Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Enhancing the Estimation Quality of Element-centerd
XML Summarization Methods

José de Aguiar Moraes Filho, Theo Harder, and Qaesauer

University of Kaiserslautern, P.O. Box 3049, 676&8iserslautern, Germany
{aguiar, haerder, csauer}@cs.uni-kl.de

Abstract

An XML summary should enable cardinality estimatiaf different kinds on an XML
document to flexibly support query optimization leorguages such as XPath or XQuery. In
contrast to conventional methods which typicallyukte the document structure and record
path-oriented statistics for it, element-centeredlLX summarization methods collect
statistical information for document nodes and tlaies relationships and aggregate them
separately for each distinct element/attribute nartiehas already partially proven its
superiority in quality, space consumption, and eabn performance. Surprisingly, this
kind of inversion seems to have more service céigattian conventional approaches. It is
not only confined to the cardinality estimationaobild and descendant axes, but also allows
to approximate parent and ancestor axes, too. Thezewe refined and extended element-
centered XML summarization methods to capture rstagistical information and propose
new estimation procedures. We tested our ideas set ®f documents with largely varying
characteristics.

Keywords:XML Summarization, Exsum, Statistics, Query Opéitiun.

1. Introduction

Path expression optimization (for XPath/XQuery)ie®lon the quality of statistical
information about distribution of XML document na@dand their axis relationships, because
the success of a query optimizer critically depeoiestimates as precise as possible about
selectivities of location steps and node cardiiesliin subtrees. Although many publications
[1, 2, 3,5,7, 8,9, 11, 12] focus on such anmetion support, no commonly agreed-upon
solution is available. Capturing a variety of stral relationships and statistical information,
the methods widely vary in estimation accuracy \éetd, storage space occupied, and
memory footprint needed, which together may heanmiljuence the superordinate process of
query optimization. We have observed that the tepudlity of existing methods is strongly
influenced by the shapes of the underlying summsryctures in which the document
statistics are recorded.

Tree-based methods summarize a document by meaamdreé (or tree-like) underlying
structure trying to mirror the hierarchy of the dowent structure. Their simple construction,
however, potentially consumes much storage spaceldeply structured documents. To
overcome this drawback, some compression (e.dggnams) [3, 5] and pruning techniques
are applied [1], which trade storage gain with degd accuracy. However, these methods are
difficult to balance on XML documents with incremgistructural variability.

! This paper is an extended and revised versiod]of |

39

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Methods whose underlying structure is a graph [829, by virtue of this structure, tend to
consume less storage than tree-based approachesh®uhave to cope with false positive
hits, because path information for paths not presethe document can be derived from the
summary. To avoid unacceptable estimation quality,only way out is to prune the graph
search, thereby trying to lower the false positat. While this approach may be feasible in
some situations, the trade-off incurred has to dr@rolled by “manual” tuning parameters.
Hence, correct parameter setting and, therefotimmation quality is left to the DBA expertise.

Table-based methods, in turn, are completely degr@ndn the number of distinct path
instances existing in the document, which enfotbesuse of pruning [7] and compression
techniques [11] similar to those of tree-based odthAs most important limitation, they can
only estimate path expressions with child (/) aXésus, differing from tree-based and graph-
based approaches, they do not support expressiomaiming either predicates or descendant
axes.

To overcome the drawbacks sketched so far, an aelecemtered method called EXsum
has been developed [2]. The main idea is to focushe set of distinct element/attribute
names of an XML document, putting aside the sthnierarchy between them. Instead of
summarizing over the entire tree structure at & timd to keep track of (root-to-leaf) paths in
the document, this method independently gathergtsiral information for every distinct
element name in the document tree. Here, we comérito the state of the art by augmenting
EXsum's capabilities:

An extension of EXsum enables to capture more im&tion from XML documents,
especially the fan-in and fan-out of the axis fetathips controlled.

We elaborate the influence of recursion in XML pathsses to the summarization
quality.

To enhance the estimation quality, we developed hewristics especially path
expressions involving more than two steps.

By implementing and empirically evaluating our nueth, we cross-compared them to
competitor algorithms using a set of well-known aridely varying XML documents.

The remainder of this paper is organized as folldlMe start by providing basic concepts
(Section 2) and a look at the EXsum structure (8e@). We explore ways to enrich EXsum
and provide tailor-made estimation methods (Sectprfor these extensions, before we
empirically investigate their suitability for vang document characteristics (Section 5).
Section 6 concludes the paper.

2. Basic Concepts and Definitions

XML documents usually exhibit a high degree of mdancy in their structural part, i.e.,
they contain many paths having identical sequenokEselement/attribute names. To
distinguish the summarization challenge in prattiapplications, the most important
characteristics of a well-known collection of XMlocuments—widely used as a reference
collection for comparative experiments in scientifjublications—are listed in Table 1.
Column#nodesshows the total number of nodes in the respedideiment according to the

40

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

DOM specification, whereas colun#fE/A namesndicates that, despite the huge amount
of nodes, only a few distinct element/attribute manexist for them. Hence, documents
typically have a highly repetitive structure. Colismax. depthandavg. depthgive some
indicative hints on the variability of document®rExample swissprotis considered to have
quite a regular document structure, because itsageedepth is close to its maximal depth; in
contrasttreebankhas an extremely irregular tree structure. We clanshese documents in
our empirical experiments concerning XML summai@ats detailed in Section 5.

