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Abstract 

 
In this paper, we present a new algorithm for mining generalized association rules. We 

develop the algorithm which scans database one time only and use Tidset to compute the 
support of generalized itemset faster. A tree structure called GIT-tree, an extension of IT-tree, 
is developed to store database for mining frequent itemsets from hierarchical database. Our 
algorithm is often faster than MMS_Cumulate, an algorithm mining frequent itemsets in 
hierarchical database with multiple minimum supports, in experimental databases. 
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1. Introduction 

Mining association rules plays an important role in knowledge discovery and data mining 
(KDD) [1, 9]. Its purpose is mining the hidden knowledge in databases. 

Mining association rules in hierarchical database has been proposed in [2, 3, 5, 8, 10, 11]. 
In [8], the “Mining Generalized Association Rules” problem is mining association rules 
among items in hierarchical tree that satisfy minSup and minConf. However, this study does 
not change the support in different hierarchical levels. The paper [3] proposed the uniform 
minimum support in each level, items in the same level get the same minimum support. The 
purpose is mining association rules among itemsets in the same level. Another association 
rule mining method with multiple minimum supports was proposed in [10]. This allows users 
identify the different minimum supports for different items, so we can mine both frequent and 
rare rules. However, this method does not traverse the whole hierarchism so that it is very 
difficult to find association rules among items in different levels. 

The research in [3] also considered in mining association rules among items in different 
levels. However, the limitations of this method are still based on Apriori method and used a 
uniform minimum support for each level. 

Paper [5] introduced MMS_Stratify and MMS_Cumulate algorithms for mining frequent 
itemsets from hierarchical database with multiple minimum supports and proposed the 
computing of the minimum support of items based on the lift measure. This makes us no need 
to identify the minimum supports of items. 

The main contributions of paper are as follows:  
 We develop GIT-tree data structure, an extension of IT-tree [6]. 
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 We propose an algorithm for mining frequent itemsets in hierarchical databases 
based on GIT-tree: using formulas in [5], we develop an algorithm of mining 
frequent itemsets based on GIT-tree for reducing run-time. 

Section 2 presents concepts and definitions. Section 3 proposes GIT-tree for mining  
frequent itemsets in hierarchical database. We present our algorithm in section 4. 
Experimental results are presented in section 5. 
 
2. Concepts 

Let I = {i1, i2,…, im} be set of items, D = {t1, t2,…, tn} be set of transactions, each 
transaction ti = <tid, X> determines a unique tid and an itemset X (X  I). Suppose that 
hierarchical database is a graph in I  J, where J = {j1, j2,…, jp} represents for a general set of 
items that derives from I. An arc in graph G is an is-a relation, means that if an arc starts from 
j to i, then j is parent of i.  

Figure 1 illustrates hierarchical database which are built for I = {Laser printer, Ink-jet 
printer, Dot matrix printer, Desktop PC, Notebook, Scanner} and J = {Non-impact printer, 
Printer, PC}. 

Figure 1. Example of hierarchical tree [5] 

 

2.1. Definition 1: Given transaction t = <tid, X>, itemset Y belongs to t if every items of Y 
belong to X, or parent node of an item belongs to X. An itemset X has the support s, called 
sup(X), in D if s% of transactions in D contains X. 

 

2.2. Definition 2: Given set of transactions D and a hierarchical tree G, a general association 
rule is the form: 

X  Y – X 

where X, Y  I  J,  ≠ X  Y, there is no item in Y which is the parent node of any item in 
X. The support of rule is sup(Y). The confidence of rule, conf(X  Y - X) = sup(Y)/sup(X). 

 

2.3. Definition 3: Let ms(x) be the minimum support of an item x  I  J. An itemset X = 
{x1, x2,…, xk}, where xi  I  J and 1  i  k, is frequent if the support of X is greater or 
equal the smallest value of items in X. 

   i
Xx

xmsX
i

 minsup                                          (1) 

Printer 

Non_impact 

Laser Ink-jet 

Dot-matrix 

PC 

Desktop Notebook 

Scanner 
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2.4. Definition 4: An association rule X  Y – X is strong if its frequent satisfies 
   i

Yy
ymsXYX

i
 minsup  and  conf(X  Y - X)  minConf. 

The greatest difficulty of general association rule mining is the identification of minimum 
support for each item. To solve this problem, the paper [2] proposed a formula to compute the 
minimum support: 

     


 

elseifSup
Supxifx

xms
min

minsupsup 
                                   (2) 

The parameter  (0    1) is used to adjust the minimum support of single item x, which 
relates to its reality frequent in databases. If  = 0, it becomes the homogeneous form. As the 
formula, user still identifies the minSup and parameter .  

