International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

DBGEN- Database (Test) GENerator - An Automated Framework for
Database Application Testing

! Askarunisa A., ’Prameela P, and 3Dr. Ramraj N

L2Thiagarajar College of Engineering, Madurai, Tamilnadu, India
*Principal Chennai, Tamilnadu, India
'nishanazer@yahoo.com, 2prameela@tce.edu, *aacse@tce.edu

Abstract

Database applications play an important role in nearly every organization, yet little has
been done on testing of database applications. They are becoming increasingly complex and
are subject to constant change. They are often designed to be executed concurrently by many
clients. Testing of database application hence is of utmost importance to avoid any future
errors encountered in the application, since a single fault in database application can result
in unrecoverable data loss. Many tools and frameworks for performing testing of database
applications has been proposed to populate the test database and generate test cases which
checks the correctness of application. They check database applications for consistency
constraints and transactions concurrency. In this paper we present a DBGEN- database (test)
GENerator, an automated framework for database application testing. In this framework Test
Strategies for testing of embedded SQL queries within imperative language are presented.
Finally we present strategies for performing efficient regression tests by reducing the resets
that may occur while testing database applications. We have also computed the coverage of
various test cases to predict the quality of testing. By this, we reduce the testing time and cost
by approximately by 30% , thereby easing the tester to manage his testing activities easily.

Keywords: Database Testing, Regression Testing, code coverage, slicing, Resets, SQL statements, test cases,
Test Framework.

1. Introduction

Testing determines the validity of the computer solution to a business problem.
Testing is used as the demonstration of the validity of the software at each stage in the
system development life cycle. The most expensive part is to carry out tests of the
software that has been developed. Generally, large software vendors spend 50% of their
development cost on testing [13]. Database systems have major importance and wide
popularity in the software industry. Database applications are becoming very complex.
They are composed of many components and stacked in several layers. Testing is
essential for database applications to function correctly and with acceptable
performance when deployed. Currently, two approaches dominate database application
testing. With the first approach, application developers carry out their tests on their own
local development databases. Obviously this approach can not fulfill the requirements
of all the testing phases, especially those pertinent to performance and scalability, due
to the limitation of relatively small size of data and test cases. Furthermore, the data in

27

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

local development databases may not be accurate or close to real data. With the second
approach, new applications are tested over live production databases. This approach
cannot be applied in most situations due to the high risks of disclosure and incorrect
updating of confidential information [6].

Testing of database applications is different from the testing of structural programs.
It is common for all software applications written in an imperative language to have
access to the database through SQL statements embedded in the code. These queries are
part of the application's business logic. Because of this, it is necessary to conduct
suitable testing in the same way for database as rest of the code. The inputs of database
applications involve both the user inputs and the database instances. In addition to
checking the outcome with the expected outcome, programmers or testers should also
check if the database is consistent and reflects the original environments [14]. In
theory, a test run does not fail, if all its requests produce correct answers and the state
of the test database is correct after the execution of the test run. In this work, we relax
this criterion and only test for correctness of answers. The reason is that checking the
state of the test database after each test run can be prohibitively expensive and is
difficult to implement for black box tests. After the application has changed (e.g.,
customization or a software upgrade), the DbUnit tool is to find out how the changes
have affected the behavior of the application. Possibly, the tool also looks for
differences in response time and for inconsistencies in the test database. At the end, the
test tool provides a report with all requests that failed. Logically, the test database must
be reset after each test run is recorded and executed. This way, it is guaranteed that all
failures during executing test cases are due to updates at the application layer.

In this paper, we propose a framework DBGEN which performs the following tasks
viz. reducing the large real —time database into a Intermediate Test database by
preserving privacy and closed lookingness. Generation of effective test cases with the
use of Database Schema, and the execution of the same. The framework maintains the
consistency of the Database states with minimum number of resets and finally
calculates the efficiency of the database test cases through coverage Metric.

2. Related Work

Testing of database applications was started earlier by Yuetang Deng et.al.[1]. In
his work, in order to check a state constraint that is not enforced by the DBMS, a tool
named AGENDA creates temporary tables to store the relevant data and converts the
assertion into a check constraint at attribute/row level on the temporary tables. In
particular, constraints involving aggregation functions, constraints involving multiple
tables, and dynamic constraints involving multiple database states are transformed into
simpler constraints on temporary tables, and code to automatically insert relevant
values into the temporary tables is generated and executed [1]. As an extension,
Yuetang Deng et.al * s work , the first component Agenda parser extracts relevant
information from the application’s database schema. State generator uses the database
schema and populates the database tables with data satisfying the integrity constraints.
Input generator generates input data to be supplied to the application. State validator
investigates how the state of the application DB changes during execution of the test.
Output validator is similar to the state validator. It captures the outputs and checks them
against the query pre conditions and post conditions that are generated by the tool [3].

28

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

As a further extension, Yuetang Deng et.al © s work, the technique dataflow analysis
for identifying schedules of transaction execution aimed at revealing concurrency faults
of this nature, along with techniques for controlling the DBMS or the application so
that execution of transaction sequences follows generated schedules. The techniques
have been integrated into AGENDA, a tool set for testing relational database
application programs [4].

Design mechanisms to create the deterministic rule set, non-deterministic rule set,
and statistic data set for a live production database was proposed by Xintao Wu
et.al.[6]. A security Analyzer together with security requirements (security policy) and
output were also built. The mock database generated from the new triplet can simulate
the live environment for testing purpose, while maintaining the privacy of data in the
original database [6]. Data flow testing[7] proposed by S. K. Gardikiotis et.al involved
generating test data to force execution of different interactions between variable
definitions and variable references or uses in a program variable. Here Database
applications are reverse engineered in order to felicitate the embedded SQL statements.
The derived code contains calls to SQL modules stored in the database server. To test
these modules, data flow analysis is provided with respect to the statements of data
manipulation language [7]. In [8], the testing approach WHODATE which transforms
SQL statements to procedures in general-purpose programming language and
application of conventional white box techniques on both these transformed procedures
and the host statements to generate test cases were proposed. In [9], development and
testing of database applications was considered difficult because the program execution
depend on the persistent state stored in the database. Hence versioning of the persistent
data stored in the database solved some critical problems in the development and
testing of database applications [9].

Testing techniques explicitly considers the inclusion of database instances in the
selection of test cases and the generation of test data input in [10]. This describes a
supporting tool which generates a set of constraints, which collectively represent a
property against which the program is tested. In Gregory M. Kapfthammer, Mary Lou
Soffa work, a family of test adequacy criteria can be used to assess the quality of test
suites for database driven applications [11]. A unique representation of a database-
driven application that facilitates the enumeration of database interaction associations
was developed. These associations reflects an application’s definition and use of
database entities at multiple levels of granularity [11].In William and Alessandro work
[12], generating command forms was the accurate identification of the possible SQL
commands that could be issued at a given database interaction point. The execution of
the application and which command forms are exercised [12] were monitored and
determined. Database Interaction Testing Tool- DITTO was implemented in Java,
which provides fully automated support for all aspects of the approach, and can guide
the developer in testing database applications written in Java.

In this paper, we propose a framework DBGEN which performs the following

tasks viz.

1. Reducing the large real —time database into a Intermediate Test database by
preserving privacy and closed looking ness

2. Generation of effective test cases with the use of Database Schema, and the
execution of the same.

3. The framework maintains the consistency of the Database states with
minimum number of resets and

29

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

4. Finally calculates the efficiency of the database test cases through coverage
Metric.

The rest of the paper is organized as follows. In Section 2 we review a view of
database testing. In Section 3 the scope of study was described. In Section 4 presented
the design and methodology of database testing. In Section 5 implementation was
described. Section 6 we draw conclusions and describe directions for future work.

