
International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

27

Fuzzy based approach for Load balanced distributing database on

Sensor Network

1Mohammad Zeynali, 2Leili Mohammad Khanli, and 3Amir Mollanejad

1
Islamic Azad University - Bostanabad, Branch, Iran

2
Department of Computer, Science University of Tabriz, Iran

3
Islamic Azad University - Jolfa, Branch, Iran

1
Mo_zeynali@yahoo.com,

2
 L-khanli@tabrizu.ac.ir,

3
Amir.mollanejad@gmail.com

Abstract

 A wireless sensor network consists of tiny sensing devices, with limited energy and

processing ability. Some time we have to distribute a database on sensor network, because of

limited energy in sensors, load balanced distributing database can increase the lifetime of

this networks. In this paper we propose Fuzzy based approach for Load balanced

distributing database on sensor Network that prolonging the network lifetime. We use vertical

partitioning algorithms for distributing database on sensors. First we clustering the network

and then distribute partitions on clusters. A simulator was built and Results of various

simulation runs are consistent with the hypothesis.

 Keywords: Sensor Network, Database, Distributing, Partition, Load Balanced, Hit Ratio.

1. Introduction

 Wireless Sensor Network (WSN) comprises of micro sensor nodes with limited energy
and processing ability. It is used in military as well as civil applications. From telescopes to
microscopes, we have developed instruments to monitor and observe the world in ways that
are not obvious to the human eye. With recent and projected advances in small, low cost
microelectronic and mechanical systems (MEMS) with limited on-board processing and
wireless communication capabilities, and the development of new sensor materials, we can
envision a new generation of technology that enables us to build large collections of
untethered, battery powered sensors with various sensing functions that are distributed
densely over a geographic region. These sensor networks are able to measure traffic
conditions, weather development, seismic activity, or track the movements of toxic fumes at a
level of detail that was not possible before. The continued trend towards miniaturization and
inexpensiveness of sensors makes it possible that such sensor networks are less than a cubic
millimeter in size[13], and sensor networks are made up of thousands or even millions of
sensors. At that scale, wireless sensors could permeate the physical world, and help us vastly
increase to increase our understanding of our physical environment.
Sensor networks, however, have the following constraints that pose new challenges from a
system and application development standpoint:
 • Power consumption: Sensor nodes are limited with regard to their battery supply, and
energy conservation is a major system design principle. Also, communication is a much
larger battery drain than local computation on a node.
 • Low-range communication: The bandwidth and range of wireless communication is
limited. Since communication is much higher drain on the energy consumption than on-board

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

28

processing, optimizing communication within the sensor network is a major system design
consideration.
 • Limited computing and storage capabilities: Sensor nodes have, at least, for the
foreseeable future limited on-board computational, and volatile and persistent storage
capabilities. Thus, on-board data processing of using available memory and CPU is also
limited.
 • Self organization: Due to the large number of sensor nodes, the failure rates of nodes,
and the often unattended deployment, task management and handling in sensor networks is
decentralized and self organizing. Thus, some level of local autonomy must be provided for
the devices. Over the last years, much research work has focused on the design of robust and
energy-efficient communication protocols and the development of sensor materials and
devices. More and more research and commercial prototype platforms become available to be
deployed in real-world applications. First prototypical employments of sensor network can be
found in the environmental domain, such as non-invasive habitat monitoring [11, 12]. From
the application developer perspective, the main purpose of sensor networks is collection,
aggregation and processing of data as well as the actuation of the environment. Thus, today
simple, easy-to-use programming interfaces for sensor networks become important. A user,
often a domain scientist, would like to define the necessary tasks in a user-friendly way, and
delegate the optimization and ultimately self-adaptive execution to the run-time environment
without having to worry about the details. Traditionally, database management systems
(DBMS) have had the purpose of making managing and querying very large amounts of data
simpler and robust. The current generation of DBMS, based on extended relational database
technology, is well-understood, and this type of DBMS is used almost pervasively in business
as well as in scientific applications. Relational DBMSs provide a simple, query language,
SQL, to model the data and formulate queries over the data. The mathematical foundation of
SQL on the relational algebra enables automated reformulation and optimization of user
queries to speed up the execution of queries significantly. From a DBMS perspective, a
sensor network can be viewed as a large distributed database system. Here, each sensor
node behaves like a tiny DBMS running on the sensor node platform and accepts, processes
and answers queries. Furthermore, a sensor node DBMS also participates in the global
execution of distributed queries. Consequently, the user can interact with the sensor network
as a whole. For example, imagine the storm petrel sensor network application on Great Duck
Island in Maine (USA) conducted by scientists from UC Berkeley, Intel Research Labs and
the College of the Atlantic in Bar Harbor [11]. Great Duck Island is a 90-hectare island
consisting of rock and grass off the coast of Mount Desert Island and is home to one of the
world’s largest breeding colonies of Leach’s storm petrels. Researchers installed a collection
of monitoring devices (motes) in the petrels’ nesting burrows with sensors that monitor light,
humidity, pressure, and heat. The data is transmitted via a radio transceiver to nearby motes.
The available sensor data is modeled via a relation called Sensors whose schema consists of
the node identifier, attributes for a node’s on-board sensors such as light and temperature, and
a time stamp for each data tuple. The tuples are created on demand by nodes in the sensor
network based on queries sent to the sensor network. Sensors nodes
only start sampling based on the query. For example, a scientific observer might be interested
in periodic measurements of pressure values to monitor the inhabitation of birds in nests with
the following SQL query:

