
International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

15

Mining Multi-level Frequent Itemsets under Constraints

Mohamed Salah GOUIDER Amine FARHAT

BESTMOD Laboratory
 Institut Supérieur de Gestion

41, rue de la liberté,
cite Bouchoucha

Bardo, 2000, Tunis, Tunisia
E-mail: ms.gouider@isg.rnu.tn

BESTMOD Laboratory
Institut Supérieur de Gestion

41, rue de la liberté,
cite Bouchoucha

Bardo, 2000, Tunis, Tunisia
E-mail: farhat_amine@yahoo.fr

ABSTRACT

Mining association rules is a task of data mining, which extracts knowledge in the form

of significant implication relation of useful items (objects) from a database. Mining

multilevel association rules uses concept hierarchies, also called taxonomies and defined

as relations of type 'is-a' between objects, to extract rules that items belong to different

levels of abstraction. These rules are more useful, more refined and more interpretable by

the user. Several algorithms have been proposed in the literature to discover the

multilevel association rules. In this article, we are interested in the problem of

discovering multi-level frequent itemsets under constraints, involving the user in the

research process. We proposed a technique for modeling and interpretation of constraints

in a context of use of concept hierarchies. Three approaches for discovering multi-level

frequent itemsets under constraints were proposed and discussed: Basic approach, “Test

and Generate” approach and Pruning based Approach.

Keywords : Knowledge Discovery; Data Mining; Association Rules; Concept

Hierarchies

1. Introduction
The Knowledge Discovery from Database (KDD), means the non-trivial process of

identifying, from the data, patterns or valid knowledge which is new, useful and

understandable [1]. The KDD is motivated by the huge volumes of data collected around

the world, and the more efficient and reliable environment of exchange of data provided

by systems and networks. Data mining is the core step of KDD process, defined as the set

of intelligent, complex and highly sophisticated data processing techniques, used to

extract knowledge. Knowledge can take several forms depending on the purpose of the

user and the data mining algorithm. Mining association rules is a data mining task which

consists in extracting meaningful relationships of the form (X implies Y) between objects

(Items) of a database, such as X and Y are subsets of items. The validity of an association

rule is defined by two measures where the threshold is defined by user: the first measure

is the support which means the scope of the rule, i.e. the frequency of the set (X UNION

Y) in the database. The second measure is the confidence that means the accuracy of the

rule, i.e. the conditional probability of occurrence of Y knowing X. This problem was

proposed in [2] for the analysis of transactions of a sale database. Since then, mining

association rules has become a very important task of data mining and has demonstrated

efficacy in diverse application areas: telecommunications, medical diagnostics, space

exploration ... This problem has been addressed in several articles in the literature [3, 4, 5,

6, 7], which allowed the development of several algorithms for discovering association

rules.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

16

Approaches mentioned above are aimed at discovering association rules at the terminal

level of abstraction, i.e. the association rules containing only the items belonging to the

transactions of database. However, there is a need in many applications to association

rules at higher levels of abstraction, these are multi-level association rules [9] or

generalized association rules [8]. Mining multi-level association rules is motivated by

several reasons, such as:

• Association rules at the lowest level of abstraction may not satisfy the support

constraint. Thus, one may omit several rules potentially useful.

• The multi-level association rules are more refined, give a global view and are

more interpretable and more understandable to the user.

• The multi-level association rules can provide solutions to the problem of

redundant or unnecessary rules, often encountered in real world applications.

To extract multi-level association rules, concept hierarchies or items taxonomies are

needed. A concept hierarchy is modeled by a directed acyclic graph (DAG) whose nodes

represent items and arcs represent 'is-a' relations between two items. Concept hierarchies

represent the relationships of generalization and specification between the items, and

classify them at several levels of abstraction. These concept hierarchies are available, or

generated by experts in the field of application. Figure 1 illustrates an example of a

concept hierarchy on food products. The problem of discovering multi-level association

rules has been treated in several articles in the literature that suggested many methods for

solving the problem. Many studies are focused on the problem of finding multi-level

frequent itemsets, which represent the main and most complex stage in the process of

extracting association rules.

Figure 1. Example of a concept hierarchy on food products

This paper deals with the problem of finding frequent multi-level itemsets under

constraints, given a deep belief of the importance of involving the user in the process of

mining association rules. This process leads to developing more reliable and efficient

solutions, especially for processing large volumes of data.

Our contribution is to propose, first, a technique of definition and interpretation of

constraints in the context of use of concept hierarchies. Then, three approaches and

algorithms for discovering frequent multi-level itemsets under constraints are proposed

and discussed: basic approach, approach ‘test and generate’ and pruning based approach.

To develop the approach by pruning, some changes will be made to the technique of

definition and interpretation of the constraints.

This article is organized as follows. The problem of mining multi-level association

rules is specified in details in section 2. Main approaches proposed in the literature will be

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

17

presented in the same section. Section 3 is devoted to solving the problem of mining

frequent multi-level itemsets under constraints. The conclusion and the perspectives of

this work are presented in section 4.

2. Mining multi-level association rules
At this section, a specification of the problem and a brief description of the techniques

of extracting multi-level association rules proposed in the literature, are presented.