Figure la depicts a sample document to be used@snang example, where many path
instances only differ in the leaf values and th#geoithey occur in the documents. Therefore,
the structure part of them can be represented digighe unique path, callgohth class(see
Figure 1b), to characterize all path instancesntathie same sequence of element names (but
not their order) in the document.path synopsisis a representation of all path classes serves
as a query guide and a compact structural docuxienwt To build such a path synopsis, all
information needed is contained in a cyclic-free IXMchema; otherwise, it can be
constructed on the fly, while the document—sentabglient—is stored in the database.
Typical path synopses have only a limited numbeslefment names and path classes and can,
therefore, be stored in a small memory-residerd daticture. The way a path synopsis with
its path classes represents the document tresualidged in Figure 1b.

Table 1. Document characteristics

An element name occurring only once in the patlopgis is calledinique element name

document |description size (MB)| #nodes #E/A nameg max.depth avg.depth
name inner/text

dblp Comp.Sc. Index 330.0 gé’()37405;:525889/ 41 7 3.39
nasa Astron. data 28.8 gigggé 70 9 6.08
swissprot Protein data 109.5 52”106163’?8%104/ 100 6 4.07
treebank Wall Street J. 86.1 2i2397if38(54175/ 251 37 8.44
psd7003 Protein data 716 2127”5;65”476556/ 70 8 5.68

41

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

whereas element names appearing more than onbe ipath synopsis, but not in the same
path class, are calledomonymsA path instance is said to Wecursivewhen the same
element name appears more than once in its pas. cla

In typical cases, documents contain varying degoédsomonyms, but most of its paths
are recursion-frée But in (rather) exceptional cases, we have td déth recursionin a
document, as exemplified by the pathsc,s,s,s,ppr (a,c,s,p,s,tin Figure 1. Hence, some
degree of recursion may be anticipated in spedficument classes. Thus, we analyze
recursiveness for reasons of generality and ewalsammarization structures that support
documents exhibiting a limitédind of structural recursion, too.

The concept of recursion level (RL) was introdugedl2] as a way to better represent
recursion in XML documents and explained for theecavhere only a single element name
could recur in a path. Given a rooted path in thdLXtree, the maximal number of
occurrences of any label (element name) minus thaspath recursion level (PRL). The
recursion level of a node in the XML tree is define be the PRL of the path from the root to
this node. Thus, given path,c,s,s,t) the second node has RL=1 and all other nodes have
RL=0, whereas the PRL of this path is 1.

Recursion can also occur in query expressions, ngatkie estimation even more difficult
(and often more imprecise). For recursive path &sgions, we follow the definition in [12].
A path expression is recursive with respect to dilLXdocument if an element in the
document could be matched by more than one notlmtéee expression.

3. A Brief look at EXsum

For comprehension, we repeat the main aspects suEX2]—a method for element-
centered XML summarization—,which was proposedwo tersions: one targeting non-
recursive documents and another for recursive onasghich the RL information is included
in the structure. The latter can be considered eermgeneral structure subsuming the non-
recursive version because, for a non-recursive mieat; all RL information can be present
with RL=0. Therefore, we discuss the general fofrEXsum that has been used as base for
our extension.

An EXsum structure can be considered as a set &fEAGxes summary per element)
nodes where each of them, in turn, representstmai€lement/attribute name. An ASPE
node is a compound of an element/attribute nameentimber of related node occurrences
(oco in the document, and a varying number of “spokes” suitable ASPE node
visualization resembles a “spoked wheel’—, eacharily representing the related element
distributions for a specific axis. In this way, ogets not only a simple and flat summary
structure, but also preserves estimation efficies@yce navigation costs are low and do not
depend on document structure or size. Moreoves, r@kationships are captured, enabling this
class to effectively support path expression edioma. Note that information for the child
(parent) axis is kept separately from that of teecgndant (ancestor) axis to enable higher
flexibility for axis-wise estimation of locationegts. Figure 2 visualizes the statistics of 2 (out
of 6) ASPE nodes collected on our sample docunidrd.ASPE fors, e.g., shows thaicc(s)

2 dblp has 41 element names where 32 are homonyms resinitl 46 path synopsis nodes. Hence, the avg.
repetition of a homonym is more than 4. The numbmrglement names, homonyms, and path synopsissren@
(100, 6, 264) and (70, 12, 111) ®wissprotandnasa respectively.

3 Highly recursive XML documents such tasebank(see Table 1) are exotic outliers and not fregirent
practice; therefore, they do not deserve firstetagzenship.

42

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

is 11 and that all nodesstogether have a child relationship to 16 nogles nodes at RL=1, 2
nodess at RL=2, and 2 nodds

Par
s:(RL=0, 1; RL=1, 2)
¢:(RL=0, 4)
p:(RL=0, 16) p:(RL=0, 1)
s:(RL=1, 1; RL=2, 2) t:(RL=0, 3)
t:(RL=0, 2) (1) Desc
Child . s:RL=1, 1; RL=2, 2)
s:(RL=0, 3) t:(RL=0, 1)
¢:(RL=0, 6) p:(RL=0, 8)
a:(RL=0, 11) w:(RL=0, 3)
Anc
Par ®1=0,1)
$:(RL=0, 13; RL=2, 3)
S(RL=, 1) ¢:(RL=0, 3)
DAy ((RL=0, 1
w(RL=0, 3) o 1“) Desc
Child t(RL=0, 1)
a:(RL=0, 20)
s:(RL=0, 4; RL=1, 4)
c:(RL=0, 16)

t:(RL=0, 4) Abc

For path expressions with two location steps, ks referenced by the second step is
followed in the ASPE node addressed by the firgt éxs an exampléd/s/p delivers 16. The
construction principle of EXsum guarantees thathswexpressions on recursion-free
documents always return accurate cardinalities. Wieeursion and two location steps are
involved, EXsum can only compute approximate calities, in general. Consider the
estimation off/s//s where the estimation procedure follows the chihdl descendant spokes
in ASPE(s) and adds the values over all RLs ofeddipng an overestimation afcc(//s//s¥6,
whereascc(//s//s)=3 would deliver the accurate cardinality.