SELECT sensor.id, pressure FROM sensors WHERE pressure>threshold

SAMPLE PERIOD 60sec

International JournalInternational JournalInternational JournalInternational Journal of of of of Database Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

29

 Every 60 seconds, the query is evaluated at all participating sensor nodes, and those nodes
with pressure values larger than the given threshold return a data tuple, and others return a
null value. Instead of periodic observations, the scientist might only look for events such
as”when and how long does a storm petrel occupy a burrow?” Events can be derived from
Collected data outside of the sensor network based on periodic measurements or, they can be
processed directly in the sensor network. A third group of queries are aggregation queries
such as simple aggregates of”how long are nests occupied on average?” or a query to find the
nest with the highest weight:

SELECT sensor.id, MAX (pressure) FROM sensors WHERE pressure>threshold SAMPLE

PERIOD 60sec

 Note, that queries define the request data in a declarative way, and the user does not need
to know the the availability or node identifier of sensors, nor does he/she deal with the details
of the execution of the query. The DBMS routes the query to the sensor nodes of interest.
System-internally, multi-hop georouting or other routing algorithms ([9, 10]) can be applied
to distribute the query to all relevant nodes, which contribute their measurements as partial
query results, and routing algorithm to intelligently and energy-efficiently route partial result
back to the users.
 In summary, the sensor network database system translates the declarative user query, and
responsible for generating a query execution and optimization plan, and control the query
execution as well as its error handling. Although, a sensor network database system provides
a similar, easy-to-use interface compared to the traditional database world and its data
handling paradigm is promising when dealing with the complexity of data collection and
processing in sensor networks, the database technology applied ’under the hood’ of the front-
end changes significantly from traditional database management systems strategies to deal
with the constraints of sensor networks.
 Some time we have to distribute a database on sensor network, because of limited energy
in this sensor, load balanced distributing database can increase network lifetime. In this paper
we propose Fuzzy based approach for Load balanced distributing database on sensor Network
that prolonging network lifetime. In proposed algorithm first we clustering the network
[2],[3],[4], and partitioning database then distribute partitions on clusters. The partitioning of
a global schema into fragments can be performed in two different ways:
vertical partitioning and horizontal partitioning. This paper is concerned with vertical
partitioning [1]. Partitioning based on attributes has been studied earlier in [5], [6], [7].
Navathe et al used a two-step approach for vertical partitioning. In the first step, they used the
given input parameters in the form of an Attribute Usage Matrix (AUM) to construct an
Attribute Affinity Matrix (AAM) for clustering [8]. After clustering, an empirical objective
function is used to perform binary partitioning iteratively. In the second step, estimated
storage cost factors are considered for further refinement of the partitioning process.
Eltayeb Salih Abuelyaman [1] proposes a scheme for vertical partitioning of a database at the
design cycle. The scheme determines the hit ratio of a partition. As long as it falls below a
predetermined threshold, the partition is altered. Although no proof is provided, experimental
data showed that moving an attribute that is loosely coupled to a different Subset within a
partition improves hit ratio. We use Eltayeb Salih Abuelyaman [1] algorithms for partitioning
database. Only we change his mathematical formula to fuzzy sets as reduce The time of
algorithm, also proposed algorithm can used in nondeterministic environment and on sensor
networks. We know that skew distributing database on sensors cause inordinate use of some
sensors, therefore reduced the life time of network, in this paper we effort to reduce the skew