2.1. Problem specification

Let I = {i1, i2,, im}, a set of m items, also called literals. Let T = {t1, t2,, tn},

a database of n transactions, each transaction ti is composed of a unique identifier (TID)

and a subset i of I, i is composed of k items and i is defined as a k-itemset. HC is a

concept hierarchy on the items of I, HC is also called taxonomy. It is modeled by a

directed acyclic graph. An arc of HC represents an “is-a” relationship between the source

and the destination. A node refers to an item of I. Let p and c, two nodes of HC, and there

is an arc from p to c, p is said parent and c is said son. An item is not the parent of itself

since the graph is acyclic. Transactions T contain only the items belonging to the lowest

level (Terminal level). In taxonomy, levels are numbered from 0, as the level 0 represents

the level Root. Items belonging to a level l, are numbered with respect to their parent in an

ascending order, this coding was proposed in [9] for reasons of simplification. In Figure 1,

the item milk, for example, takes the code 1**, since it belongs to level 1, the Dairyland

item (terminal item) takes the code 111, which gives clear information about its position

in the hierarchy and its parents.

The problem of mining multi-level association rules is to find the association rules

containing items belonging to the different levels of abstraction, meeting the minimum

thresholds of support and confidence, knowing that a transaction t supports an item x if

and only if, x belongs to t or x is a parent of an item belonging to t. Similarly to the

methods of discovering single-level association rules, multi-level association rules

algorithms are mainly based on the discovery of frequent itemsets.

2.2. Algorithms for mining multi-level association rules: An Overview

As indicated earlier, the problem of mining multi-level association rules has been

covered in several researches. In [9], the authors have proposed series of algorithms for

discovering multi-level frequent itemsets: ML-T2, ML-T1, ML-TMax, ML-T2+…. All

these algorithms implement a top-down deepening method that starts with the treatment

of the highest level of abstraction and then the lowest levels. These algorithms use

different minimum support thresholds for the different levels of abstraction, these

thresholds values decrease in the hierarchy of concepts for the following reasons:

• Avoid the generation of unnecessary or obvious association rules at high

abstraction levels.

• Avoid the omission of useful association rules at low abstraction levels.

Algorithms proposed in [9] can generate frequent itemsets for each level

independently. In [8], a new approach to solve the problem has been proposed. This

approach consists in generating, in a first step, an extended version of the database, so that

each transaction gives rise to a new transaction which, in addition to the initial items,

contains the ancestors of each item of the transaction. Then, all transactions will contain

items from different levels of abstraction in the concept hierarchy. In a second step,

algorithms for discovering frequent itemsets are applied on this new extended version of

database. Indeed, this approach can generate frequent itemsets containing, simultaneously,

items belonging to several levels of abstraction. Three algorithms have been proposed,

implementing several methods of optimization and performance improvement: Basic,

Cumulate, Stratification. In [10], the PRUTAX algorithm was proposed for mining

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

18

multiple level frequent itemsets, implementing a hash tree based method in order to

reduce the number of support calculations as it counts only the supports for candidate

itemsets whose ancestors are all frequent.

In [11], the authors have reviewed the proposed algorithms in [9], and proposed new

improved and optimized algorithms: ML-T2L1, ML-T1LA, ML-TML1, ML-TML1, ML-

T2LA. In [12], a formal framework for generalized itemsets was defined based on two

relationships: Superset-Subset and Parent-Child. Then, the SET algorithm was proposed

to enumerate all generalized frequents itemsets, SET uses two constraints based on the

defined relationships on itemsets in order to avoid support calculations for infrequent

itemsets. In [13], a top-down progressive deepening method of mining cross level

frequent itemsets has been proposed, i.e. in what appear simultaneously items from

different levels of abstraction. Their method, based mainly on the work of Han and Fu [9,

11], is to create a data structure that combines incrementally the 1-itemsets (items) for

each level of abstraction. This structure is used to generate 2-itemsets candidates for all

levels of abstraction, which are cross-level itemsets (containing items from several levels

of abstraction and not just the level being processed). This type of frequent itemsets and

association rules can reveal new correlations potentially more useful for the user.

3. Algorithms for Mining Frequent Multi-level Itemsets under
Constraints

The objective of this paper is to develop a method of finding frequent multi-level

itemsets under constraints. Our method is to consider the needs of the expert (user), and to

give him the possibility to manage and personalize the research process. To achieve this

goal, in the beginning the technique developed for modeling the constraints in a context of

use of concept hierarchies on the items of the database is presented. Then, scenarios

considered and studied to solve the problem will be presented in details.

3.1. Modeling the constraints of existence on association rules

The constraints on the association rules are the criteria defined by the user to customize

and guide the search process to better achieve its objectives. The support and confidence

are two fundamental constraints in the process of discovering association rules. An

association rule is not accepted if it does not meet these two constraints. Particular interest

in this work is restricted to the constraints of existence, which enables the user to filter the

items, which may be included in the itemsets to discover. In [14], the authors proposed a

technique for modeling constraints that can be integrated into the search process of

frequent itemsets. This technique uses the principles of classic logic. It considers an

existence constraint as a Boolean expression in disjunctive normal form: a disjunction of

conjunctions, treating an item as a literal. To clarify this technique, we give the definitions

of some concepts from classical logic:

• A literal: a literal is an atom (also called positive literal) or the negation of an

atom. The atoms form clauses.

• The conjunction or AND logic: is a logical operator in the calculation of the

proposals. The proposition obtained by linking two propositions by this operator

is also called logical product. The conjunction of two propositions P and Q is true

if both propositions are simultaneously true, otherwise it is false. The conjunction

is: P AND Q.