For n-step query expressions (n>2), EXsum has lfo ae appropriate heuristics and,
therefore, cannot always guarantee accurate refA\SBE nodes do not capture complete
root-to-leaf paths of a document, instead they keris relationships between pairs of
element names and record their distribution orbteis of element names. For this reason, n-
step expressions, e.@x/y//z are decomposed in overlapping two-step fractemd need a
kind of interpolation to combine their results.

To evaluate the partial expressidhgy andy//p, we access ASPE(and ASPEY) (whose
values are equivalent tmc(//x) andocc(/ly) respectively). Because not glhodes oflly//z
find a matching partner in thenodes of/x/y, we assume uniform element distribution for the
z nodes to enable a straightforward combination stiivetes for such partial expressions.
Using the ratiocC1/C2 we linearly interpolate the number of occurrenceshe subsequent
stepy//z to estimateocc(//x/yliz) For that,C1 is given byocc(//x/y)and C2—equivalent to
occ(/ly)—is recorded as value of ASBE(thus, C1 C2 always holds. This interpolation
could be applied step by step, providing a heuwrifir n-step path expressions. If more
accurate information is present (e.g., by miningrerpaths), it can be used instead. As an
example, the cardinality dfs/s/pis estimated by following the child spoke of ASEE{nd
summing the values over all recursion levels, gfielding occ(//s/s¥3. Furthermorepcc(s/p)
delivers 16. With the interpolation factor of ASBE({L1, the estimation is 3/11*16.

43

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Parent
E: (RL=0,[ic;,0¢;]; RLZI,[icj,ocj];)
E: (RL=0,[icy,oci]; RL=1,[ic),0¢]; ...)

E: (RL=0,[ic,,0¢,]; RL=1,[ic.,0c.]; ...)

E: (RL=0,[icy,0cp]; RL=1,[icc,0¢] ...

Element X: Desc

Child

#occurrences |E: (RL=0,[icg,0c,]; RL:I,[icp,ocp]; i)

E: (RL=0,[ic,,0c,]; RL=1,[icy.0c,]; ...)

E: (RL=0,[ic,,0c,]; RL=1,[icpocq; ...)
E: (RL=0,[icg,0cq]; RL=1,[icg,0¢c]; ...) E: element name
Ances RL: recursion level

IC/OC: input/output counters
P #

As a first observation, EXsum captures, by meanthefASPE spokes, the axis-related
fan-out for each element/RL combination using amlsingle counter. Computing fan-in and
fan-out for every axis relationship may give us enapportunities to explore refined
estimation methods. For this reason, we doublecthmters (see Figure 3): IC counters for
fan-in and OC counters for fan-out.

4. Extending EXsum

To illustrate these new counters, considgagent-child relationshigbetween elements
andp in recursion-free (i.e., RL=0) path instancestie tlocument of the Figure 1. In the
extended form of EXsum, these relationships arerdsd as follows: ASPE(has a child
spoke where @ exists having (RL=0,[IC=7, OC=13]). This meanstthimr the child
relationships p, we find in the document 7 nodebeing parents g nodes and 13 nodes
being children of nodes. Conversely, in the parent spoke of ABREnN entry fors exists
with (RL=0,[IC=13, OC=7]) indicating that for theagent relationshig p the same number
of nodes is counted in the reverse direction. Nbg IC and OC counters are somewhat
replicated across ASPE nodes. However, this feanables estimates of arbitrary long path
expressions.

As a second observation, an additional informatiabed DPC (Distinct Path Count) is
helpful to support some special estimation proceslsee Section 4.2). DPC counts the
number of distinct path instances that reach aifspeelationship (e.gs p), starting from
the document root. In other words, if we have atiehships p, we record the number of
distinct rooted paths leading t® nodes involved in such a relationship. The triples
(RL=x,[IC,0OC]) (see Figure 3) stored for each element in thel@rld descendant spokes are
upgraded to a 4-tuple wilRL=x,[IC,OC,DPC]), encompassing DPC information.

4.1. Building Algorithm

To enable correct node counting by the extendeduEXdhe plain building algorithm
(described in [2]) must be modified as shown indkithm 1. As for the plain EXsum format,
the counting of axes occurrences is done for elrhemt using a stack Counter calculation
is straightforward for forward axes (descendant emittl), we simply add 1 to the respective
counter in the corresponding ASPE node, every tiadfind a descendant/child element in

44

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

the stack. Relationship counting in reverse axesefi and ancestor) is, however, a bit
complex. To correctly count element occurrenceseirerse axes, we use an auxiliary list
called Element in Reverse Ax{ERA). It maintains, for each elemextin S a list of all
distinct nodes that were pushed oS8tafterx or, in other words, all distinct nodes under the
subtree rooted by. This means that every time an element is push&nS) the list of each
element currently ir§ is updated. Another use of ERA lists is to upd&#C counters in
every ASPE node involved in the computation. Wengddy the extended EXsum building
process using the document in Figure la and irelicatAlgorithm 1 where each step is
executed. Moreover, Figure 4 shows the initialding steps of EXsum.