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

30

of distributing database partitioning as possible insofar. The rest of this paper is organized as
follows: In the next section we will introduce the related works. In section 3 we will discuss
fuzzy sets, in section 4 we will introduce startphase. Simulation is given in Section 5. The
conclusion is presented in sections 6.

2. Related works

 Because of the criticality of the database performance, several researchers have
contributed enormously to vertical partitioning.. Database partitioning has been applied in
centralized relational databases [16,19,25,32,35], distributed databases[15,17,19,27,29,33],
Data Warehouse Design [20,22,26], and Object-Oriented Database design [21,23]. Hoffer and
Severance [25] consider the vertical partitioning problem by applying bond energy algorithm
on similarity of attributes, which are based on access patterns of transactions. Their work was
extended by Navathe, Ceri, Widerhold, and Dou [30] by presenting vertical partitioning
algorithms for three contexts: a data base stored on devices of a single type; in different
memory levels; and a distributed database. They used affinity between attributes for
partitioning, which is based on number of disk accesses. An alternate graphical approach was
proposed by Navathe and Ra [31]. Cornell and Yu [19] used an optimal binary-partitioning
algorithm to obtain vertical partitioning, which is iteratively applied to obtain more partitions.
The study uses number of accesses to evaluate partitions. Chu and Ieong [18] develop a
transaction-based approach to vertical partitioning, in which transaction rather than attribute
is used as the unit of analysis. Song and Gorla [35] used genetic algorithms to obtain
solutions simultaneously for vertical partitions and access paths for those partitions. They also
used the number of disk accesses as the partitioning evaluation criterion. Cheng, Lee, and
Wong [17]use genetic searchbased clustering algorithm based on traveling salesman problem
to obtain vertical partitions in distributed databases. With reference to object-oriented
database design, Gorla [23]used genetic algorithm to determine the instance variables that
should be stored in each class/ subclass in a subclass hierarchy, so that the total cost of
database operations is minimized. More recently, Ailamaki et al [14] proposed Partition
Attributes Across (PAX) model by improving cache performance, while Ramamurthy et al
[34] proposed fractured mirrors partitioning scheme based on Decomposition Storage Model
and N-ary Storage Model. Fung, Karlapalem, and Li [21] analyze vertical partitioning of
classes/ subclasses for class composition hierarchy and subclass hierarchy and develop the
associated cost functions for query processing under the cases of large memory and small
memory availability. Ng et al [32] proposed a combined vertical partitioning and tuple
clustering using genetic algorithm. We extend previous research of single relation cases by
providing a procedure for vertical partitioning of relations in a multi-relation database
environment. An important characteristic that distinguishes multi-relation schema from single
relation case is referential integrity constraints enforcement due to update transactions. Our
approach makes use of a 2-attribute affinity, as used in previous studies of Navathe et al [30]
and Cornell and Yu [19]. However, we differ from their approach in that our attribute affinity
metric is based on differential access times of transactions rather than number of disk
accesses. There is a substantial difference between these two methods of evaluation, since
fetching an additional block of records from disk in a sequential scan takes much less time
than fetching an arbitrary block randomly, which takes even less time than the time for
inserting/deleting a record. Our access time computations are baaed on disk IO service times.
Furthermore, our algorithm is similar to “hill climbing” [24] in that our algorithm groups
attributes such that the objective function keeps increasing; our approach differs theirs in that
we have two steps to our algorithm – grouping and verifying. Thus, we extend previous

International JournalInternational JournalInternational JournalInternational Journal of of of of Database Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

31

research on vertical partitioning by including referential integrity constraints and join
transactions, and by using a comprehensive cost function to evaluate fragmentation scheme
that is based on access time rather than count of accesses. Physical database design provides
truly optimal performance when the design is made to fit specific disk characteristics and is
only optimal on the given hardware architecture [28]. Our proposed methodology includes
disk access characteristics as part of our attribute affinity measure.