• A disjunction or OR logic: is a logical operator in the calculation of the

proposals. The proposition obtained by linking two propositions by this operator

is also called logical sum. The disjunction of two propositions P and Q is true

when one of them is true and is false when both are simultaneously false. The

disjunction is: P OR Q.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

19

• Disjunctive Normal Form: a disjunctive normal form (DNF) is a standardization

of a logical expression which is a disjunction of conjunctive clauses.

Specification of this technique:

According to this technique and based on the definitions above, a constraint CT will be

structured as follows:

CT = c1 OR c2 OR c3 OR………………OR cn
Each ci is a conjunction with the following structure:

Ci = ei1 AND ei2 AND ei3………………………AND eini

An element eij represents the elementary level; it must have valid logical value (True or

False). It consists of a literal (Item, in our case) and, if necessary, a sign of negation. To

be valid and satisfies a constraint, an itemset must have the logical value 'True' for at least

one conjunction Ci of CT.

 Example:
Given the following items: A, B, C, D, and E.

And a constraint CT01:

 CT01 = (A AND B) OR ((NOT A) AND D) OR (D AND C).

To be valid for the constraint CT01, an itemset it01 must satisfy at least one of the

following clauses:

- A and B, in it01.

- Not A and D in it01.

- D and C, in it01.

It01 may, for example, be one of the following:

- it01 = {A, B, C}

- it01= {D, C, A}

Relying on this technique of modeling constraints, several algorithms for discovering

frequent itemsets satisfying the constraints of existence (Constraints controlling the

appearance of items in itemsets), defined by the user, have been proposed in [14].

3.2. Modeling the constraints of existence in a context of use of concept hierarchies

In this paper, the modeling technique of constraints proposed in [14] and presented in

Section 3.1 is extended to make it applicable in the context of multi-level frequent

itemsets. In a context of use of concepts hierarchies, a constraint CT keeps the same

structure as:

CT = c1 OR c2 OR c3 OR………………OR cn

Each Ci is a conjunction with the following structure:

Ci = ei1 AND ei2 AND ei3………………………AND eini

The difference compared to the technique proposed in [14], is that the element eij may

be composed of an item belonging to different levels of the concept hierarchy, and not

only to the terminal level. This influences the way of interpretation of the constraint itself.

The interpretation of a constraint in the context of use of concept hierarchies is defined as

follows:

Consider the structure of the constraint CT, illustrated above.

Let eij, a basic element in one of the conjunctions (Ci) of constraint CT. Two scenarios

may arise:

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

20

1. eij = I01, as I01 is an item:

For an itemsets satisfies IT01 element eij, I01 must contain IT01 or IT01 contain at

least one of the descendants of I01 in the concept hierarchy.

2. eij=(NOT I01), as I01 is an item:

For an itemsets satisfies IT01 element eij, IT01 mustn’t contain I01, or any item from

the descendants of I01.

The principle of modeling and interpretation of constraints is implemented in the

following algorithms.

3.3. Algorithms for mining frequent multi-level itemsets under constraints

The existing algorithms for discovering multilevel frequent itemsets do not address the

problem of constraints which can be defined by the user to customize the results. In this

paper, constraints of existence are particularly treated. As part of this goal, first and

foremost, a technique of modeling constraints in a context of use of concept hierarchies is

developed, by extension of the technique proposed in [14], (see Section 3.2). This

technique allows easier and deterministic integration of constraints in the algorithms. In

this section, a detailed study of different scenarios for solving the problem is presented, as

well as the developed algorithms. These are based on the algorithms for discovering

multi-level frequent itemsets proposed in [9] and [11]. An example of a concept

hierarchy, with fictitious items for reasons of simplification and interpretation, is

presented in Figure 2. An example of a database used for the illustration of the application

of algorithms, is presented in Table 1. The concept hierarchy in Figure 2 consists of 3

levels of abstraction, codification of items related to their position in the hierarchy is used

[9].

Figure 2. The Concept Hierarchy

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

21

Table 1: Database

TID Items

1 111, 212, 221, 312, 321

2 111, 122, 312, 321, 222, 212

3 321, 322, 122, 112, 212

4 212, 111, 122, 312, 322, 211

5 111, 211, 221, 321

6 321, 211, 121, 122

7 111, 212, 311, 321

8 212, 112, 122, 322, 211

3.3.1. Scenario 1: Basic Algorithm : The first scenario considered in the discovery

of multi-level frequent itemsets under constraints proceeds as follows:

- Search for frequent itemsets for each level independently, based on the Apriori

algorithm and using different values of the support: A minimum value of support

for each level is defined.

- After finding the frequent itemsets of a level l, the validity of these itemsets

against the constraint defined by the user is verified.

- Elimination of frequent itemsets which do not satisfy the constraint.

This approach is the solution "Generate and test". It proceeds to verify the satisfaction

of constraints after the discovery of frequent itemsets. This approach is presented in the

following algorithm in table 2:

Table 2: Pseudo-code of the first algorithm of extraction of multi-level
frequent itemsets under constraints: Scenario 1.

Algorithm 1: Basic Version:

Input: T: Data base transactions

HC: Hierarchy of concepts

 Minsup: Data Structure containing the supports of the different levels of

abstraction.