When the document root is visited, its namis pushed ont& In addition, ASPH) is
allocated and all axes information that can beuwsatal in this situation is recorded. In this
case, we add 1 in ASP&(as the current number af occurrences in the document and
allocate an (empty) ERA list faa, currently the Top Of StackrQ9 (lines 4 and 6-10 of
Algorithm 1 and Figure 1a). In the next stgmroceeding left-most depth-first, i.e., in
document ordera node with element nanteis located and pushed onfo To control the
allocation of ERA lists, the functiorsFirstOccurrence(x,yxhecks if nodey is the first
occurrence under the subtree rooted by nod® perform this check, we must look for node
y in the ERA list ofx. If no occurrence is found, we must registend returnfrue Because
ASPEC() is not present, it is created and the related @xd®rmation is added ta andc as
follows. The algorithm needs to adjust IC/OC cotmia ASPE§) and in ASPKf). As it is
the first time that an elemert appears under (a subtree rooted hby)the function
isFirstOccurrencereturnsTrue and includes in the ERA list ofa (line 4). Thus, & with
(RL:0,[1,1]) is included in the child spoke of AS@IE Accordingly, ASPEf) has am with
(RL:0,[1,1]) in the parent spoke, which indicathattthere is only one and one a in this
subtree. As the patla,c)is recursion-free, procedu@ompute_RIgives RL=0 (line 5).

45

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Additionally, we add a with (RL:0,[1,1]) in the descendant spoke of AS®EAnd ama
with (RL:0,[1,1]) in the ancestor spoke of ASEE(Figure 4b). The main reason to do so is
to be compliant with the axis definitions in the &P specification [10] Therefore, EXsum
counts child (parent) and descendant (ancestoatioekhips together in the descendant
(ancestor) spoke and separately inserts child ifparelationships only in the child (parent)
spoke.

Continuing the document traversal, a node with elgnmame is now visited $=[a,c,t])
(Figure 4c). Againt is pushed ont& ASPE(f) is created, and the axes information tfand
its path elements anda is completed. ERA lists af andc now include & and, again, both
lists report that it is the first encountered. Thus, am with (RL:0,[1,1]) appears in the
ancestor spoke of ASPHE(The sameé-counters exist for the child spoke of ASEEparent
and ancestor spokes of ASPE(ines 6 and 9), and for the descendant spokASPE@Q)
(line 5). Ast has no children, aBnd_Elemengvent is signaled artdis popped out frons.
Then, reaching the fourth elemgntSand the counters are adjusted in the parent acebstor
spokes of ASPH), child and parent spokes of ASEE(and descendant spoke of ASBE(
The states of EXsum and sta8kip to this point are illustrated in Figure 4d.

4 Here, a descendant (resp. ancestor) axis relaipisdefined aas the transitive closure of the child
(parent) axis; it contains the descendants of theext node (the children (parents), the childrearénts) of the
children (parents), and so on)”

46

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Additionally, we add a with (RL:0,[1,1]) in the descendant spoke of AS®EAnd ama
with (RL:0,[1,1]) in the ancestor spoke of ASEE(Figure 4b). The main reason to do so is
to be compliant with the axis definitions in the &P specification [18] Therefore, EXsum
counts child (parent) and descendant (ancestoatioekhips together in the descendant
(ancestor) spoke and separately inserts child ifparelationships only in the child (parent)
spoke.

Continuing the document traversal, a node with elgnmame is now visited $=[a,c,t])
(Figure 4c). Againt is pushed ont& ASPE(f) is created, and the axes information tfand
its path elements anda is completed. ERA lists af andc now include & and, again, both
lists report that it is the first encountered. Thus, am with (RL:0,[1,1]) appears in the
ancestor spoke of ASPHE(The sameé-counters exist for the child spoke of ASEEparent
and ancestor spokes of ASPE(ines 6 and 9), and for the descendant spokASPE@Q)
(line 5). Ast has no children, aBnd_Elemengvent is signaled artdis popped out frons.
Then, reaching the fourth elemgntSand the counters are adjusted in the parent acebstor
spokes of ASPH), child and parent spokes of ASEE(and descendant spoke of ASBE(
The states of EXsum and sta8kip to this point are illustrated in Figure 4d.

The correct counting of elements in the reverse &dighlighted when the process visits
the fifth element (the secoml S=[a,c,p]). Here, ASPHY) is already allocated and we have
in the ERA lists oft anda. Thus, it is not the first occurrence pfinder the subtrees rooted
by ¢ and a (line 4, setOppositeCount=fal}e Therefore, we add 1 for ASRE(that now
counts 2 and add also 1 fprin the child spoke of ASPEY and in the descendant spoke of
ASPE@) which now contain (RL:0,[1,2]). AsetOppositeCount=falseve do not add 1 for
the OC counters o& and c in parent and ancestor spokes of ASPE(.e, they keep
(RL:0,[2,1]). This mirrors the document structurewhich there is one as parent of twe
nodes and, consequently, aaas ancestor of twp nodes. Hence, after a subtree is entirely
traversed, we have obtained the correct valudseofdrresponding IC/OC counters.

4.1.1. Dealing with Recursion:The calculation of RLs is performed in the building
algorithm (line 5 and proceduf@ompute_RLin Algorithm 1). For each axis relationship in
every ASPE spoke, we calculate RL and, for eachtR& IC/OC counters. EXsum is, in its
general format (see Figure 3), designed as a fiecdgsvare summary. For this purpose, we
consider two kinds of recursion: forward-path resgam and reverse-path recursion (see right
hand of Figure 5).