3. A View of Database Testing

Considering the widespread use of database systems there has been relatively little
research into their testing. The work that has been produced differs by a number of
factors, not least in the terminology that is used. In order to provide consistency in this
paper we use the following terminology:

Application: a software program designed to fulfill some specific requirement. For
example, we might have separate application programs to handle the entry of a new
customer into the database, and to cancel dormant accounts once a time-limit has
passed.

Database: a collection of interrelated data, structured according to a schema that
serves one or more applications.

Database application: an application that accesses one or more databases. A
database application will operate on both program and database state.

Database system: a logical collection of databases and associated (database)
applications.

Testing is more difficult (or, at least, different) when dealing with database
applications. The full behavior of a database application program is described in terms
of the manipulation of two very different kinds of state: the program state and the
database state. It is not enough to search for faults in program state; we must also
generate tests that seek for faults that manifest themselves in the database state and in
the interaction between the two forms of state. A further complication for testing is that
the effects of changes to the database state may persist beyond the execution of the
program that makes them, and may thus affect the behavior of other programs [19].
Thus, it is not possible to test database programs in isolation, as is done traditionally in
testing research. For example, a fault may be inserted into the database by one program
but then propagate to the output of a completely different program. Hence, we must
create sequences of tests that search for faults in the interactions between programs.
This issue has not yet been considered by the testing research community. This has
been shown to be particularly important for regression testing where the change to the
functionality of one program may adversely affect other programs via the database state
[19]. The literature on testing database systems varies in a number of ways. A
fundamental difference in the literature is in the understanding as to exactly what a
database system is. Each definition is constrained to a particular situation. There is no
definition general enough to be applied to the different scenarios in which database
systems may be used. The simplest view is when a single application interacts with a
single database [2, 3, 5]. This has been moderately extended to handle the situation in
which multiple databases exist [11]. Whilst the situation in which multiple applications
interact with a database has been considered in a constrained form [20, 19] there does
not exist a generalized definition that is applicable to both this situation and the
previous ones. Therefore, the following is a general definition of a database system that
is applicable to all existing work on database testing:

30

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

Definition 1 A database system consists of:
e A collection of database applications P1, P2, ..., Py,

e A collection of databases D1,D2, ... ,D,,
e A schema) describing the databases.

Conceptually we can view each individual database as a single logical database D
that matches the data model). Multiple databases are often used as from an
implementation perspective they are easier to understand, manage and optimize. Also,
database systems are often not constructed from scratch they often must use existing
databases. We do not constrain) to a particular data model, for example relational [15,
16], object—relational [16, 17], object—oriented [16, 18] etc..., however for the
remainder of this paper for readability we assume that it is relational. As with the
definition of a database system there is no agreed view as to what a database test is, but
an informal consensus is beginning to emerge. The following is a definition of database
test cases and suites that can form the foundation for the proposals for test adequacy
criteria (described in the next section) and for future work. A test case usually involves
stimulating the system using some form of input, action or event. The output from the
system is then compared against a specification describing what is expected and any
faulty behavior identified. In terms of database systems, the concept of a test case
becomes more complicated. Not only must we consider program inputs and outputs we
must also consider the input and output database states. A database test case must
therefore describe what these database states are. For initial database states, existing
proposals either adopt an extensional approach [11] or do not consider database state on
a per test basis instead specifying a fixed initial database state for all tests [2, 3, 5]. For
output states, existing approaches adopt either an extensional approach [11] or
intentional approach [2, 3, 5]. A robust approach for testing database systems should
specify both initial and output database states intentionally. This allows test cases to be
executed on a variety of different states (often real world or changing states) allowing
for more realistic testing. Before justifying this we present our definition of a database
test case and then discuss the advantages of an intentional approach:

Definition 2 A test case t is a quintuple <1, Al ., P, 0, A°.> where:
e P the program on which the test case is executed,
e iis the application input,
e Al are the intentional constraints the initial database state must satisfy,
e is the application output, and
e A’ are the intentional constraints the output database state must satisfy.

In this definition P, i and o represent the same concepts as the traditional notion of a
test case. The database aspects of the test case are described by constraints A’ and A° ..
We have chosen to specify the input and output database states using intentional
constraints as they allow us to address a number of limitations with extensional states.
In terms of input states, extensional states are: difficult to store, especially where either
database states or test suites are large; difficult to maintain as each state must often be
modified to reflect changes to the test case, application or data model; and difficult to
ensure they reflect the real-world and changes to the database state that may occur over
time. In terms of the output state, extensional states are: expensive to determine if two

31

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

large states are identical; difficult to maintain as the output state must be modified to
reflect changes to the input state and the functionality of the system; and time
consuming to manually create states that reflect complex behavior that a test case may
exhibit on the initial state. Our intentional technique specifies constraints that a test
case must satisfy to determine (a) applicability (if the input state is valid for the test
case) and (b) success (if the output state is correct).Consider the following very simple
example in which a new customer is added to the database:

Test Case 1:

Add a new customer with <name>, <email> and <postcode>

e Al initial state constraint

no customer C in CUSTOMER has C.NAME=<name>, C.EMAIL=<email> and
C.POSTCODE=<postcode>
e A’ output state constraint

at least one customer C in CUSTOMER has C.NAME= <name>,C.EMAIL=<email>
and C.POSTCODE=<postcode>

This test case is relatively simple and imposes a single input constraint that
specifies that no customer should exist in the database that matches the customer to be
added. The output constraint specifies that after executing the test case the database
should contain exactly one customer matching the customer to be added. We specify
exactly one customer in the output constraint as it allows us to cover faults where no
customer was added and where multiple customers were added. The use of intentional
constraints against a real-world database raised the question of how we can deal with
situations in which the initial constraint does not hold. This is important as whilst using
a real-world database state provides us with realistic data, we cannot create
opportunities for exposing faults that might arise in the future, but which are not
present in existing data. A test case aims to test a particular use of a system.

However, database systems exhibit significantly more complex functionality. For
example, a sequence of related tasks may be carried out by a user interspersed with
tasks of other users. Tasks may also be spread across a number of individual programs.
These cannot be captured by the execution of a single test case since our definition of a
test case assumes a single program execution. Consider the situation in which a test
case t1 adds an item to a shopping cart and t2 increases the quantity of the item added.
If t1 does not correctly add the item, it is not possible for t2 to increase its quality.
Therefore, the execution of t2 may fail not as a result of a problem with the program but
because t2 is dependent upon tl. This dependency problem can be addressed by
modifying database state to satisfy the initial constraints. However, this approach has a
number of limitations. The simplest are due to the resources required for generating
database states. The most important is due to the fact that whilst we can satisfy t2s
requirements from t1 we are unsure if t1 has an unforeseen impact on t2. For example, a
test case may change part of the database state that can adversely affect the behavior of
a subsequent test case.