2.1 Vertical partitioning

 The vertical partitioning problem in a multi-relation environment is stated as follows:
Given a relational schema, the retrieval/update/join transactions on the schema, the referential
integrity constraints among relations, and the disk access parameters, the objective is to
determine stored fragments for each relation, which results in the minimum total database
access costs. The partitioning problem is computationally complex. Consider a relational
schema with N relations, with Ai attributes for relation i. A relation with A attributes can be
partitioned in B(A) different ways [16], where B(A) is the Ath Bell number (for A=30, B(A)
= 1015). Using exhaustive enumeration, the number of possible fragmentations for the N-
relation schema is approximately B(A1)B(A2) ... B(AN). Yu et al [34]find out that the
number of attributes for base tables and views in a typical relational environment are 18 and
41 respectively. Even if we consider a small schema of 10 relations with 15 attributes per
relation, the number of possible fragments is approximately (109)10 =1090. Since the
problem is intractable, solving large problems requires the use of heuristic techniques. Our
procedure consists of three steps.
First, database transactions on the logical schema are transformed into transactions on
individual relations. Second, an attribute grouping benefit index (AGBI) is computed. Third, a
clustering algorithm using AGBI is applied to derive effective fragments.

2.3 Graph based vertical

 A new algorithm has been developed by Navathe and Ra based on a graphical technique
(Navathe and Ra, 1989). This algorithm starts from the attribute affinity matrix by
considering it as a complete graph called the “affinity graph” in which an edge value
represents the affinity between the two attributes,
and then forms a linearly connected spanning tree. By a “linearly connected tree” we imply a
tree that is constructed by including one edge at a time such that only edges at the “first” and
the “last” node of the tree would be considered for inclusion. We then form “affinity cycles”
in this spanning tree by including the edges of high affinity value around the nodes and
“growing” these cycles as large as possible. After the cycles are formed, partitions are easily
generated by cutting the cycles apart along “cut-edges”.
 The major feature of this algorithm is that all fragments are generated by one iteration in a
time of O(n2) that is more efficient than the previous approaches.
 Recalling table 1 of page 3, the attribute usage matrix for a relation containing 10
attributes with respect to 8 transactions, namely, T1 through T8 that are initiated by the
applications. Table 2 shows an example of an attribute affinity matrix. Figure 1 shows the
result of applying the algorithm to the attribute affinity matrix. In Figure 1 the nodes refer to
attributes of the relation. The resulting vertical fragments are: 1. (a1, a5, a7) 2. (a2, a3, a8, a9)
3. (a4, a6, a10)

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

32

Figure 1.Vertical fragments generated by graph theoretic algorithm

We can summarize the major advantages of this method over the previous approaches in the
following:

 1. There is no need for iterative binary partitioning. The major weakness of iterative binary
partitioning used in (Navathe, Ceri, Weiderhold, 1984) is that at each step two new problems
are generated increasing the complexity; furthermore, termination of the algorithm is
dependent on the discriminating power of the objective function.
 2. The method obviates the need for using any empirical objective functions as in
(Navathe, Ceri, Weiderhold, 1984). As shown by (Cornell and Yu, 1987) the “intuitive”
objective functions used in (Navathe, Ceri, Weiderhold, 1984) do not necessarily work well
when an actual detailed cost formulation for a specific system is utilized.
 3. The method requires no complementary algorithms such as the SHIFT algorithm of
(Navathe, Ceri, Weiderhold, 1984) that shifts the rows and columns of the affinity matrix.
 4. The complexity of this approach is O (n2) as opposed to O (n2log(n)) in (Navathe, Ceri,
Weiderhold, 1984).