Forward-path recursion is considered when navigatiownwards through the path, from
the document root element to current element. Repted by child and descendant spokes in
ASPE nodes, the cardinality information capturedised to support the estimation of such
axes in recursive path expressions. In turn, tiverse-path recursion is computed in the
opposite direction, i.e., from the current elemterthe document root. Similarly, reverse-path
recursion is exploited in path expressions dealiiily parent and ancestor axes.

The first appearance of a recursive path in theuahent of Figure 1 occurs when the
document scan reaches the tenth elemenvith the path(a,c,s,s,t) For this path, we have
inserted t:RL=1,[1,1] in the child and descendatkes of ASPHE). Counters a:RL=1,[1,1]
and c:RL=1,[1,1] are also added in the ancestokespb ASPES$). We detail the building of
ASPE nodes with the RL calculation using the tve#flement, whose path iga,c,s,s,shnd
whose state dbhass asTOS as depicted in Figure 5.

® Here, a descendant (resp. ancestor) axis relhipisdefined a%as the transitive closure of the child
(parent) axis; it contains the descendants of theext node (the children (parents), the childrearénts) of the
children (parents), and so on)”

a7

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

& #

Consider that the document scan has reached thfhtwtement, where the incremental
changes to EXsum have to be found for @S elements. First of all, we must add 1 to
ASPEE), because a new nodés processed. Thus, ASPE(3 is obtained. To update EXsum
with the axis relationships of thEOS s, we have to consider the RLs in forward-path
direction for the elements is. a:(RL=0); c:(RL=0); s:(RL=0), which hav@OS as a
descendant; and s:(RL=1), for whigl®Sis a child, and also the RLs in the reverse path f
the elements is: a:(RL=2); c:(RL=2); s:(RL=1), which are ancestofsTOS and s:(RL=0),
which is the parent afOS

When calculating forward-path recursion, the fielgments ins (a, ¢, ands) follow the
same building process as in the recursion-free, desgause there is no recursion in path
(a,c,s) Thus, up to the first in the stack, ASPE nodes and their spokes aredsugxplained
in the previous section. Recursion comes into plily the second in stackS

Summarization of forward-path recursions runs devis. We add 1 to the OC counter of
s with RL=0 in the descendant spoke of AS®E(n the same way, 1 must be added to the
OC counter o6 with RL=0 in the descendant spoke of AS®ENnd ASPES). Furthermore,
we must insert a new RL record in the descendathtchild spokes of ASPE) for s with
(RL=1,[1,1]).

For reverse-path recursions, we add two new RLrdscto the ancestor spoke of ASBE(
for a andc with (RL=2,[1,1]). Additionally, we add a new REgord in the ancestor spoke of
ASPEE) for s with (RL=1,[1,1]). Finally, we increment both IGi& OC counters of with
RL=0 in the parent and ancestor spokes of ASPE(

4.1.2. Calculating DPC:To compute the DPC, we need to maintain the setl afistinct
rooted paths for each relationship. We can impldnibis in two ways. First, given a
relationships p, we can traverse the path synopsis seeking fospkeific rooted paths we
need and repeat this traversal for each relatipnstinputed. If the path synopsis exists, this
traversal has a time complexity 6fn.log(n)) wheren is the number of nodes of the path
Synopsis.

48

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

())

#

In the absence of a path synopsis for the docurnmenthave designed the self-contained
procedurecomputeDPlines 23-34 and called in line 11 of Algorithm X)processes every
rooted path occurrence, which is represented bptaekparameter provided by a call of the
buildSynopsigprocedure. For every given pair of related nodesmaintain two sets, one for
the child (child set) and the other for the desasmhddescendant set) relationship.

To explain how this algorithm works, we take a ficat example. Consider the path
(a,c,s,s,)in the recursive document in Figure 1. Th@S element in this case is The
procedure starts by assigning the size of the fgathwhich is 4 in this case. Then, we check
for the value ofn. The procedure is only executed for values @freater than 2 (line 25),
because a path with 2 nodes contains only one otlddionship and, therefore, no preceding
distinct paths. Then, for every nodim the path before thEOS we add an occurrence of the
sub-path that leads from root to the descendaatioakhip betweenand theTOS(line 31).
The proper RL value is calculated by counting theuorences of in this sub-path (lines 26-
30). For the particular case of the relationshipveenTOSand the element right before it,
the path is also added to the child set (line 88).in the given example, the procedure starts
with elementc (position 2). Then, we take the descendant sétefelationship front to t,
denoted as a pac;t), and add an occurrence of the pathvith RL=0. The child set will be

49

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

left untouched, asis not at positiomOS1. Because sets are used, no duplicate elemedhts wi
be added, and only distinct paths will populatarth&/hen going to the first element, the
path to be added i®/c, also with RL=0. Reaching the secogdwe need to add the path
falcls to the relationship(s;t). This time, because one occurrencesof found in the
preceding path, it will be inserted with RL=1. Mover, it will also be added to the child set,
as the element is positioned right before Ti@St. Figure 6 illustrates which relationships
and paths are computed. After completion of theudwnt scan, the EXsum building is
finished; the resulting structure, including DPQieters, is shown in Figure 7.

4.2. Heuristics to Support Estimation of Longer P&t Expressions

Because exact calculations cannot be performed Xgul when n-step (n>2) path
expressions come into play, [2] proposed the usetefpolationas an estimation procedure.
Here, we introduce new heuristics to compensate¢icecase of accuracy in these cases. For
the following explanations, we refer to the EXsumucture depicted in Figure 7 and, without
loss of generality, exemplify the heuristics widitursion-free queries.