 CT: Constraint defined by the user

1. Begin // Main Procedure

2. For (l = 1; l=< max_level; l++) do

3. {L [l, 1] = get_1_itemsets (T, l);

4. For (k=2; L [l, k-1]! = null; k++) do

5. {C [l, k] = get_Candidate_Set (L [l, k-1]);

6. For each transaction t in T do

7. {Ct = get_Subsets (C [l, K], t);

8. For each candidate c in Ct do c.support++;

9. }

10. L [l, k] = {c Є C [l, k] | c.support >= minsup[l]};

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

22

11. L [l, k]
CT

= satisfy_Constraint (L [l, k], CT); // the set of frequent itemsets

//satisfying the constraint CT

12. }

13. LL[l]
CT

 = Uk L [l, k]
CT

; // the set of all itemsets of the level l, satisfying the

//constraint CT

14. End;

/ / Pseudo-code of the function satisfy_Constraint:

1. Function satisfy_Constraint (L [l, k], CT)

2. Begin

3. For each itemset it Є L [l, k] do

4. {

5. If (satisfy_Constraint_Itemset (it, CT)) Then

6. {L [l, k]
CT

 = L [l, k]
CT

 U {it} ;}

7.}

8. Return L [l, k]
CT

 ;

9. End;

// Pseudo-Code of function satisfy_Constraint_Itemset:

1. Function satisfy_Constraint_Itemset (it, CT)

2. Begin

3. Satisfied = false;

4. For (ci Є CT; ((satisfied= false) && (i=< n)); i++) do // ci means one of the

//conjunctions of constraint CT
5. {satisfied = true;

6. For (eij Є ci; ((j=< ni) && (satisfied = true)); j++) do // eij means a literal, consisting

//of an item and, if necessary, a sign of negation.

7. {lij = item (eij);

8. If (lij = eji) then

9. { if ((NOT (lij Є it)) && (Not Exists (Descendant (lij) Є it))) then

10. {satisfied = false ;}

11. Else

12. { if ((lij Є it) && Exists (Descendant (lij) Є it)) then

13. {satisfied = false ;}

14.}

15.}

16.}

17. Return satisfied;

18. End;

In conclusion, here are some comments for better clarification of the previous algorithm:

- The function satisfy_Constraint, called at line 11 of the main procedure, filter a

set of frequent k-itemsets at a level l (any l, k), to get out a subset noted L [l, k]
CT

whose itemsets satisfy the constraint CT.

- The function satisfy_Constraint uses another function that is named

satisfy_Constraint_Itemset (See line 5 of the function satisfy_Constraint). This

function checks whether an itemset satisfies a constraint or not. It implements the

principle of interpretation of constraints.

- The function satisfy_Constraint_Itemset itself uses a function called item (See

line 7 of the satisfy_Constraint_Itemset function), with the parameter eij. This

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

23

function returns the item involved in the element eij, after removal of the sign of

negation.

- The function Descendant (See lines 9 and 12 of the satisfy_Constraint_Itemset

function) returns all descendants of an item, given as input parameter.

Illustration:

 For reasons of simplification, only a subset of the whole running example of the

scenario1 is presented in what follows, based on the hierarchy of concepts and the

database of Figures 2 and 3. CT is the constraint defined by the user:

CT = ((NON (3**)) AND (11*)) OR (2**)

A value of minimum support is assigned for each level, as the following table:

Table 3: Illustration of the first algorithm for extracting multi-level frequent
itemsets under constraints: Scenario1.

level Support

1 5

2 4

3 3

Level 2: Minsup = 4

L [2, 2]

L [2, 2]
CT

Itemsets Support Itemsets Support

{11*, 12*} 4 {12*, 31*} 2

{11*, 21*} 7 {12*, 32*} 5

{11*, 31*} 4 {21*, 31*} 4

{11*, 32*} 7 {21*, 32*} 8

{12*, 21*} 5 {31*, 32*} 3

Itemsets Support Itemsets Support

{11*, 12*} 4 {21*, 31*} 4

{11*, 21*} 7 {21*, 32*} 8

{12*, 21*} 5

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

24

L [2, 3]

L [2, 3]
CT

An example illustrating a detailed implementation of scenario 1 is presented above,

which helped generate the frequent itemsets satisfying the constraint CT and belonging to

different levels of abstraction in the hierarchy of concepts in Table 1. Checking the

validity compared to the constraint is done after the calculation of supports for all the

itemsets. This induces the processing, for each pass, of the support of a large number of

itemsets, which may not satisfy the constraint defined by the user. This operation

consumes time and reduces the performance of the algorithm. The term pass is defined as

the basic research stage of the k-frequent itemsets on a level of abstraction l (any l and k).

3.3.2. Second Scenario: Approach “Test and Generate”: The approach presented

in the scenario 1 is to verify the validity of the itemsets against the constraint after

finding all frequent itemsets noted L [l, k]. This involves the calculation of the

supports of candidate itemsets noted C [l, k], at each pass. Knowing that a large

number of frequent itemsets do not satisfy the constraint defined by the user,

another approach that avoids this loss of time is presented in this section. This

approach consists in creating a filter on all candidate itemsets in each pass. This

filter is designed to eliminate the itemsets which do not satisfy the constraint before

calculating their supports. This ensures that the calculation of the support is applied

only for itemsets that satisfy the user constraint.
Some examples can be extracted from the illustration of the section 3.3.1 such as:

• The set L [2, 1] contains 5 frequent itemsets; only 2 among them

satisfy the constraint CT.

• The set L [3, 1] contains 7 frequent itemsets; only 3 among them

satisfy the constraint CT.

The difference between the number of frequent itemsets and the itemsets that satisfy

the constraint in the same pass is clear and remarkable. This difference increases certainly

when dealing with real life large databases.

The application of the approach of scenario 2 improves the overall performance of the

algorithm. However, it does not find all the frequent itemsets, but only a small part,

because a k-itemset which does not satisfy a constraint, can participate to the generation

of a (k +1)-Itemset that satisfies this constraint, based on A-priori.