3. Fuzzy sets overview

 Fuzziness [7] is a way to represent uncertainty, possibility and approximation. Fuzzy sets
are an extension of classical set theory and are used in fuzzy logic. In classical set theory the
membership of elements in relation to a set is assessed in binary terms according to a crisp
condition- an element either belongs to or does not belong to the set. By contrast, fuzzy set
theory permits the gradual assessment of the membership of elements in relation to a set; this
is described with the aid of a membership function:

µ → [0, 1]

International JournalInternational JournalInternational JournalInternational Journal of of of of Database Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

33

 The domain of the membership function, which is the domain of concern and from which
elements of the set are drawn, is called the ‘universe of discourse’. For example, the Universe
of discourse of the fuzzy set ‘High Income’ can be the positive real line [0, ∞).
The notion central to fuzzy systems is that truth values (in fuzzy logic) or membership values
(in fuzzy sets) are indicated by a value on the range [0. 0, 1. 0], with 0. 0 representing
absolute false and 1. 0 representing absolute truth. For example, let us take the statement:
"Jane is old. " If Jane's age was 75, we might assign the statement the truth value of 0. 80. The
statement could be translated into set terminology as "Jane is a member of the set of old
people. " This statement would be rendered symbolically with fuzzy sets as :

µ OLD (Jane) = 0. 80

 Where µ is the membership function, operating in this case on the fuzzy set of old people,
which returns a value between 0. 0 and 1. 0. The modifiers of fuzzy values are called Hedges.
To transform the statement, “Jane is old” to “Jane is very old”, the hedge “very” is usually
defined as follows:

µ”very” A(x) = µ A(x) ^ 2.

 For example, If µ OLD (Jane) =0. 8 then µ VERYOLD (Jane) =0. 64. Every input value is
associated with a linguistic variable. A linguistic variable represents a concept that is
measurable in some way either objectively or subjectively, like temperature or age. Linguistic
variables are characteristics of an object or situation. For each linguistic. Variable it should be
assigned a set of linguistic terms (values) that subjectively describe the variable. Most of the
times, linguistic terms are words that describe the magnitude of the linguistic variable, as
“hot” and “large”, or how far they are from a goal value as in “exact” or “far”. Each linguistic
term is fuzzy set and has its own membership function. It is expected that for a linguistic
variable to be useful the union of the support of the linguistic terms cover its entire domain.

4. Startphase

 The design of efficient database systems is not an exception because database partitioning
is based on Frequencies of Queries (FOQ). In a distributed database, data must be collected
from a large number of queries before partitioning. To avoid as a constraint, dependency on
FOQ must be eliminated. One way to do so is to perform database partitioning at the design
phase and immediately after completion of the schema. Comfortably, partitioning can be
decided even before database tables are populated. For illustration of the proposed
partitioning, the following definition will be necessary.

Description:
a) PNa : the total probability of attributes.
b) PNk : the probability of queries in the Set of Kickoff Queries SKQ[1].

5. Simulation phase

The simulator has the following two modules. Each of the modules is discussed separately.
a) fuzzy reflexivity
b) fuzzy symmetry

5. 1. The fuzzy reflexivity module

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

34

 The module prompts a user to enter values for each of the first three parameters in above
Description. The module then prompts the user to enter a percentage C that controls the
number of attributes appearing in each query. If the designer enters the value 30 for example,
then the module will generate a value of [0. 6, 1] with probability of 0. 3 and a value of [0, 0.
5] with probability of 0. 7 every one of entries in fuzzy RM matrix represent probability of
existence one attribute in a query.

Table1. A randomly generated fuzzy Reflexivity Matrix

H G F E D C B A
Attribute

Query

0 .6 0 .7 0 .1 0 .9 0 .2 0 .2 0 .8 0 .2 a

0 .4 0 .1 0 .9 0 .2 0 .7 0 .9 0 .1 0 .2 b

0 .4 0 .1 0 .1 0 .2 0 .7 0 .9 0 .1 0 .7 c

0 .7 0 .9 0 .9 0 .7 0 .7 0 .1 0 .1 0 .1 d

0 .4 0 .9 0 .9 0 .8 0 .3 0 .9 0 .9 0 .1 e

0 .3 0 .4 0 .2 0 .2 0 .3 0 .1 0 .1 0 .1 f

0 .6 0 .7 0 .8 0 .2 0 .3 0 .8 0 .9 0 .1 g

0 .4 0 .5 0 .8 0 .9 0 .9 0 .7 0 .2 0 .1 h

The (see table. 1) provides the relationship between queries and attributes

5. 2 The fuzzy symmetry module

 The following equations were used to compute the fuzzy Symmetry Matrix (SM) on (see
table. 2) which defines the desired relationships among attributes. There we change Eltayeb
Salih Abuelyaman [1], mathematical formula to fuzzy formula that firstly reduces the time of
his algorithm and secondly we can use this formula in nondeterministic environment. Our
proposed fuzzy based algorithm is:
Algorithm (1):