4.2.1. DPC Division: The DPC (Distinct Path Count) Division proceduefies on the
uniform distribution assumption of document pateding to a locatiostepcaptured by the
DPC counter in the EXsum structure. The idea iditide theocc(step)cardinality by the
related count.

Consider a path expressida/c/s/p To estimate stegs, occ(/s)is given as follows. In
ASPEE), we search the child spoke for anand find the OC and DPC counters. The
estimation ofocc(/s)=OCcounter / DPCcountaelivers 4/1=4 as step estimation. This means
that (coincidently) there is only one path leadiog s. For the next step), we find three
distinct paths reaching p: (a,c), (a,t) and(a,c,t). With an OC counter value 13 pfin the
child spoke of ASPH}], occ(/p)=13/3=4.3 which is the estimated cardinality of the
expression.

DPC is also available for descendant steps. DPGhforsteps//p would deliver 4 (a,c),
(a,c,s,s) (a,t) and(a,c,t), because it corresponds to the number of patdirlg tos nodes
which have at least ongin its subtree. Note that, for the same pair i@ship x vy, the
DPC counter in the descendant spoke is alwaysagreatequal than that in the child spoke,
because, regarding EXsum, child steps are a sabdescendant steps. Thus, the estimate for
IIsllpis occ(//sl/p)=17/4

4.2.2. IC Counter Division: This procedure makes an estimation for each lacatiep by
dividing the OC counter by the IC counter found ASPE spokes. It assumes that the
occurrences of a given axis relationship are unifgrdistributed throughout each distinct
path. This method becomes equivalent to the DP@sidiv method if each distinct path has
only one occurrence in the document tree.

Thus, to estimate the expressifo/s/p we have, forocc(/p) OC=17 and IC=7. The
procedure estimatescc(//c/s/p)=17/7 IC counter division method is intended to bring
accurate results for nodes that appear occasioaatlyin isolated positions, like some nodes
in treebank As an example, the estimate/fft/sresults inocc(//c/t/s¥3/2=1.5 and the actual
result is 2.

4.2.3. Node Frequency DivisionAnother heuristics for the path step estimatioriois
divide the value of the OC counter bgc(x) of the context nodg. This is similar to the IC
counter division method, except that it considéasa stepa/b, beinga the context node, all
occurrences od in the document, i.eqcc(a) without considering any relationshipticnodes.

50

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

The accuracy of this method should be, in the base, equal to the one achieved by the
IC Counter Division. By applying this procedure ¢he expressiorva/c//t, we have
occ(c/lt)=5 and ASPEf)=2. The estimation gives wec(c//t)/ ASPEE)=2.5

4.2.4. Previous Step Cardinality Division: This method uses two factors: the
occ(currentsteppathered from the OC counter in ASPE spoke ancestienation result of
the previous step in an expression. Dividing botimbers, the procedure yields the
estimation for the current step. By iterating ttédculation throughout all location steps of a
path expression, the estimation of the expressiaalculated.

This method introduces a strict dependency betileestimations of each step, forcing a
sequential execution, which could be a disadvanfiageertain document paths. On the other
hand, it only depends on the OC counter. For exanfpt estimating/t/s/p, we take three
location stepdlt, /s and/p. The first one yield®cc(t=6. For the second step, we probe the
child spoke of ASPHE) for ans and take its OC value, i.e., 3. Therec(/sF6/3=2. For the
last step/p, we take the OC value gf in the child spoke of ASPEY i.e., 13. Thus,
occ(/pF13/2=6.5. Hencecc(//t/s/p¥6.5.

5. Empirical Evaluation

To assess the practical value of the EXsum extegsiib is necessary to systematically
evaluate and cross-compare them against competitigoas under representative empirical
workloads and in an identical environment. For ttésson, we have implemented and
incorporated our ideas and competing summariesiimative XML database management
system called XTC [2]. As competitor approacheshaee chosen XSeed and LWES, whose
parameter settings were adjusted as follows. FerxBeed kernel, we have set the search
pruning parameter to 100 fareebank 50 for dblp, and 20 for the other documents. For
LWES, EB histograms were continuously applied tdeskels of the summary structure.

For each document in Table 1, we have generateq qu@kloads containing three basic
query types: queries witsimplechildand descendanpath steps and those with predicates.
Descendant queries may have multiple descendapd. dte the case of EXsum and LWES,
parentandancestorqueries are also evaluated, as they provide stujpmothem. We have
cross-compared the approaches regarding timiniggsiand estimation quality.

The test workloads were processed on a computéppeepl with an Intel Core 2 Duo
processor chip running at 2.2 GHz and 3 GB of DDRAM memory, the GNU/Linux
operating system (version 2.6.27), and the Javat@al machine (version 10) of Sun. The
XTC server process was running on the same machine.

5.1. Timing Analysis

Estimation time refers to the time needed to delikie cardinality estimations for a query
addressing a given document, that is, the timesgtienation process needs to get the query
expression, to access the summary (possibly maredhce), and to report the estimate to the
optimizer. Here, we report averages of the timeslad for the queries in a workload.

Table 2 shows the estimation times classified bgrguypes. For EXsum, the timing
difference among the various estimation procedisgre®gligible. Thus, we have reported in
Table 2 just the worst results depicted in coluExsum Obviously, EXsum delivers superior
results for all document and query types; hensépipact on the overall optimization process
is very low. While LWES is comparable and XSeedHtly slower for most queries, both of

51

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

them consume prohibitive times in deeply structudeduments, especially for the estimation
of descendant axes; this seems to be unacceptalpeattical use.