Itemsets Support Itemsets Support

{11*, 12*, 21*} 4 {21*, 31*, 32*} 4

{11*, 12*, 31*} 2 {12*, 21*, 32*} 5

{11*, 12*, 32*} 4 {31*, 21*, 11*} 4

{12*, 21*, 31*} 2 {32*, 21*, 11*} 7

Itemsets Support Itemsets Support

{11*, 12*, 21*} 4 {21*, 31*, 32*} 4

{31*, 21*, 11*} 4 {12*, 21*, 32*} 5

{32*, 21*, 11*} 7

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

25

The following examples are given to illustrate this approach:
- Consider all frequent 1-itemsets of level 2, L [2,1], the itemset {31*} is frequent

but does not satisfy the constraint CT. Despite this, this itemset is used to generate

the 2-itemset {21 *, 31 *} which is frequent and satisfies CT. Thus, if the itemset

{31 *} has not been generated in L [2,1], we failed to find the itemset {21*, 31*)}

in L [2,2]
CT

.

- Consider all the frequent 2-itemsets of level 3, L [3,2], the itemset {111,321} is

frequent but does not satisfy the constraint CT. However, this itemset is used to

generate the 3-Itemset {111, 212, 321} which is frequent and satisfies the

constraint CT.

The conclusion is that a frequent itemset which does not satisfy the constraint in one

pass can contribute to the generation of frequent itemsets in the next pass. Indeed, the

approach of scenario 2 leads to the omission of the generation of several frequent itemsets

satisfying the constraint. Then this algorithm is incomplete and does not solve the

problem and achieve the objectives. Another approach that is supposed to draw advantage

from the real needs of the user is presented in the following section.

3.3.3. Third Scenario: Pruning based Approach: Algorithm MLC-Prune: This

approach is based on a new method for introducing constraints by the user. This

constraint is divided into two parts: the first is devoted to items that the user decides

to remove from the mining process; the second is devoted to items that will be part

of frequent itemsets.

Modeling constraints:

The constraint of the user is divided in two parts, called sub-constraints, the terminology

of modelling of the constraints is defined in section 3.2:

- The first sub-constraint contains the literals or items, not covered by the user

during the current search of frequent itemsets. This sub-constraint, noted

CT_NEG (Negation), is modeled as follows:

CT_NEG = (NON g1) AND (NON g2) AND ………………AND (NON gn)

 gi designate items or literals.

- The second sub-constraint contains literals or items that the user wishes to have in

the itemsets to discover. This sub-constraint, noted CT_AFF (affirmation), is

modeled in the form of disjunction of conjunctions:

CT_AFF = c1 OR c2 OR c3 OR………………OR cn

ci is combination of items, with the following structure:

ci = ei1 AND ei2 AND ei3………………………AND eini

eij is an item or literal. The specificity of eij in CT_AFF is that it can not contain a

sign of negation. The use of negation sign is only done in the first sub-constraint

CT_NEG.

Example of constraint:

The following example, denoted CT, is based on the database and the hierarchy of

concepts of Figures 2 and 3:

CT: CT_NEG = (NON (31*)) AND (NOT (112))

 CT_AFF = (1** AND 21*) OR (3** AND 2**)

This technique is more suitable to the real needs of the user for the following reasons:

- The user focuses, in most cases, the search on a special axis (a well-defined

subset).

- The rarity and inconsistency, in practice, of the constraints that contain an item

that changes the sign from a conjunction to another.

Example:

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

26

CT = (1** AND (NON (3**)) OR (2** AND 3**)

- The potential improvement of performances.

Principle:

The search method of frequent multi-level itemsets under constraints with pre-pruning,

presented in this scenario, proceed as follows:

- In a first step, it performs a pruning operation which consists in removing the

items contained in the sub-constraint CT_NEG (Items removed by the user), from

the database and the concept hierarchy. Recognizing that the elimination of one

item of the concept hierarchy implies the elimination of all his descendants, i.e., a

branch of the hierarchy, based on the principle of interpretation of the constraints

presented in the section 3.2.

- In a second step, we proceed to searching frequent itemsets that satisfy the second

sub-constraint CT_AFF, applying the principle of scenario 1, presented in the

section 3.3.1.

The main contribution of this method is the pruning of the database and the concept

hierarchy, which precedes the operation of discovering frequent itemsets. This reduces the

itemsets lattice’s size to run through for each level of abstraction. In addition to that, we

verify the validity of frequent itemsets over the sub-constraint CT_AFF which does not

contain literals with a sign of negation. This method operates on the definition of the

constraints by the user and obliged him to divide it into two sub-constraints and make

choices on items to eliminate from the search process.