for j=1 to Na

 for i =1 to Na (for j= 1 to Na) i ≠ j

Table 2. fuzzy Symmetry Matrix generated from the Reflexivity Matrix and

equations 1

H G F E D C B A
Attribute
Query

0 .4 0 .2 0 .2 0 .2 0 .7 0 .7 0 .2 0 .7 a
0 .6 0 .9 0 .9 0 .8 0 .3 0 .3 0 .9 0 .2 b
0 .6 0 .9 0 .9 0 .8 0 .7 0 .7 0 .9 0 .7 c
0 .7 0 .7 0 .8 0 .9 0 .9 0 .9 0 .3 0 .7 d
0 .7 0 .8 0 .8 0 .9 0 .9 0 .9 0 .8 0 .2 e
0 .7 0 .9 0 .9 0 .8 0 .8 0 .8 0 .9 0 .2 f
0 .7 0 .9 0 .9 0 .8 0 .7 0 .7 0 .9 0 .2 g
0 .7 0 .7 0 .7 0 .7 0 .7 0 .6 0 .6 0. 4 h

1[,] (([,], [,]))N

K
SM i j MAX Min RM k i RM k j

=
=

International JournalInternational JournalInternational JournalInternational Journal of of of of Database Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

35

for example, for computing SM[E,F] in (see table. 2), from (see table. 1), i=E, j=F and E=(0.
9,0. 2,0. 2,0. 7,0. 8,0. 2,0. 2,0. 9) و F=(0. 1,0. 9,0. 1,0. 9,0. 9,0. 2,0. 8,0. 8) from formula (1)
we have : RM[E,F]=MAX(0. 1,0. 2,0. 1,0. 7,0. 8,0. 2,0. 2,0. 8)=0. 8 RM[E,F] represent the
percent of query’s that have attribute’s e and f.

5.3. Partition forming state

 In general, the success of an algorithm depends on the strategy that sets criteria for
choosing the best start point and the smartest move thereafter. we used the fuzzy SM on (see
table. 2) to produce the partition P.
Initially As is equal to {(A, B, C, D, E, F, G, H)}.
from Eltayeb Salih Abuelyaman[1],partitioning Strategy and fuzzy SM matrix :
(a) S = {A} and As = {(B, C, D, E, F, G, H)}
(b) S = {(A,C)} and As = {(B, D, E, F, G, H)}
(c) S = {(A,C,F)} and As = {(B, D, E, G, H)}
(d) S = {(A,C,F,D)} and As = {(B, E, G, H)}
P = { (A, C, D, F) ; (B, E, G, H) }

 In this state we compute the hit ratio using algorithm(1) if the value of hit ratio less than
predetermined threshold (51%) then we move attribute’s that closely coupled with partition
to an other partition.
 We use Eltayeb Salih Abuelyaman[1], algorithm to

Algorithm(1):computeing hit ratio
1. Compute the partition hit ratio (PHR)
2. If PHR is less than the predefined threshold
then
 a) Find the attribute with the minimum hit to
 miss ratio and move it to a different subset
 using the attribute association table in the
 process
 b) Repeat from step (2)
3. End partitioning

Table 3. Attribute associate for P

H G F E D C B A

2 2. 4 1. 9 2. 3 2. 2 2. 3 2. 3 1 .6 hit

2. 4 2. 7 3. 3 2. 7 2. 6 3. 2 2. 3 1 miss

 Hit ratio computing formula is: (hit/ (miss+hit))%100
result’s equal (%45), less than preditermined thresold (%50) thus the partitioning will be
changed (see table. 3). We know that skew distributing database on sensor cause inordinate
use of some sensors as reduce the life time of network, therefore Now we move C attribute to
an other partition and againe compute the new hit ratio.
P = {(A, C, D, F); (B, C, E, G, H)}

Table 4. Attribute associate for new P

H G F E D C B A

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

36

2. 6 3 .3 1 3 .1 1. 5 3. 2 4. 1 0. 9 hit

1. 8 1. 8 4. 2 1. 9 3. 3 2. 3 1 .4 1. 7 miss

the new hit ratio is become (%52) that greater than preditermined threshold (%50).
Total partitioning is (see table. 4):
New P = {(A, D, F); (B, C, E, G, H)}
Now we distribute the (A, D, F) on one cluster and (B, C, E, G, H) on an other cluster.