+

Document| EXsum LWES XSeed | | Document| EXsum LWES
Simple child queries Parent and ancestor queries
dblp 2.85 3.18 13.21 dblp 4.39 7.00
nasa 3.55 3.30 11.60 nasa 4.42 4.50
swissprot | 2.93 2.80 17.83 swissprot 5.48 7.34
treebank 3.72 5.15 7,413.0 treebank 5.09 10.88
psd7003 3.86 3.15 3.28 psd7003 4.00 3.34
Descendant queries Queries with predicates
dblp 3.18 3.12 26.12 dblp 4.92 7.63
nasa 2.75 2.93 7.19 nasa 5.60 10.20
swissprot | 2.95 3.20 20.00 swissprot| 11.80 24.84
treebank 3.21 27,391.00 8,588.00 treebank 7.29 6,705.20
psd7003 4.04 3.53 7.96 psd7003| 13.86 15.75

5.2. Sizing Analysis

The storage amount listed in Table 3 charactetizesnet size of a summary and only
includes the bytes necessary to store the sumnmadysti. The gross size may be influenced
by a specific implementation and confuse a diremhgarison. XSeed presents the most
compact storage. LWES is more compact than EXsumdn-recursive documents.

Table 3 also compares the memory footprint for a#si estimation situations on all
summaries/documents. We have computed the averageom size needed to estimate
cardinalities for queries with two characteristicgieries whose number of location steps,
whatever axes included, are equal to the documarésage depth (rounded up to next
integer value), and queries whose number of locatiteps is equal to the maximum
document depth. These cases enable us to infehahatsummary needs to be entirely or
only partially loaded into memory, i.e., whether ot the memory consumption of a
summary is bounded to the number of location siepsquery during the estimation. Except
for EXsum, all other summaries require the entirecsure in memory to perform cardinality
estimations. EXsum, in contrast, only loads theneiced ASPE nodes and is, therefore, the
summary with lowest memory footprint and relateskd©O. Thus, although the use of EXsum
implies higher storage space consumption, the abmprocess may compensate it by lower
memory use and IO overhead.

5.3. Estimation Quality

To compare the estimation quality of EXsum and oetibgrs, we have used an error
metric called Normalized Root Mean Square Error N\NBE). NRMSE is given by the
formula , Whera is the number of queries in the workload,
e the estimated result size, aadhe actual result size. NRMSE measures the average
per unit of the accurate result. Furthermore, wayare timing including estimation and build
times, and sizing (i.e., storage size and memastpfint) needed for cardinality estimation of
query expressions.

52

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

In addition to the results presented, we also coethbaur estimation methods against
“Interpolation” and “No Estim.”. The former is theriginal EXsum estimation method
proposed, the latter is the simple probing of tberesponding ASPE nodes with related
spokes, but without using estimation procedures B$tim.” gives us hints on how good
EXsum represents structural properties of XML doenta. We analyzed the accuracy of
simple-child and descendant queries in Table 4.

+ 1
Document| EXsum | EXsum | LWES XSeed
DPC other
Storage (in KB)
dblp 7 6 2 7
nasa 9 9 2 7
swissprot 14 13 4 15
treebank 168 158 3,339 160
psd7003 7 7 2 6

Memory Footprint (in KB)
location steps = ceil(average depth)

dblp 0.65 0.62 2 7
nasa 0.91 0.84 2 7
swissprot | 0.68 0.65 4 15
treebank 6.03 5.66 3,339 160
psd7003 0.60 0.57 2 6
location steps = maximal depth
dblp 1.13 1.08 2 7
nasa 1.17 1.11 2 7
swissprot | 0.82 0.78 4 15
treebank 24.80 23.28 3,339 16(
psd7003 0.79 0.76 2 6
+ $) - # . | 0
Doc. No | Input Cnt| Prev.Ste Node DPC | Interpol.| LWES | XSeed
Estim. p Freq.

dblp 13.89 244.36 6.06 244.34 13.86 0.91 14.49| 0.91
nasa 32.98 228.65 291.49 228.67 29.32| 3.35 3.45 3.36

swisspro| 0.00 267.07 | 202.55 267.07 0.00 0.00 12.10 0.01
t
treebank| 866.51 | 587.43 | >1,000] 587.02 | 591.64 429.67 | 361.25 441.6

psd7003| 0.00 133.35 0.00 133.35 0.0(¢ 0.00 0.00 0.p0

53

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

2 . /

We can see that EXsum itself delivers good estomati except in cases where a high
degree of recursion is presemteg€bank or where subtrees (or nodes) of homonyms are
scattered across the document. In general, howb®C"” and “Interpolation” present the
best results in the majority of the cases, andutr@ount”, “Prev. Step”, and “Node Freq.”
yield the worst results, with the exception thatre\¥? Step” can provide high quality
estimations on documents whose degree of structtaahbility is very low ¢blp and
psd7003.

Furthermore, we have investigated the estimatioalityufor queries with parent and
ancestor axes and queries with predicates (seeeFR)u For the former, “Prev. Step” and
“Interpolation” delivered high-quality estimatioits most of cases, comparable or even better
than LWES. Except fodblp, “No Estim.” also produced good estimations. Qagnwith
predicates have obtained low estimation quality K®@MSE reaching 100%). In this case,
XSeed has a tendency to yield slightly better tesunl the most of the cases and especially
good ones fodblp. A particular study on estimation quality of thgpeoaches otreebankis
given in Figure 9. These results tell us that tlmammarization of highly recursive documents
remains a challenge for all compared summaries.