Table 4: Pseudo-code of the algorithm of mining frequent multi-level
itemsets under constraints with pre-pruning: Scenario 3 : MLC_Prune

s

Algorithm 2: Mining frequent multi-level itemsets under constraints with pruning:

MLC-Prune
Input: T: Data base transactions

 HC: Hierarchy of concepts

 Minsup: Structure containing the supports of the different levels of abstraction

 CT_NEG: First Sub-constraint

 CT_AFF: Second Sub-constraint

1. Begin // Main Procedure

2. HC_Pruned = Pruning_Concept_Hierarchy (HC, CT_NEG); // pruning the //concept

hierarchy using CT_NEG

3. T_Pruned = Prunning_DB (T, CT_NEG); // pruning the database using //CT_NEG

4. For (l = 1; l=< max_level; l++) do

5. {L [l, 1] = get_1_itemsets (T_Pruned, l);

6. For (k=2; L [l, k-1]! = null; k++) do

7. {C [l, k] = get_Candidate_Set (L [l, k-1]);

8. For each transaction t in T_Pruned do

9. {Ct = get_Subsets (C [l, K], t);

10. For each candidate c in Ct do c.support++;

11. }

12. L [l, k] = {c Є C [l, k] | c.support >= minsup[l]};

13. L [l, k]
CT

= Satisfy_Constraint_Pruning (L [l, k], CT_AFF); // the set of //frequent

itemsets satisfying the constraint CT_AFF
14. }

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

27

15. LL[l]
CT

 = Uk L [l, k]
CT

; // the set of all itemsets of the level l, satisfying the

//constraint CT
16. end;

// function Pruning_Concept_Hierarchy :

1. Function Pruning_Concept_Hierarchy (HC, CT_NEG)

2. Begin

3. for each item gi in CT_NEG do

4. {HC_Pruned = HC - {gi, Descendant (gi)}; // Elimination of the item gi and //its

descendants from HC
5.}

6. Return HC_Pruned;

7. End;

/ / function Prunning_DB:

1. Function Prunning_DB (HC, CT_NEG)

2. Begin

3. T_Pruned = T;

4. For each transaction t in T_Pruned do

5. {

6. for each item gi in CT_NEG do

7. {

8. T = t - {gi, Descendant (gi)}; // Elimination of gi item and its

// descendants from the current transaction
9.}}

10. Return T_Pruned;

11. End;

/ / function Satisfy_Constraint_Pruning:

1. Function Satisfy_Constraint_Pruning (L [l, k], CT_AFF)

2. Begin

3. For each itemset it Є L [l, k] do

4. {

5. If (Satisfy_Constraint_ Itemset_Pruning (it, CT_AFF)) Then

6. {L [l, k]
CT

 = L [l, k]
CT

 U {it} ;}

7.}

8. Return L [l, k]
CT

 ;

9. End;

// function Satisfy_Constraint_ Itemset_Pruning:

1. Function Satisfy_Constraint_ Itemset_Pruning (it, CT_AFF)

2. Begin

3. Satisfied = false;

4. For (ci Є CT_AFF; ((satisfied= false) && (i=< n)); i++) do // ci is one of the

//conjunctions of the sub-constraint CT_AFF

5. {satisfied = true;

6. For (eij Є ci; ((j=< ni) && (satisfied = true)); j++) do // eij means a literal or an //item

7. {

8. If ((NOT (eij Є it))&& (Not Exists (Descendant (eij) Є it))) then

9. {satisfied = false; }

10.}}}

11. Return satisfied;

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

28

12. End;

The following observations are presented to better clarify the algorithm:

• The main procedure of this algorithm begins with the pruning of the concept

hierarchy and the database using the sub-constraint CT_NEG. This is done using

Pruning_Concept_Hierarchy and Prunning_DB functions.

• Line 13 of the main procedure, calls the function Satisfy_Constraint_Pruning to

identify the frequent itemsets that satisfy the sub-constraint CT_AFF.

• The Satisfy_Constraint_Pruning function uses another function called

Satisfy_Constraint_Itemset_Pruning, which verifies the validity of an itemset in

relation with the second sub-constraint CT_AFF.

Example
 The following example illustrates the performance of our approach using the

hierarchy of concepts of Figures 2 and 3. Given the constraint CT divided into two sub-

constraints:

- CT_NEG = (NOT (3**))

- CT_AFF = ((11*) OR (2**)).

After the pruning of the hierarchy of concepts and the database, the following results in

Figure 3 and Table 5 are obtained:

Figure 3: Pruned Concept Hierarchy

Table 5: Pruned Database

TID Items

1 111, 212, 221

2 111, 122, 222, 212

3 122, 112, 212

4 212, 111, 122, 211

5 111, 211, 221

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

29

6 211, 121, 122

7 111, 212

8 212, 112, 122, 211

The reduced size of the concept hierarchy and the database after removal of the item

(3**) and its descendants is noted. The following example details the execution

illustration of this approach:

Table 6: Illustration of the execution of the algorithm of mining frequent
multi-level itemsets under constraints with Pre-Pruning: Third Scenario:

MLC-Prune

Level 1 :Minsup = 5

Itemsets Support Itemsets Support

{1**} 8 {2**} 8

{2**} 8

 L [1,1] L [1,1]
CT

Itemsets Support Itemsets Support

{1**, 2**} 8 {1**, 2**} 8

 L [1,2] L [1,2]
CT

Level 2 :Minsup = 4

Itemsets Support Itemsets Support

{11*} 7 {11*} 7

{12*} 5 {12*} 5

{21*} 8 {21*} 8

{22*} 3

 L [2, 1] L [2, 1]
CT

Itemsets Support Itemsets Support

{11*, 12*} 4 {11*, 12*} 4

{11*, 21*} 6 {11*, 21*} 6

{12*, 21*} 5 {12*, 21*} 5

 L [2, 2] L [2, 2]
CT

Itemsets Support Itemsets Support

{11*, 12*, 21*} 4 {11*, 12*, 21*} 4

 L [2, 3] L [2, 3]
CT

Level 3 : Minsup = 3

Itemsets Support Itemsets Support Itemsets Support

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

30

{111} 5 {211} 4 {111} 5

{112} 2 {212} 5 {211} 4

{121} 1 {221} 1 {212} 5

{122} 4 {222} 1

 L [3, 1] L [3, 1]
CT

Itemsets Support Itemsets Support Itemsets Support

{111, 122} 2 {122, 211} 2 {122, 212} 4

{111, 211} 2 {122, 212} 4

{111, 212} 2 {211, 212} 2

 L [3, 2] L [3, 2]
CT

This running example shows clearly that the number of itemsets generated and

analyzed was significantly reduced compared to the approach of the first scenario. This is

due to the pruning phase, which has eliminated the item (3**) and its descendants in the

database and the concept hierarchy using the sub-constraint CT_NEG.