Therefore, it is obvious that certain behaviors require the execution of individual
tests in an ordered sequence. A test sequence s is a sequence of test cases <tl, ..., t,
>. Each test of the sequences is executed in the specified order. If a test case does not
meet its output conditions (the test fails) the user is notified of the failure. The database
state is then modified to allow the sequence to proceed. However, the test result of the
sequence is flagged to tell the user that it did not execute correctly. This is done,
instead of simply stopping the sequence, as the tests still provide a certain confidence in

32

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

the system. Our approach to test sequences allows an individual test case to exist in a
number of test sequences. It can also be observed that test sequences can be used for
more than testing complex functionality. It can potentially take a lot of effort to set up a
database for a particular test case. If several test cases require similar input databases,
then it will be much more efficient to run them all against the same database. For
example, consider the situation where a database contains records for customers. In an
example sequence, the first test case would create a customer; the second would modify
the customer; and the third would delete the customer. Each test case represents
important functionality of the system which is all related through the use of the same
customer. It is therefore more efficient to use a sequence to group related test cases.

Components of Database Application

Testing a Database application involves the following components. The terminology
is as follows:
Test Database D:

The state of an application at the beginning of each test. In general, this state can

involve several database instances, network connections, message queues, etc.
Reset R:

It brings the application back into state D. This operation is potentially needed after
the execution of a test that updated the database. Since testing changes the state of an
application, this operation needs to be carried out in order to be able to repeat tests.

Request Q:

The execution of a function of the application. The result of the function depends on
the parameters of the function call (encapsulated in the request) and the state of the test
database at the time the request is executed. A request can have side effects. That is
change the state of the test database.

Test Run T:

A sequence of requests Ql,..., Qn that are always executed in the same order. For
instance, a test run tests a specific business process that is composed of several actions
(login, view product catalog, place order, specify payment, etc.). The test run is the unit
in which failures are reported. It is assumed that the test database is in state D at the
beginning or the execution of a test run. During the execution of a test run the state may
change due to the execution of requests with side effects.

Schedule S:

A sequence of test runs and resets. The test runs and reset operations are carried out

one at a time; there is no concurrency in this framework.
Failed Test Run:

A test run for which at least one request does not return the expected result. A failed

test run indicates a bug in the application program.

3. Scope of Research

Testing the front end is usual way of testing in most organizations. But testing of
any application is complete only when front end and back end are tested. Testing
database applications thus increase the reliability of the database in any applications. A
suite of tests that covers every feature in the database application can be generated,
which increases the comprehensiveness of the database application.

33

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

This research fully concentrates on testing database application efficiently by
generating intermediate database, instrumented software generation, test case
generation, test case execution and test outcome verification. The generation of
intermediate databases based on some a-priori knowledge about the current production
databases without revealing any confidential information. Conventionally, database
application testing is based upon whether or not the application can perform a set of
predefined functions. Logically, the test database must be reset after each test run is
recorded and executed. To reduce the number of resets in the database, the order in
which test runs are tested is important. To maintain the order of execution and to avoid
the failures in test run slicing algorithm is proposed. By controlling the state of the
database during testing and by ordering the test runs efficiently, the time for testing can
be optimized. The tests should cover all the query situations and avoid producing
undesired results so as to obtain their maximum possible coverage. It also describes a
criterion, which is an analysis that computes the corresponding testing requirements,
and an efficient technique for measuring coverage of these requirements. This is done
by constructing the coverage tree and calculating the coverage percentage for SQL
commands. This improves the efficiency of testing of database application.

4. Design and Methodology of Database Testing Framework

The proposed framework for database testing is shown in Figurel. The database
testing consists of the four modules intermediate database generation, DbUnit testing,
slicing algorithm and coverage algorithm. The DbUnit testing consists of three modules
instrumented software, test case generation and output validation.

h 4

INTERMEDIATE
DATABASE
GENERATION

INSTRUMENTED TEST CASE
SOFTWARE GENERATION

Figure 1. Database Testing

SLICING COVERAGE
ALGORITHM ALGORITHM

The detailed framework DBGEN is shown in Figure 2.The original database is
converted into intermediate database.

34

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

INTERMEDIATE DATABASE DBUNIT TESTING

GINERATION

CONVERSION

CODE

DBUNIT GET | pBmr
cosNEcTion) [| | ' GETDATASET()
TEST
CASES
ACTUAL OUTFUT | | EXEECTED OUIFUT L

TEST CASE
EXECUTION

s SUCCESS TEST
RESULT

Figure 2. Framework of Database Testing- DBGEN

DAIARASE
CONSTRAINT ANALVZER

CONSTRAINTS AND
INFORMATION FOR
INTERMEDIATE
DATABASE

COYERAGE ALGORITHM

SLICING ALGORITHM ‘

CONFLICT
INFORMATION

SLICNG
ALGORITHM

COVERAGE
ALGORITHM

This intermediate database is used in DbUnit testing. DbUnit tool generally
understands only XML statements. Hence there is a need for the conversion of the
intermediate database as an xml file and this dataset is got by the getDataSet() method.
Database connection in DBUNIT is got by using the getconnection() method. The
required test cases are generated, executed and its output verified. A test case may
change part of the database state that can adversely affect the behavior of a subsequent
test case.

Therefore, it is obvious that certain behaviors require the execution of individual
tests in an ordered sequence. In general, the progressive algorithms learn which test
runs are in conflict. Based on this conflict information, these algorithms determine an
order of test runs with as few resets as possible. The slicing algorithm is proposed to
determine the order of test runs. To compute the efficiency of the test cases a metric
that calculates the coverage is computed. The SQL query from repository is given to the
coverage algorithm, which constructs the coverage tree and calculates the coverage
percentage for the test cases.

4.1 Intermediate Database Generation

Testing of database applications is of great importance. A significant issue in
database application testing consists in the availability of representative data. The
problem is in generating an intermediate database based on a-priori knowledge about a
production database. The approach is to fit general location model using various
characteristics (e.g., constraints, statistics, rules) extracted from the production database
and then generate the intermediate data using the model learnt. The generated data is
valid and similar to real data in terms of statistical distribution, hence it can be used for
functional and performance testing. As characteristics extracted may contain
information which may be used by attacker to derive some confidential information

35

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

about individuals, it presents disclosure analysis method [6] which applies cell
suppression technique for identity disclosure analysis and perturbation for value
disclosure.

A block diagram for the first task i.e. intermediate database generation for database
application is shown in figure 3.

DATABASE
e SR o
INFORMATION CONSTRAINTS AND
ORIGINAL ANALYZER INFORMATION FOR
DATABASE DATABASE | | *| INTERMEDIATE
CONSTRAINT LIS TS

INTERMEDIATE
DATABASE

Figure 3. Intermediate Database Generation

In order to make the intermediate database looking closely to the live production
database, we can extract some rules and statistical data from the live database and then
synthesize random data into the intermediate database according to these rules. In
particular, we extract the triplet set <R,NR, S> from the live database in such a way
that it will guarantee the generated synthetic data in intermediate databases valid and
close looking to real data. We use R, NR, and S to denote deterministic rule set, non-
deterministic rule set, and statistics set for a database respectively. The deterministic
rule set, R, includes deterministic rules (e.g., domain constraint, uniqueness constraint,
referential integrity constraint, functional dependencies, and semantic integrity
constraint etc.) while non deterministic rule set, NR, contains non-deterministic
information (e.g., association, correlation, pattern etc.). Statistics set, S, contains the
statistics about the database instance (e.g., the cardinality of a table, value sets or
ranges of each column, the frequencies of column values or statistical distributions
etc.).

There are two major problems that need to be addressed:

1) Some rules in the triplet set <R, NR, S> may be inaccurate or conflict with
another rule due to errors in design or in domain knowledge.

2) Some rules may contain sensitive or confidential information about the
database.