6. Conclusion

In this paper, we have extended EXsum, an elenmrttped summary, to capture more
statistical information on XML documents and, usitigis information, support more
estimation procedures than originally proposed. N&ee made experiments to quantitatively
evaluate our proposal against approaches publishi literature. Two properties of XML
documents directly influence the quality of summarand, consequently, their estimation
results: recursion and homonym trees (or nodesjwinequently exhibit varying numbers of
occurrences in different parts of a document. Whelaursion gives room for improvements,
because all approaches compared have presentetbwesgtimation quality, homonym trees
seem to be properly handled in the approaches amahpbBiowever, the consequences of a
varying degree of interplay between recursion ammddnyms are set to be a future research.

Evaluating the four new estimation methods propogedEXsum, two of them have
produced quality estimation results, whereas themeing methods have reported high errors

54

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

for query cardinality estimation. Nevertheless, steicture of EXsum itself yields quality
estimations and, in some cases, accurate (NRMS&¥), meaning that EXsum can capture
the most important characteristics of a document.

References

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. NaughttiEstimating the selectivity of XML path
expressions for internet scale applications”, lacP/LDB Conference, 2001, pp. 591-600.

[2] J. d. Aguiar Moraes Filho and T. Harder, “EXsum—éNIL summarization framework”, In Proc.
IDEAS Symposium, 2008, pp. 139-148.

[3] J. d. Aguiar Moraes Filho and T. Harder, “TailordBaXML synopses”, In Proc. BalticDB&IS
Conference, 2008, pp. 25-36.

[4] J. d. Aguiar Moraes Filho, T. Harder, and C. SatiEnhanced statistics for element-centered XML
summaries", In Proc. Database Theory and Applingfdr A), LNCS, Jeju Island, Korea, 2009.

[5] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy,-ar&iméon, “Statix: making XML count”, In SIGMOD
Conference, 2002, pp. 181-191.

55

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

[6] T.Harder, C. Mathis, and K. Schmidt, “Comparisért@mplete and elementless native storage of XML
documents”, In IDEAS Symposium. IEEE Computer Sgi2007, pp. 102-113.

[7]1 L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, &dParr, “Xpathlearner: An on-line selftuning
markov histogram for XML path selectivity estimatipln Proc. VLDB Conference, 2002, pp. 442-453.

[8] N. Polyzotis and M. N. Garofalakis, “Structure avalue synopses for XML data graphs", In Proc.
VLDB Conference, 2002, pp. 466-477.

[9] N. Polyzotis and M. N. Garofalakis, “Xsketch synepgor XML data graphs”, ACM Trans. Database
Syst., 31(3):1014-1063, 2006.

[10] W3C, XML path language (XPath) 2.0lW3C recommemdati 23 january 2007.
http://www.w3.0rg/TR/xpath20/, 2007.

[11] W. Wang, H. Jiang, H. Lu, and J. X. Yu, “Bloom loigtam: Path selectivity estimation for XML data
with updates”, In Proc. VLDB Conference, 2004, p0-251.

[12] N. Zhang, M. T. Ozsu, A. Aboulnaga, and 1. F. lly&Seed: Accurate and fast cardinality estimation
for XPath queries”, In Proc. ICDE Conference, 200%,61.

Authors

José de Aguiar Moraes Filho is a PhD candidatdeatltniversity of
Kaiserslautern, Germany. He has received his Malggree in Applied
Computer Science at the University of Fortaleza IfDR), Brazil, in
2004. His research interests include XML query pssing and
optimization, mobile databases, and data integratio

Theo Harder obtained his Ph.D. degree in Computemge from the
TU Darmstadt in 1975. In 1976, he spent a postatattyear at the
IBM Research Lab in San Jose and joined the pr&gstem R. In 1978,
he was associate professor for Computer ScientteeatU Darmstadit.
As a full professor, he is leading the researclugrbBIS at the TU
Kaiserslautern since 1980. He is the recipienhef€onrad Zuse Medal
(2001) and the Alwin Walther Medal (2004) and om¢al the Honorary
Doctoral Degree from the Computer Science DepthefUniversity of
Oldenburg in 2002. Theo Harder's research interastsin many areas of database and
information systems in particular, relational DBM&hitecture, XML databases, transaction
systems, and information integration. He is auttuaiithor of 7 textbooks and more than 200
scientific contributions with > 140 peer-reviewednéerence papers and > 60 journal
publications.

His professional services include numerous postamchairman of the special interest group
“Databases and Information Systems” of the Germanforiatics Society,
conference/program chairs and program committee bagneditor-in-chief of Computer
Science—Research and Development (Springer), assoeditor of Information Systems
(Elsevier), World Wide Web (Kluver), and TransanSoon Database Systems (ACM). He
served as a DFG (German Research Foundation) expeénivas chairman of the Center for
Computed-based Engineering Systems at the Uniyep$iKaiserslautern, member of two
joint collaborative DFG research projects DFG (SEBI, SFB 501), and co-coordinator of
the National DFG Research Program “Object BaseEXperts”.

56

Intemational Joumal of Database Theory and Application
Vol. 2, No. 4, December,, 2009

Caetano Sauer has received his Bachelor in Comfatence from the
University of Kaiserslautern and is currently a kdascandidate at the
same institution. He currently works as a Resedskistant for the
XTC project. Research interests include Databaste8ys, XML Query
Processing, Web Services, and Natural Languageesing.

57

Intemational Joumal | of Database Theory and Application
Vol. 2, No. 4, December,, 2009

58