6. Conclusion

 In this paper we propose Fuzzy based approach for Load balanced distributing database
on sensor Network. Same as we know that skew distributing database on sensor cause
inordinate use of some sensors as reduce the life time of network in proposed algorithm,
fragment’s replaced in suitable cluster as reduce the energy consumptions of sensors and
prolonging network lifetime. The result of our proposed algorithm evaluated in (see table. 3
and table. 4) that suitable for databases that attributes in query nondeterministic, for this
reason we change the Eltayeb Salih Abuelyaman [1] algorithm’s.

References

[1]. Eltayeb Salih Abuelyaman.: An Optimized Scheme for Vertical Partitioning of a DistributedDatabase. IJCSNS

International Journal of Computer Science and Network Security, VOL. 8 No. 1, January (2008)
[2]. A. A. Abbasi, and M. Younis.: A Survey on Clustering Algorithms for Wireless Sensor networks. Computer

Communications 30: 2826-2841(2007)
[3]. O. Younis, M. Krunz, and S. Ramasubramanian.: Node Clustering in Wireless Sensor networks: Recent

Developments and Deployments Challenges. IEEE Network, May/June (2006)
[4]. D. Wei, and H. A. Chan.: Clustering Ad Hoc Networks: Schemes and lassifications. IEEE (2006)
[5]. H. Abdalla and M. AlFares.: Vertical Partitioning for Database Design: A Grouping Algorithm. to appear in

SEDE (2007)
[6]. M. Özsu and P. Valduriez.: Principles of Distributed Database Systems. 2nd edition (1 st edition 1991)
[7]. L. A Zadeh.: Fuzzy sets. Information and control. vol. 8,pp. 338-353 (1965)
[8]. S. Navathe, S. Ceri, G. Weiderhold, and J. Dou. Vertical Partitioning Algorithms for Database Design ACM

Transactions on Database Systems, Vol. 9, No. 4(1984)
[9] Braginsky, D. and Estrin, D., Rumor Routing Algorithm For Sensor Networks, First Int’lWorkshop onWireless

Sensor Networks and Applications, Atlanta, Georgia, 2002.
[10] Intanagonwiwat, C., Govindan, R. and Estrin, D., Directed Diffusion: A Scalable and Robust Communication

Paradigm for Sensor Networks, Proc. of ACM Conference Mobile Computing and Networking (MobiCOM),
Boston,MA, August, pp. 56-67, 2000.

[11] Mainwaring, A., Polastre, J., Szewczyk, R. and Culler, D., Wireless sensor networks for habitat monitoring,
First Int’l Workshop on Wireless Sensor Networks and Applications, Atlanta, Georgia, September 28, 2002.

[12] Cerpa, A., Elson, J. , Estrin, D., Girod, L., Hamilton, M. and Zhao, J., Habitat monitoring: Application driver

forwireless communications technology, Proc. of the 2001 ACM SIGCOMM Workshop on Data
Communications in Latin America and the Caribbean, April, 2001.

[13] Kahn, J.M. and Katz, R.H. and Pister, K.S.J., Next Century Challenges: Mobile Networking for ”Smart Dust”,
International Conference on Mobile Computing and Networking (MOBICOM), 1999, pp. 271–278.

[14]. Ailamaki, A; Dewitt, D.J.; Hill, M.D. and Skounakis, M.,“Weaving Relations for Cache Performance,”
Proceedings of the 27th VLDB Conference, 2001

[15]. Baiao, F; Mattoso, M and Zaverucha, G., “A Distribution Design Methodology for Object DBMS,” Journal
of Distributed and Parallel Databases, 16 (6), 2004, 45-90

[16]. Ceri, S., Navathe, S., and Wiederhold, G., "Distribution Design of Logical Database Schemas", IEEE Trans.
Soft. Eng. SE-9, 4, (July 1983)

[17]. Cheng, C-H; Lee, W-K; Wong, K-F, “A Genetic Algorithm-Based Clustering Approach for Database
Partitioning,” IEEE Transactions on Systems, Man, and Cybernetics, 32(3), 2002, 215-230.