Thus the Analyzer component will be applied here to derive an accurate and privacy
preserving <R’, NR’, S’> by hiding or replacing some rules (or statistical data). The
information contained in the triplet <R’, NR’, S’> is the same as the information
contained in the intermediate database. Thus it is sufficient to guarantee that the triplet
<R’, NR’, S’> does achieve the three characteristics: valid, resembling (to the original
triplet), and privacy preserving (i.e., no confidential information could be inferred from
this triplet).

4.1.1 Database Schema and Constraint information

The specification of database testing involves characterizing data values,
distributions, and relations. Thus, to achieve the goal of generating valid, close looking
data, the users are expected to provide knowledge about the values, distribution,
relations, and integrity constraints the data embodies. In this paper we have assumed
that databases are based on the relational model. A database in relational model is a
collection of one or more relations, where each relation consists of a relation schema

36

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

and relation instance. The constraints include domain constraint, uniqueness constraint,
referential integrity constraint, functional dependencies, and semantic integrity
constraint such as business rules It is desirable that the generated data in intermediate
databases also satisfy the constraints. For example the census database information is
shown in figure4. The employee, department and location table information is shown in
figure 5.

M are Mally Type

A GE HUMEER2)
M4 WIE HOT HOLL VARCHARN 1O
EDTT VARCHARN2)
EDTIHO HTUMEEE(2)
MARTTATL VARCHARN A0
DESS VARCHAFRZ1OM
SAT HUMEEE(S)
RLSH VARCHARN2O)
R4CE W R T RS A
SEX WARCHAFZ1M
i HUMEEFR(T)

CL HTUMEEFR(T)
HESWEEF HMUMEEFE 4
ADDE VARCHARZ1OM

Figure 4. Schema information

EMP TFPT LOCATION
EMPID(PE) DEPTID(PE) TRETID
EMPHAME DEPTHAME LOC(PE)

EMPIDNOTNULL) EMPID(HOTHILL)

Figure 5. Database Information
4.1.2 Close looking ness and privacy

Two databases DB1 and DB2 are close-looking for application performance testing
if the application software cannot tell the difference of the two databases in the sense of
performance testing. In other words, for any database application software M, if we run
M on both DB1 and DB2 using given test cases x and get the same performance results,
then we say that DB1 and DB2 are close-looking for application performance testing
[6]. The above intuition about the database close-looking ness can be expressed
formally in the following definition.

Definition:

Let DB1 and DB2 be two databases, x € {0,1}" 1is a binary string representing test
cases given by users, t(x) be a time function, and d(n) be a negligible function 1. We
say that DB1 and DB2 are (t; 6)-close-looking for application performance testing if
for any nondeterministic Turing machine M, we have

Prob [|T (M(DBI, x)) - T (M(DB2, x))| > t(x)] < 8 (n)

Where T (M(DB, x)) is the running time of the Turing machine Mon the inputs DB
and x, and the probability is taken over the choices of the input x and internal coin
tosses of the Turing machine.

37

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

4.1.3 Analyzer

In this section, we discuss effective mechanisms to exclude the confidential
information from a triplet <R, NR, S> and to construct a new confidential-information
free triplet <R’, NR’, S’>. In practice, some schema definitions, statistical data, non-
deterministic rules, or deterministic rules about the real database as well as domain
values for some attributes are considered as confidential information by the database
owner. In particular, the confidential information property list may contain the
following scenarios about the disclosure of confidential information:

1. Existence of certain fields and domain values: For some tables in the live
database, the existence of some fields or the name of some fields is confidential
information. For example, the existence of a field for the income calculation in census
data set had been a secret to the others. Such kind of domain values should be generated
randomly.

2. Direct disclosure of some confidential rules or statistics: In some applications,
some deterministic rules, non-deterministic rules, or statistics about the database are
confidential information.

3. Indirect disclosure of confidential information:

This includes:

1) Some non-deterministic rules can be used to infer with high probability some
deterministic rules or some statistical data.

2) Some statistical data can be used to infer with high probability some
deterministic rules or non-deterministic rules.

If the resulting rules or statistical data are confidential, then some rules or statistics
should be deleted or revised so that no information about the confidential deterministic

rules would be learned from them.
IGE | NAWE | ED | EDNG | MARI | DESG | SBL | RL | R& | & | oG | GL | FRE | ADDR
u TaL SH | cE |E WEEK
X
25 | pram | me | 15 Matr | pgmer | 300 |wif ([wh [0 [0 |30 chen
eela 1ed nm J|e ite fal

MEME DESG SAL 2D0R
balaji prolead 70000 bang
prameela | pgmer 30000 | chenna
Chokkar hech 50000 | chennat

Figure 6a & 6b Intermediate Database Generation

4.2 Testing of Database

To perform Database testing effectively, we have used the DbUnit Tool [21],
DbUnit is an open source Framework created by Manuel Laflamme. This is a powerful
tool for simplifying Unit Testing of the database operations [21]. It extends the popular
JUnit test framework that puts the database into a known state while the test executes.

38

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

DbUnit Tool

To effectively generate and execute the test cases, we have used the package
DbUnit [22], which is a framework that extends the popular JUnit test framework and
puts the database into a known state while the test executes. This strategy helps to avoid
the problem that can occur when one test corrupts the database and causes subsequent
test to fail. DbUnit provides a very simple XML based mechanism for loading the test
data, in the form of data set in XML file, before a test runs. Moreover the database can
be placed back into its pre-test state at the completion of the test [22].

Why DbUnit
The reasons to use this testing tool are summarized as follows:

A framework which simplifies operations for each stage in the life cycle of
individual database tests.

It provides a very simple XML based mechanism for loading test data.

It provides equally a simple mechanism to export existing test data into the
XML format for subsequent use.

It can work with very large datasets.

It can help verify your data matches an expected set of values.

It provides methods for comparing data between flat files, queries and
database tables.

Creating a Test Class in DbUnit
DbUnit framework provides an abstract class named DatabaseTestCase which is a
sub class of JUnit's TestCase class. Instead of creating a subclass of TestCase class
need to extend DatabaseTestCase class. This class provides four abstract methods:

getConnection()
getDataSet()
setUp()
TearDown()

4.2.1 Instrumented Database Software

The block diagram for the first task in DbUnit Testing i.e. test database generation
for database application is shown in figure 7.

CONVERTION COVERTED
CODE XML FILE

Figure 7. Test Data Generation

39

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

NAME DEIG ADDR SAL

bilgil puolesd bamg 70000
bl puolesd bang 70000

<o v ' eccding="U TS
- edataset>

NS FAME="4hli’ DESG="prbsd’ ADDR="bzg! SL="10000"
NS FADE="al DESGe"prolesc” ADDR"her’SAL="T00"
chokkar wech bang. 00D Ry 1m0 DS gk ADDR= b’ SAL="T0000"
otk gl bag T00LC BRI gy 1 Rl DESG-"polad” ADDR: b’ SALET0000"
prameels pgner bang 40000 <CENSTIS2 HAME="chokkr” DESG="mech ADDR="harg” SAL="S0000" s
i pobad berg OO0 |\ e MR- DESG="gl ADDR="hg SAL"T00"

il ot bag 000 e e DESG="pmer” ADDR="herg? SAL="0000"
balgp prokad bang 70000 el

Figure 8. Conversion Process

Testing the database requires that the data must be in a known-initial state. The
database is converted as a XML data set as DbUnit understands only XML. Element
names match table names and the attribute names match columns. The developed java
code convert the database into an xml file. With the use of schema and information of
useful values for attributes provided by the tester, an initial state is generated satisfying
the integrity constraints specified in the schema. It takes the advantages of the database
schema, which describes the domains, the relations and the constraints the database
designer has, explicitly specified. This information is expressed in a formal language,
SQL Data Definition Languages (DDL), which makes it possible to automate much of
the testing process. Generated XML file representing the database tables and the data
within it as shown in figure8.