Rationale of the pruning based approach

The approach proposed in this scenario comes in the goal of optimizing mining process

of multi-level frequent itemsets under constraints. This approach requires that the user

divides his constraint into two sub-constraints: CT_NEG and CT_AFF. CT_NEG includes

the items that the user wishes to eliminate from the search process. CT_NEG is used to

achieve a pruning operation of the database and the concept hierarchy. This pruning

reduces the size of the trellis of itemsets for each level of abstraction and then the time

reserved for the calculation of supports. In addition to that, transactions in the pruned

database are smaller which improves the performance of the database scan. Moreover, the

reduction in the number of discovered itemsets can improve their interpretation by the

user. The technique used for modeling constraints of this approach allows the user to

define its objectives in terms of the content of the discovered patterns. The effectiveness

of this algorithm is validated when treating real life large databases.

3.3.4. Experimentations: In order to study the effectiveness of the approaches

suggested for the resolution of the problem of mining multi-level frequent itemsets

under constraints, a series of experiments were carried out. The algorithms related

to approaches of scenarios 1 and 3, respectively, proposed in sections 3.3.1 and

3.3.2 were implemented. A generation of a database (With several sizes: 3000,

4000, 5000 and 6000 transactions with average of 8 items per transaction) and a

concept hierarchy (With several sizes: 10, 30, 40 and 50 roots, e.g., items of level 1)

on its items, was performed in order to experiment our algorithms. All experiments

were performed under identical technical conditions. The implementation of the

algorithms was carried out in following environments: Oracle JDeveloper to

implement the algorithms, and an Oracle 10g server (Sun Sparc E450, 1 GB RAM,

OS: Unix Solaris 10), for the database.

In a first experiment, several values of minsup (support threshold) were affected for the

different levels (Level 1: 30%, Level 2: 20%, level 3: 10%). the size of the database was

changed several times in order to study the impact of this change on the performance of

scenarios 1 and 3. It should be noted that the constraints used for both scenarios are

semantically equivalent. The results of this experiment are showed in Figure 4 below.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

31

Figure 4: Experimentation 1: Comparison of the performances of first and
third scenario, depending on the size of the database

The processing time of the third scenario is lower than the first scenario. This is due to

the pruning step, in the third scenario, which reduces the number of itemsets analyzed and

the complexity of the generation of candidates at each pass. The difference of execution

time between the two algorithms increases with the increase in the size of the database.

In the second experimentation, a fixed size for the database has been set and we tried to

study the impact of changes in the value minsup (support threshold) and to study the

behavior of the algorithms of the first and third scenario. In this experiment, we assigned

the same value of minsup for all levels of abstraction. The constraints are semantically

equivalent. The results of this experiment are showed in Figure 5.

Figure 5: Experimentation 2: Comparison of the first and third scenario
depending on the values of minimum support.

Similarly to the results of the first experimentation, the third scenario is more efficient

than the first scenario. Performances of both algorithms better with higher support

thresholds.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

32

In the third experimentation, we studied the behavior of our algorithms, Scenario1:

Basic and Scenario 3: MLC-Prune, under modification of the number of roots of the

concept hierarchy, e.g., the number of items of level 1. We increased the number of roots

from 10 to 50. As shown on figure 6, the processing time increases by increasing the

number of roots. MLC-Prune is more efficient then the basic algorithm (Scenario1). The

reason is that as the number of roots increases, the pruning step, implemented in MLC-

Prune Algorithm, will have more interest and reduces significantly the itemsets lattice

analyzed for each level of abstraction. Then, MLC-Prune treats always a smaller concept

hierarchy and database. Furthermore, the constraints defined for algorithms processing

handle with a high number of items, which harden the operation of checking itemsets

validity and give more effectiveness to the pruning operation.

Figure 6: Experimentation 3: Comparison of the first and third scenario
(MLC-Prune) Depending on the number of roots of the Concept Hierarchy

The fourth experimentation, whose results are shown in Figure7, presents a comparison

between our algorithms and other algorithms of the literature, ML-T1 and ML-T2

proposed in [9]. ML-T2 and ML-T1 were implemented because they implement the same

mining strategy with our algorithms. The number of database transactions was

progressively increased and we executed all the algorithms in typically identical technical

conditions. Results in Figure7 show that MLC-Prune Algorithm is the most efficient. This

is heroically caused by the pruning step based on a very rich constraint, eliminating many

branches of the concept hierarchy. The optimization technique implemented in ML-T2

algorithm which consists in pruning the database by eliminating all non frequent 1-

itemsets of level 1 and their descendants wasn’t very efficient as we assigned low support

threshold for level 1 processing in ML-T2. In addition to that, this optimization technique

may have more interest when handling more huge databases.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

33

Figure 7: Experimentation 4: Comparison of the first and third scenario
(MLC-Prune) with ML-T2 and ML-T1 algorithms

The results of the experimentations have confirmed our expectations on the theoretical

level and have demonstrated the feasibility of our approaches.

