shoes for
children since there are various foot attributes and shoe attributes.

Currently, the length of the shoes is the major concern. Due to this, decision tree performs
well among the three approaches. In reality, sole curve, width, thickness are important to the
comfort as well. To reflect this, data about the shoes need to be collected more intensively
and in more detailed. This will be investigated further.
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Figure 20. Results for KNN from Weka (leisure shoes)
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Figure 21. Results for Neural Net from Weka (leisure shoes)
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