4.2.2 Test Case Generation

A test case is a set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program path or to
verify compliance with a specific requirement. Test cases are generated for Database
application.

The Testinsert Test Case: This operation inserts the dataset contents into the
database. This operation assumes that table data does not exist in the target database
and fails if this is not the case. To prevent problems with foreign keys, tables must be
sequenced appropriately in the dataset. The testInsert test case gets the input from the
newfile.xml. And it inserts this into the database by executing the database operation
insert. The input to test case is newfile.xml as shown in figure9.

Figure 9. Input to Insert Test Case newfile. Xml

The testlnsert test case gets the input from the newfile.xml. And it inserts this into
the database by executing the database operation insert.

40

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

The Testdelete Test Case: This operation deletes only the dataset contents from the
database. This operation does not delete the entire table contents but only data that are
present in the dataset. The testdelete test case gets the input from the del.xml. And it
deletes this into the database by executing the database operation delete. The input to
test case is del.xml as shown in figurelO.

Figure 10. Input To Delete Test Case

The testdelete test case gets the input from the del.xml. And it deletes this into the database
by executing the database operation delete.

The Testdeleteall Test Case: Deletes all rows of tables present in the specified
dataset. If the dataset does not contain a particular table, but that table exists in the
database, the database table is not affected.The Testtruncate Test Case: Truncate
tables present in the specified dataset. If the dataset does not contain a particular table,
but that table exists in the database, the database table is not affected. Table is truncated
in reverse sequence. The sample test case is shown in figurell.

public void testEoarcomd) theows Exception
i

conrection=get Cormection];
IDatafet databaseDatafet = conrectionereate DataSet(],
int ronarcoamt
roarcont =
databaseDlatabet zetTable"cennis2 ") et Boad o],
assertEquals(4 rovrcomt],

i

Figure 11 sample test case

The assert method compares data obtained from the database with the data loaded
from the XML file by executing the test cases.

4.2.3 Test Case Execution

A Block Diagram for test case execution of a database application is shown in figure

12.
.\A TEST CASE RESULT OF

=y EXECUTION EXECUTION

L J

TEST
CASES

Figure 12. Test Case Execution

41

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

DbUnit includes a mechanism for comparing data loaded from different sources. In
this test the assert method compares data obtained from the database with the data
loaded from the XML file. In executing test case it compares the actual output to the
expected output. The success test case result is shown by green strip in the running
environment. The failure test case is shown in the brown strip in the running
environment.

The test case execution is shown in eclipse environment in figurel3. In the eclipse
environment it shows the running test cases in the hierarchy. If testing is successful
then a green strip appears at the left of the eclipse window shown in figure14. If any of
the tests fails then it turns into a red strip indicating failure of any test shown in
figurel5.

& Java - select.java - Eclipse SDK

File Edit Source Refactor Rlavigate Search

(i = s - O - Qa - = E
Package Explorer 1 = =

Finished after 2.485 secon o= -
Runs: 3¢3 HEErrors: 0 H Failures: O

B2 Failures | [&fs Hierarchy

~ i
£ bestConnection

Ei=i bestseleck
g restdelete

= Failure Trace

i

Figure 13. Running the Program in Eclipse Figurel4. Success Test cases

4.3 Slicing Algorithm

Femwren - FEmss=m Be===0_ jeawres — Ex-ligrs—=- SEREC

Figure 15. Failure Test cases

Users interact with a database application. The application provides some kind of
interface through which the user issues requests, usually a GUI. The application
interprets a request, thereby issuing possibly several requests to the database. Some of
these requests might be updates so that the state of the database changes, e.g., a
purchase order is entered or a user profile is updated. In any event, the user receives an
answer from the application, e.g., query results, acknowledgments, and error messages.

42

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

Consider the situation in which a test case tl adds an item to a shopping cart and t2
increases the quantity of the item added. If t1 does not correctly add the item, it is not
possible for t2 to increase its quality. Therefore, the execution of t2 may fail not as a
result of a problem with the program but because t2 is dependent upon tl1.

This dependency problem can be addressed by modifying database state to satisfy
the initial constraints. However, this approach has a number of limitations. The simplest
are due to the resources required for generating database states. The most important is
due to the fact that whilst we can satisfy t2s requirements from tl we are unsure if tl
has an unforeseen impact on t2. For example, a test case may change part of the
database state that can adversely affect the behavior of a subsequent test case.
Therefore, it is obvious that certain behaviors require the execution of individual tests
in an ordered sequence. A test sequence s is a sequence of test cases <tl, ..., t ,>.
Each test of the sequences is executed in the specified order [14]. To maintain the order
of execution and to avoid the failures in test run the slicing algorithm is proposed. By
controlling the state of the database during testing and by ordering the test runs
efficiently, the time for testing can be optimized.

CONFLICT Testcase Confhct
Generati Information
mFormaTION [¥ SLICING LGN i Feom Phest 1

ALGORITHM [® TESTCASE

\ DbUsit
TESTCASE l Testcase Testcase
Execution Execution

TEST CASE
EXECUTION l

Fathres Conflet Suceess
Tnformation
Phase 1 Phase

Figure 16. Slicing algorithm Figure 17. Regression test’s test run
execution phase

The Block Diagram for slicing algorithm of a database application is shown in
figurel6. The test case failed due to the conflict with in the database. If we introduce
reset in that place then the test case will not fail. In order to reduce the number of resets
in the database the slicing algorithm developed. The algorithm reorders the test case so
as to minimize the resets in the database testing and execute the test case efficiently.

4.3.1 Testing With Conflict Information

User interacts with the database application in the form of request and receives the
answer from the application; e.g., query results, acknowledgments, and error messages.
The purpose of the tests is to detect changes in the behavior of an applications or its
configuration has been changed. To carry the tests we focus on so-called black-box
tests, there is no knowledge of the implementation of the application available [14]. In
the first phase, test engineers create test cases. In other words, interesting requests are
generated and issued to a test tool DbUnit. The DbUnit executes the test cases
generated by the test engineer. If there are any conflicts in executing the test cases
means it stores in the conflict database as shown in figurel7. We expect the Phase 1 to
work correctly so that the answers returned by the application are correct and the new
state of the test database is expected to be correct, too. In second phase, as shown in
figure 17 we are executing the slicing algorithm with the conflict database. Depending

43

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

on the conflict information test cases are executed using the slicing algorithm. So that it
reduce the no of resets in the test run.

This has two fold advantages. Firstly, building requests into test runs improves the
manageability of the regression tests. Secondly, if a whole business process has to be
tested, in a specific sequence of requests.

4.3.2 Progressive Algorithms

In general progressive algorithms learn which test runs are in conflict. Based on the
conflict information these algorithms determine an order of test runs.

Slice: The Slice approach reorders whole sequences of test runs that can be
executed without a reset; these sequences are called slices. The Slice heuristics use the
conflict information in order to find a schedule in which as few resets as possible are
necessary. The conflict information is gathered .If there is a conflict between test runs <
Ti > and T, then Slice executes T before < Ti >. At the same time, however, Slice does
not change the order in which the test runs in < Ti > are executed because those test
runs can be executed in that order without requiring a database reset. Such a sequence
of test runs is called a slice. The Slice heuristics can best be described by an example
with five test runs T1, ..., TS. Initially, no conflict information is available.