[18]. Chu, W. W. and Ieong, I.T., "A Transaction-Based Approach to Vertical Partitioning for Relational Database
Systems", IEEE Transactions on Software Engineering, 19-9, August 1993.

International JournalInternational JournalInternational JournalInternational Journal of of of of Database Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and ApplicationDatabase Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

37

[19]. Cornell, D.W. and Yu, P.S., "An Effective Approach to Vertical Partitioning for Physical Design of
Relational Databases", IEEE Transactions on Software Engineering, 16-2, (Feb 1990)
[20]. Ezeife, C.I., “Selecting and materializing horizontally partitioned warehouse views,” Data and Knowledge
Engineering, 36, 2001, pp 185-210
[21]. Fung, C-w; Karlapalem, K. and Li, Q., “An Evaluation of Vertical Class Partitioning for Query Processing in

Object-Oriented Databases,” IEEE Transactions on Knowledge and Data Engineering,14(5), 2002, 1095-
1118.

[22]. Furtado, C; Lima, A.A.B.; Pacitti, E; Valduriez, P. and Mattoso, M., “Physical and virtual partitioning in
OLAP database cluster,” 17th International Symposium on Computer Architecture and High Performance

Computing, 2005, pp 143-150
[23]. Gorla, N., “An Object-oriented database design for improved performance,” Data & Knowledge Engineering,

2001.
[24]. Hammer, M., and Niamir, B. "A Heuristic Approach to Attribute Partitioning", ACM SIGMOD International

Conference on Management of Data (1979).
[25]. Hoffer, J.A. and Severance, D.G. "The Use of Cluster Analysis In Physical Data Base Design", International

Conference On Very large Databases (1975).
[26]. Labio, W.J., Quass, D., and Adelberg, B., “Physical Database Design for Data Warehouses, IEEE

Conference on Data Engineering, 1997, pp 277-288.
[27]. Lim, S-J and Ng, Y-K, “Vertical Fragmentation and Allocation in Distributed Deductive Database Systems,”

Information Systems, vol. 22, No. 1, 1997, pp 1-24.
[28]. Mannino, M.V., Database Design, Application Development, and Administration. McGraw-Hill, Third

Edition, 2007
[29]. March, S.T. and Rho, S., “Allocating Data and Operations to Nodes in Distributed Database Design,” IEEE

Trans on Knowledge and Data Engineering, vol. 7, no. 2., 1995, pp 305-317.
[30]. Navathe, S., Ceri, S., Wiederhold, G., and Dou, J. "Vertical Partitioning Algorithms for Database
Design", ACM Trans. Database Syst. 9, 4 (Dec. 1984). 680-710.
[31]. Navathe, S and Ra, M. "Vertical Partitioning for Database Design: A graphical algorithm", Proceedings of

ACM SIGMOD, 1989.
[32]. Ng, V; Gorla, N.; Law, D.M. and Chan, C.K., “Applying Genetic Algorithms in Database Partitioning,”

Proceedings of the 2003 ACM Symposium on Applied Computing (SAC) 2003, pp 544-549.
[33]. Ozsu, M. and Valduriez, P., Principles of Distributed Database Systems, Prentice Hall, 1996.
[34]. Ramamurthy, R; Dewitt, D.J. and Su, Q., “A Case for Fractured Mirrors,” Proceedings of the 28th VLDB

Conference, 2002
[35]. Song, S.K. and Gorla, N., “A genetic Algorithm for Vertical Fragmentation and Access Path Selection” The

Computer Journal, vol. 45, no. 1, 2000, pp 81-93.
[36]. Yu, P.S., Chen, M-S, Heiss, H-U, and Lee, Sukho, "On Workload Characterization of Relational Database

Environments," IEEE Trans. Software Engineering, vol.18, no. 4, April 1992, pp 347-355.

International JournalInternational JournalInternational JournalInternational Journal of Database Theory and Applicationof Database Theory and Applicationof Database Theory and Applicationof Database Theory and Application

Vol. Vol. Vol. Vol. 2222, No. , No. , No. , No. 4444, , , , DecemberDecemberDecemberDecember, 200, 200, 200, 2009999

38