4. Conclusion
In this paper, we introduced the problem of mining multiple level frequent itemsets

under constraints, which allow the user to control the mining process and especially the

existence of items into itemsets. We proposed a technique for modeling existence

constraints in the context of use of concept hierarchies. Then, three algorithms were

developed and studied to resolve this problem: The algorithm Basic (Scenario 1), the Test

and Generate algorithm (Scenario 2) and the pruning based algorithm (Scenario 3). It is

to note that it was proved that the algorithm of the scenario 2 is not complete and leads to

the omission of a high number of frequent itemsets. Several Experimentations were

performed in order to validate the algorithms we proposed in this paper and to study their

behavior depending on some parameters such as database size and minimum support

value. We have also compared our algorithms to other algorithms of the literature.

 This work will be completed in our research group, by the design and

implementation of a SQL like language that allows the expert to specify the minimum

support for each level of the concept hierarchy and specify constraints; in addition to the

introduction of other quality measures: confidence, lift, Loevinger, etc.

References

[1] Fayyad, U., Piatetsky-Shapiro, G., et Smyth, P. From Data Mining to Knowledge Discovery: An

Overview, in Fayyad, U., Piatetsky-Shapiro, G.,Amith, Smyth, P., and Uthurnsamy, R. (eds.),

Advances in Knowledge Discovery and Data Mining, MIT Press, 1-36, Cambridge, 1996.

[2] Agrawal, R., Imielinski, T., Swami, A. Mining Association Rules Between Sets of Items in Large

Databases, in Proceedings ACM SIGMOD International Conference on Management of Data, P.

207, Washington DC, Mai 1993.

[3] Agrawal, R., Srikant, R. Fast Algorithms for Mining Association Rules, in Proceedings of the 20th

International Conference on Very Large Data Bases (VLDB’94), pp 487-499, Santiago, Chile,

September 1994.

International Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and ApplicationInternational Journal of Database Theory and Application

Vol. 3Vol. 3Vol. 3Vol. 3,,,, No. 4, DecemberNo. 4, DecemberNo. 4, DecemberNo. 4, December,,,, 2010201020102010

34

[4] Savasere, A., Omiecinski, E., Navathe, S., An Efficient Algorithm for Mining Association Rules in

Large Databases, in Proceedings of the 21th conference on VLDB (VLDB’95), Zurich, Switzerland,

September 1995.

[5] Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W., New Algorithms for fast discovery of Association

Rules, in Proceedings of the 3rd International Conference on KDD and data mining (KDD’97),

Newport Beach, California, August 1997.

[6] Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L., Pruning Closed Itemset Lattices for Association

Rules, in Actes des 14ème journées Bases de Données Avancées, P. 177-196, 1998.

[7] Han, J., Pei, J., Yin, Y., Mining Frequent Patterns without Candidate Generation, in Proceedings of

the 2000 ACM-SIGMOD Int’l Conf. On Management of Data, Dallas, Texas, USA, May 2000.

[8] Srikant, R., Agrawal, R., Mining generalized association rules, In Proceedings of the 21st VLDB

Conference, Zurich, Switzerland, 1995.

[9] Han, J., Fu, Y., Discovery of Multiple-Level Association Rules from Large Databases, in Proceedings

of the 21st Very Large Data Bases Conference, Morgan Kaufmann, P. 420-431, 1995.

[10] Hipp, J., Myka, A., Wirth, R., Güntzer, U., A new algorithm for faster mining of generalized

association rules, in 2nd PKKD, 1998.

[11] Han, J., Fu, Y., Mining Multiple-Level Association Rules in Large Databases, in IEEE Transactions

on Knowledge and Data Engineering, Vol. 11, No. 5, Septembre/Octobre 1999.

[12] Sriphaew, K., Theeramunkong, T., A New Method for Finding Generalized Frequent Itemsets in

Generalized Association Rule Mining, in Proceedings of the VIIth International Symposium on

Computers and Communications, P. 421-431, 2002.

[13] Thakur, R. S., Jain, R. C., Pardasani, K. R., Mining Level-Crossing Assosiation Rules from Large

Databases, in the Journal of Computer Science 2(1), P. 76-81, 2006 .

[14] Srikant, R., Vu, Q., Agrawal, R., Mining Association Rules with Item Constraints, in Proceedings of

the 3rd International Conference on Knowledge Discovery and Data Mining (KDD’97), P. 67-73,

AAAI Press, 1997.

Authors

Mohamed Salah GOUIDER is associate professor at the
University of Tunis – Tunisia. He now has thirty years experience
in the field of databases and in recent years in the field of Data
Warehouse and Data Mining. He earned his doctorate at the
Faculty of Science - University of Nice - France in 1983. He is
currently a consultant top management in several public and
private enterprises. He has extensive experience in several
countries: France, Tunisia, Kuwait, Qatar and Benin. His recent
research is focused mainly in the extraction of knowledge from
data in the medical and financial, as well as the optimization
algorithms of the Data Warehouse and Data Mining.

Amine FARHAT, Master of Science in Computer Science, is
researcher and Ph.D. Student at the BESTMOD Laboratory,
University of Tunis. He is assistant professor in Computer
Science in the ISG of Tunis. He is also a senior computer science
analyst Engineer, Head of Software Development and Decision
Support Systems Projects, in a public Office. His research
Interests are mainly Knowledge Discovery in Databases, Data
mining algorithms, Artificial Intelligence and Data warehousing.