Assume that the random order execution of test runs results in the following
schedule:

RTIT2T3RT3T4T5RTS

From this schedule, we can derive two conflicts:

<TI1T2 >! T3 and < T3T4 >! T5.

Correspondingly, there are 3 slices:

<TI1T2 >,<T3T4 >, and < T5 >.

Based on the conflicting information in the conflict database and the collected slices,
Slices executes T3 before < TIT2 > and TS before < T3T4 > in the next iteration. In
other words, the test runs in the following order: TS5 T3 T4 T1 T2. Let us assume that
this execution results in the following schedule:

RT5T3T4T1T2RT2

In addition to the already known conflicts, the following conflict is added to the
conflict database: < TS5T3T4T1 >! T2. As a result, the next time the test runs
are executed, the Slice heuristics try the following order: T2 TS5 T3 T4 T1. The Slice
heuristics reorders the test runs every iteration until reordering does not help anymore
either because the schedule is perfect or because of the cycles in the conflict data.

4.3.3 Slicing Algorithm Implementation

This paper implements the Slicing Algorithm, census database is considered for
implementation for testing. testlnsert() and testRowcount() are two dependent test cases
designed using DbUnit, which is an extension of JUnit. In testlnsert(), a check is done
whether the entered record is inserted. In testRowcount(), a check is made for the number of
rows in the table. When a new row is inserted into the database, the number of rows will be
changed. On running testRowcount() after testInsert() it will result in failure even when there
are no errors. Thus there is a conflict between the two test cases. This information is entered
into the conflict database. In the second run, conflict information is used to find whether there
is a conflict between test runs. If so the test cases are re-ordered. In the above example
testRowcount() is placed before testlnsert(), and now there will be no failure. The failed test

44

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

run as shown in figurel5 is due to the conflict of the row count and the insert. This failure is
modified by doing slicing in the test case. The algorithm rearranges the test case that is
conflict with one another. By doing repeatedly this reduce the number of resets in the
database. From the table it is obvious that slicing algorithm reduces the number of RESETs in
the Schedule.

Table 1. Analysis of RESETs

Original form (false | RESET, testlnsert(), testDelete(),

positive) testRowcount()

Introducing Reset RESET, testlnsert(), RESET ,
testDelete()

RESET, testRowcount()

Slice Algorithm RESET,
testRowcount(),testDelete(),
testInsert()

4.4. Measurement of Coverage

The coverage metric establishes a way of measuring the coverage of an SQL query
based on the coverage concept whereby the conditions takes into account the true and
false values during the explorations of their different combinations. Given the variety of
SQL statements that can be found in an application, subset of SELECT queries
specified in the grammar in BNF notation shown in Figurel8 in order to first achieve
testing with simple SQL queries, to subsequently extend the analysis to other, more
complex queries.

=selact= ::= SELECT =salact list= =frcan claise= [<warkhere cloise=1
—o=lact List= ::im =<7 |=cobmumnassne=[4 ©."—ocbamro s —
FROW —table refireace= [{ %~ =table acferemce= I

= —table mame= [[A4S] =ccrrelatica nasne=]
5o rpe=] TOIE —table reforemce=

—cnater job hrpe— [OUTTER]
g=>

azme= | —table mmazne— 7
.7 =coboroy mane=

Figure 18. Simplified BNF grammar of SELECT query.

4.4.1 Coverage Algorithm
The coverage algorithm searches for SQL query situations covered with the data
stored in the database which evaluates the conditions of SELECT queries that are in the
FROM clause, when they include JOIN, and in the WHERE clause. Moreover, the null
values of fields will be verified at the same time as the conditions are evaluated. The
flow of coverage algorithm is shown in figurel9.

AT
R
DATA

BASE
L o BERCEVTAGE
ALGORITHM

L2

SoL |
QURIES

.]
. .

Figure 19. Flow of Coverage Algorithm

45

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

As for the inputs:
e Conditions of the SELECT query. The coverage tree will be formed on the
basis of these.
e Database structure: tables and columns that appear in the query.
e Data or tuples from the tables: these will be the values used for the
evaluation of the conditions.
e The outputs obtained by the process are:

o] After executing the program, the percentage of coverage of the
SELECT query can be determined using the coverage tree, achieving 100% coverage if
all possible situations have been verified at any time.

o] During the evaluation of the coverage tree, a trace of those
tuples that give new values for nodes is generated. By revising this information, a
subset of tuples can be obtained that supply at least the same coverage as the original
data, and that can drastically reduce the size of the test database.

o] Unevaluated nodes are highlighted taking into consideration the
coverage tree. By observing their conditions, their parent information, the database
structure and the tuples, the expert can be guided in finding the information missing
from the test database to cover all possible cases.

Conditions are not evaluated between a single pair of values, but between sets of
values, since the information in each field corresponds to a column from a table and
several rows in the database. Therefore, during the evaluation of a condition, each value
in the first field must be compared with each one in the second field and each value in
the second field with each one in the first, as shown in Figure20.

Tnd field

Tst field aperation

Figure 20. Operation between values of two fields.

The coverage algorithm for search of SQL query situations covered with the data
stored in the database is to evaluate the conditions of SELECT queries that are in the
FROM clause, when they include JOIN, and in the WHERE clause. The coverage
algorithm is shown in figure 4.12.

4.4.2 Coverage Tree

A tree structure, called coverage tree, is created prior to coverage evaluation, in
which each level represents a condition of the query beginning with the conditions of
the JOIN clause, if it exists, and then with those of the WHERE clause, in the same
order in which they are found in the query. The node structure of the coverage tree is
shown in figure21.

Figure 21. Structure of Coverage Tree

46

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

Each node of the tree will store:
o Whether the condition is true for values of the fields it is represented as
“Y” in the coverage tree as T. Otherwise it is represented by “N”.

o Whether the condition is false for values of the fields it is represented in
the tree as Fl and Fr. It is represented by “Y”. Otherwise it is represented by “X” Note
that, in this case, it is necessary to consider a different treatment for the cases in which
the condition is evaluated from left to right and from right to left.

e Whether there are null values in condition fields in the database. This
information will then be included in the coverage tree as NI, Nr and Nb. If there is null
it is represented by “X”. Otherwise it is represented by “N”

The coverage algorithm used to construct the coverage tree and coverage percentage is
shown in figure22.

Coverage (tablex, tabley, processT(result)
fieldl . field2) {
{ If the table contains any record that
Get the database connection; the condition met
Execute the query: then set the value for T="Y";
Store the result in table; clse set T—"N
//check tor the null values
Nullvalue(tablesx);

MNullvalue(tabley);

If both are null set Nb="X";
Else set Wb="1""

/fcheck for false

¥
Falseleft (tablex, tablev,fieldl .field2)
¢

1

Get the database connection;

If table ¥ field matches with all fields
in table x;

Null value (table)

Get the database connection;
Get the fields of the table;
If there is any null value

then set the value for FI="Y";

ProcessT(resuly) } L
else set F1—"N*;

Store the value for T:

Falsclcft(tablex, 4 .
tabley,fieldl,field2) Falseright (tablex, tabley,.fieldl field2)

Store the valne for Fl; {
Get the database connection;
tabley.fieldl field2) If table x field matches with all fields

Store the value for Fr; in table y;
¥ then set the value for Fr="Y";

else set Fr—"N";
)3

then set the value for val="¥";
else set FI="N";

Coveragepercentage()

{ Get the “¥Y” count;

Assign to v;
Cov—(VH(S-10)/((PH(SN)-1))*100);
Display the coverage percentage;

¥

Faulseright(tablex,

Figure 22. Coverage Algorithm
4.4.3 Calculation of Coverage
The complete evaluation of the query is carried out by crossing over the tuples
of the tables that participate in the conditions at each level of the coverage tree. The
evaluation finishes when the entire tree has been covered, i.e. 100% coverage has been
covered, or when there are no more values for comparing. For each particular node, the
condition is evaluated for a tuples from the first field and another from the second, and:

o If the result is true, these tuples are fixed in order to evaluate the
conditions of the lower levels of the tree via the T branch.
o If the result is false from left to right, only the tuples from the first field

is fixed and, if it is false from right to left, the tuples from the second field is fixed, in
order to evaluate the lower levels of the tree, via the branch at which the condition is
false, Fl or Fr respectively.

It is important to fix the tuples, since the same tables, or even the same fields, could
appear again at lower levels of the tree, and it is necessary to keep the values of a tuples
for the evaluation of all the conditions. After evaluating the coverage tree, the
measurement of coverage may be established taking into account the conditions of the
SELECT query. The coverage measures are established and automatically calculated:

47

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

Theoretical coverage: This takes into account every possible situation at every
node.

The percentage of theoretical coverage is calculated using the formula in Figure 23,
in accordance with the total number of combinations of values in the conditions and the
number of combinations found in the evaluation (v). The total number of combinations
will be calculated as a function of the number of conditions of the query (n), the
number of condition values in each node (p) and the number of child-nodes of each
node (S).

SELECT * FROLI

£
w*(s-17 emp LEFT JIOIN dept on
%coverage = e ¥100 Cemp empid=dept empich
LEFT JOIH loc on
*
F l:sn_ l:' (dept empid=loc. empic and

Cdept. deptid=loc.deptid)

Figure 23 Coverage Percentage Formula Figure 24 select query

where:

v: number of cases (elements of a node) that it has been possible to verify (those
marked with Y).

s: number of child-nodes that a node can have.

p: number of possible values that a condition can adopt once it is evaluated, which in
the coverage measurement presented here will have six values (NI, Nr, Nb, T, FI, Fr).

n: number of levels of the coverage tree; i.e. the number of conditions in the query

To improve the accuracy of database testing, the coverage metric is used. The

proposed algorithm calculates the coverage percentage, thus improves the performance
of testing. To perform this, task is to generate the coverage tree for the DDL statements
using the coverage algorithm. For this implementation, the query has been chosen. It
obtains information about all employees and their respective department, if any, and the
location that are working in the employee at that moment. The select query is shown in
figure24.From these tables construct the coverage tree for the select query using the
coverage algorithm. The coverage tree is shown in figure25.

o
T
— 1
ED
kel I e

Figure 25. Coverage Tree for Select Query

The first level node creation of the algorithm uses the two table’s employee and
department. And it checks for the first condition then it created the first node using the
algorithm. For each value of T, Fl, and Fr it creates again nodes with the first condition result
table and the loc. The level of the tree is depends on the number of condition in the query.
The value in the node F1, T and FR is Y then extend the tree to next three nodes. If any one of
the values in F1, T and FR is N then the next node is not generated for that value node.

5. Implementation

For implementation of testing database application chosen the census data,
employee data and University data from the UCI machine learning repository. The

48

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

database application for testing is shown in table2. The Census Income Data Set
predicts the income of the person based on census data. This data set is also known as
Adult dataset. The Data Set Characteristics is Multivariate. The Attribute
Characteristics is Categorical, Integer. Number of Attributes is fourteen. The Area used
is social. The Number of Instances is six hundred and eighty two.

Database application | Attributes | Records
Census 7 35
Employee 12 25
University Data Set 9 35

Table 2. Database application for testing

Database | Attributes | Records
application
Census 14 682
Employee 10 425
University Data 17 285
Set

Table3 Intermediate database application for
Testing

This data set is collected from the machine learning repository. A simple database
application the census data for the peoples and the employee details of the employee,
department and location data are chosen for testing. The employee data set consists of
ten attributes. The Data Set Characteristics is Multivariate.

The real time database is very large and it is converted to the intermediate database
with the privacy preserving policy. Extract a triplet <R, NR, S> from the live
production database such that a mock database generated from this triplet is close-
looking to the live production database for database application testing purpose.

Exclude confidential information from the triplet <R, NR, S> and construct a new
triplet <R’; NR’; S’> such that this new triplet contains no confidential information
about the live production database and a intermediate database generated from this new
triplet is also close-looking to the live production database for database application
testing purpose. Use an intermediate database generator to generate an Intermediate
database from the new triplet <R’; NR’; S’>. The generated intermediate database
information is shown in table3.

Database application XML File

Census Census.xml
Employee Emp.xml
University Data Set Univ.xml

Table 4. XML file for database

49

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

Database application | Number of test cases

Census 15
Employee 15
University Data Set 15

Table 5. Number of test cases for database

The intermediate database is used for database testing with the DbUnit tool. The
DbUnit tool will support only XML files. So, the database is converted as xml file. The
table4 show the corresponding XML file for the database. The test cases are generated
for the database operation. The table5 shows the number of test cases generated for the
database application. The test cases are executed in the running environment and the
conflict was captured. The table6 shows the number of success and failure test cases
executed.

Number of
failure test case

Number of
success test case

Database application

Census 13 2
Employee 12 3
University Data Set 12 3

Table 6. Number of success and failure test cases

The conflict information of test cases is stored in the repository. Depends on this
conflict information the slicing algorithm reordered the test cases and minimized the
number of resets in the database. The reordered test cases are shown in Table7.

Database Original form Introducing Reset Slice Algorithm

application

Census RESET ,testInsert(), RESET ,testInsert(), RESET testRowcount(),testDelete(),
testDelete(),testRowcount() | RESET ,testDelete(), testInsert()

RESET testRowcount()

Employee RESET testupdate(), RESETtestupdate(), RESET testRowcount(),testDelete(),
testinsert(), testDelete(), RESET ,testInsert(), testInsert(),RESETtestupdate()
testRowcount() RESET testDelete(),

RESET testRowcount()

University | RESET, testdeleteall(), RESETtestdeleteall(), RESET testRowcount(),testDelete(),

Data Set testinsert(), testDelete(), RESET ,testInsert(), testInsert(),RESETtestdeleteall()
testRowcount() RESET testDelete(),

RESET testRowcount()

Table 7. Reordered test cases

The execution time of the test cases calculated not automatically (manually) and
automatically for the generated test cases is shown in table§.
The calculation for three conditions:For calculating coverage percentage the

value of “v” is obtained by the coverage tree it is fourteen. The “n

[T 3]

in the formula

indicates the level here the n value is three. Each node has three child node so the value
of “s “is three. The coverage percentage for three conditions is 17.94%.

50

International Journal of Database Theory and Application
Vol. 2, No. 3, September 2009

The calculation for two conditions:The value of “v” is obtained by the coverage
tree for two conditions it is six. The “n” in the formula indicates the level here the n
value is two. Each node has three child node so the value of “s “is three. The coverage
percentage for two conditions is 25%.

Tables Condition in Coverage
the query Percentage

One One 50.0

One Two 25.0

Three One 2.56

Three Two 7.79

Three Three 17.94

Table 8. Execution Time of Test Cases

Database No. Execution Execution time
application of time (automatically)
Test | (manually) | seconds
cases | seconds
Census 15 30 10.678
Employee 15 35 15.954
University Data Set 15 15 9.865

Table 9. Calculated Coverage Percentage

The automated testing reduced the time of execution compared with doing not
automatically. The coverage percentage of the test cases is calculated by the formula

shown in figure23.

Datab | Original | Intermedi | XMLFil | No. | No. | No. | Execution | Executi | No
ase Database ate e of of of time on time .
applic Database test | succ | fail | (manually | (automa | of
ation | At | Rec | At | Reco case | ess | ure |)seconds | tically) | Re

tri | ord | tri | rds S test | test seconds | set
bu S bu case | cas S
tes tes e
Census | 14 | 682 | 7 35 Census.x 15 13 2 30 10.678 1
ml
Emplo | 10 | 425 | 12 25 | Empxml | 15 12 3 35 15.954 2
yee
Univer | 17 | 285 | 9 35 Univ.xml | 15 12 3 15 9.865 2
sity
Data
Set

Table 10. Process of Database Testing

51

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

The calculation for one condition:The value of “v” is obtained by the coverage
tree for one condition it is three. The “n” in the formula indicates the level here the n
value is one. Each node has three child node so the value of “s “is three. The coverage
percentage for one condition is 50%. The calculated coverage percentage is shown in
table9.For the one table, one condition the percentage is calculated as 50. For the one
table, two conditions the percentage is calculated as 25.In this way the coverage
percentage is calculated depends upon the tables and conditions in the SQL queries. The
intermediate database attributes, records, xml file generated, test case generated,
number of success test case, number of failure test case, execution time of automated,
non automated testing and number of resets in the slice is shown in the table10.

6. Conclusion

In response to a lack of existing approaches specifically designed for testing
database applications, the proposed framework DBGEN discussed here, is able to
address various database issues. It's ability to handle constraints like not-NULL,
uniqueness, referential integrity, along with handling of transactions concurrency has
made it a prominent framework for testing database applications. A method for
automatic generation of database instances has been proposed, which can be used for
white-box testing. Improvement of such constraint generation tools will help in the
generation of database instances, for the selection of test cases to test the databases, as
per the semantics of SQL statements embedded in a application program.

Applying regression tests over database application naively, doesn't scale well and
places heavy burden on test engineers. They often limit the number of tests that can be
carried out automatically. Coverage measures for the coverage of SQL queries have
been established, specifically for the case of the SELECT query, that are automatically
calculated taking into consideration the information of database the schema constraints
and the SQL query. Like the measurement of coverage for imperative and structured
languages, this is an indicator that helps improve designed test cases with the purpose
of detecting faults in SELECT queries.

This work can be extended by testing SQL queries that involve multiple tables,
constraints etc., test runs could be executed in parallel. To improve the efficiency and
apply coverage to the various decisions\conditions present in the queries.

References

[11Yuetang Deng, Phyllis Frankl, David Chays. Testing Database Transactions with AGENDA.
ICSE'05, May 15-21, 2005, St. Louis, Missouri, USA.2005 ACM.

[2] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J. Weber. A framework for testing database
applications. In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),
pages 147-157, August 2000

[3] David Chays, Yuetang Deng. Demonstration of AGENDA Tool set for testing relational database
applications. Proceedings of the 25th International Conference on Software Engineering (ICSE’03) 2003
IEEE.

[4]Yuetang Deng Phyllis Frankl Zhongqiang Chen. Testing Database Transaction Concurrency.
Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
2003 IEEE.

[5] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J.Weyuker. An AGENDA for
testing relational database applications. Software Testing, Verification and Reliability, 14(1):17-44,
2004.

[6] Xintao Wu, Chintan Sanghvi, Yongge Wang, Yuliang Zheng.Privacy Preserving Database
Application Testing. WPES’03, October 30, 2003, Washington, DC, USA.2003 ACM.

52

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

[7]1 S. K. Gardikiotis, N. Malevris, T. Konstantinou. A Structural Approach Towards the Maintenance
of Database Applications. Proceedings of the International Database Engineering and Applications
Symposium (IDEAS’04) 2004 IEEE.

[8] M.Y.Chan and S.C.Cheung, Testing Database Applications with SQL Semantics, In the
Proceedings of 2" International Symposium on Cooperative Database Systems for Advanced
Applications(codas’99), Wollongong, Australia, March 1999,pp. 363-374.

[9] Ramkrishna Chatterjee, Gopalan Arun, Sanjay Agarwal, Ben Speckhard, and Ramesh Vasudevan.
Using Applications of Data Versioning in Database Application Development. Proceedings of the 26th
International Conference on Software Engineering (ICSE’04) 2004 IEEE.

[10]Jian Zhang, Chen Xu, S.-C. Cheung ,Automatic Generation of Database Instances for White-box
Testing. 2001 IEEE

[11]Gregory M. Kapfthammer, Mary Lou Soffa. A Family of Test Adequacy Criteria for Database-
Driven Applications. ESEC/FSE’03, September 1-5, 2003, Helsinki, Finland.2003 ACM .

[12] William G.J. Halfond and Alessandro Orso. Command-Form Coverage for Testing Database
Applications. 21st IEEE International Conference on Automated Software Engineering (ASE'06) 2006
IEEE.

[13]D. Chays, P. Frankl, et al. “A Framework for Testing Database Application” ACM International
Symposium on Software Testing and Analysis, Portland, Oregon, 2000.

[14] A. Kreutz F. Haftmann, D. Kossmann. Efficient Regression Tests for Database Applications.
Proceedings of CIDR Conference, 2005.

[15] E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM
(CACM), 13(6):377-387, 1970.

[16] T. Connolly and C. Begg. Database Systems. Addison-Wesley, 3 edition, 2002.

[17] M. Stonebraker, P. Brown, and D. Moore. Object-Relational DBMSs. Morgan Kaufmann, 2
edition, 1998

[18] C. L ecluse, P. Richard, and F. V’elez. O2, an object-oriented data model. In H. Boral and P.-A° .
Larson, editors, Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, Chicago, Illinois, June 1-3, 1988, pages 424-433. ACM Press, 1988.

[19] D. Willmor and S. M. Embury. A safe regression test selection technique for database—driven
applications. In Proceedings of the 21st International Conference on Software Maintenance (ICSM),
pages 421-430. IEEE Computer Society, September 2005.

[20] G.-H. Hwang, S.-J. Chang, and H.-D. Chu. Technology for testing nondeterministic client/server
database applications. IEEE Transactions on Software Engineering, 30(1):59-77, 2004.

[21] www.dbunit.org
[22] www.sourceforge.net

53

International Journal of xxxxxx
Vol. x, No. x, xxxxx, 2007

Architectures.

54

Authors

Mrs. A.Askarunisa is working as a Senior Lecturer in Thiagarajar college of
Engineering, Madurai. At present she is pursuing her PhD in Software Testing.
She has published papers in National and International Conferences. Her research
interests include software Engineering, Compilers, Architectures.

Ms. P.Prameela is studying second year M.E computer science in Thiagarajar
college of Engineering, Madurai. She worked as a lecturer from 2005 to 2007.
Her area of interests includes software testing.

Dr. N.Ramraj, the Principal of GKM College of Engineering, Chennai, and
Affiliated to Anna University has published many papers in National and
International Conferences and journals. His research interests include power
systems, data mining, distributed computing, software Engineering, Compilers,