The formula above make user difficult in identifying the parameter . Thus, authors in [5] 
proposed the formula to identify the minimum support: 

      
 





 

niifx
niifxConfx

xms
i

ii
i sup

11sup,minmaxsup 1             (3) 

Example: consider the database 

Table 1. Transaction database [5] 
tid Items 

1 Notebook, Laser printer 
2 Scanner, Dot-matrix printer 
3 Dot-matrix printer, Ink-jet printer 
4 Notebook, Dot-matrix printer, Laser 

printer 
5 Scanner 
6 Desktop Computer 

From Table 1, and equation 3, we have the result: 

Table 2. Items are sorted according to supports and minConf = 50% 
Item Support (%) ms (%) 

Desktop 16.7 8.3 
Ink-jet 16.7 8.3 
Laser 33.3 16.7 
Notebook 33.3 16.7 
Scanner 33.3 16.7 
Dot-matrix 50.0 25.0 
Non-impact 50.0 25.0 
PC 50.0 33.3 
Printer 66.7 66.7 

 

2.5. Definition 5: The minimum support of an itemset: 

   xmsXms
Xx

 min                                                  (4) 



International Journal of Database Theory and Application 

Vol. 2, No. 3, September 2009 

 

 

4 

Remark 1: From equation 4, we see that the order of items in X = {x1, x2, …, xm} is 
increasing follow ms, then ms(X) = ms(x1). Besides, if we have ms(X) and ms(Y), then 
ms(XY) = min{ms(X), ms(Y)}. Based on this remark, we need not use equation 4 (use the 
loop) to compute ms(XY). 

 
3. GIT-tree  

Based on IT-tree [6], we add one more field ms(X) to identify minimum support of itemset X.  

 

3.1. Vertex: Includes 3 fields 

X: an itemset. 

Tidset: the set of transaction contains X.  

ms: The minimum support of X. 

A  vertex is denoted: )(
)(

XTidsetX
Xms

 . 

 
3.2. Arc: Connecting the vertex at kth level (called X) with the vertex at (k+1)th (called Y) in 
which X 

k
 Y (X 

k
 Y if X and Y have the same k-prefix – see [6] for more details) and Y 

does not contain the item that is the parent of any item in X. 
 
Consider the database in Table 1. We have results: 

Table 3. Map items to IDs and ms of each item 

ID Item Support(%) ms(%)
A Desktop 16.7 8.3 
B Ink-jet 16.7 8.3 
C Laser 33.3 16.7 
D Notebook 33.3 16.7 
E Scanner 33.3 16.7 
F Dot-matrix 50.0 25.0 
G Non-impact 50.0 25.0 
H PC 50.0 33.3 
I Printer 66.7 66.7 

Table 4. Database in Table 1 after mapping 

ti
d 

Items 

1 D, C 
2 E, F 
3 F, B 
4 D, F, C 
5 E 
6 A 
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Figure 2. Hierarchical tree after mapping 

 

Table 5. Database after add parent items 

Tid Items 
1 D, C, H, G, I 
2 E, F, I 
3 F, B, I, G 
4 D, F, C, H, I, G 
5 E 
6 A, H 

Table 6. Convert into vertical transaction database 

item Tids 
A 6 
B 3 
C 1, 4 
D 1, 4 
E 2, 5 
F 2, 3, 4 
G 1, 3, 4 
H 1, 4, 6 
I 1, 2, 3, 4 

With minConf = 50%, we have results in Table 7. 

Table 7. The support with ms+ of items (where ms+ =  /100| D| * ms ) 

ID Support ms+ 
A 1 1 
B 1 1 
C 2 1 
D 2 1 
E 2 1 
F 3 2 
G 3 2 
H 3 2 
I 4 4 

I

G 

C B

F 

H 

A D 

E 
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4. Algorithm for mining frequent itemsets in hierarchical database based 
on GIT-tree 

In [5], authors proposed algorithms MMS_Stratify and MMS_Cumulate based on Apriori 
algorithm that lead to do many database scans, and the candidate number will be very large. 
In this section, we apply GIT-tree to mine frequent itemsets in hierarchical database to reduce 
the mining time. 

 

4.1. Algorithm 

Input: Hierarchical database D and minConf 

Output: Generalized frequent itemsets in D 

Create IMS /* minimum supports table*/ 

Create IA /* The item and its parent node in hierarchical tree G*/ 

SMS = Sort(IMS) /* sort IMS table in increasing order of ms(x) */ 

F = F-gen (SMS, D, IA) 
Lr = First level of GIT-tree contains nodes )(

)(
iTidseti

ims
 with i  I  J 

ENUMERATE_GENERALIZED_FIs(Lr) 

 

ENUMERATE_GENERALIZED_FIs (Lr) 

      for all node )(
)(

XTidsetX
Xms

   Lr do 

             Lc =  

             for all )(
)(

YTidsetY
Yms

   Lr with Y after X do 

                 X’ = X    Y 

                 if    x  X’,y  X’: parent(x)=y   then 

                        T = Tidset(X)  Tidset(Y) 

     ms(X’) = min(ms(X), ms(Y)) 

                        if |T|  ms(X’)  then 

                             Lc = Lc  






 

)'(
'
Xms
TX

 

             ENUMERATE_GENERALIZED_FIs(Lc) 

            Algorithm 1. Mining frequent itemsets in hierarchical database using GIT-tree 
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First, we create the minimum support table of items based on equation 3, then create 
parent-child relation table in hierarchical tree G. Finally, algorithm sorts the IMS in 
increasing order of minimum support (aim to create set F that includes single items satisfying 
minimum support threshold of the smallest minimum support item). 

Function ENUMERATE_GENERALIZED_FIs(Lr) creates GIT-tree to mine generalized 
frequent itemsets. It creates a new equivalence class Lc by considering every Y after X to 
form itemset X’ and Tidset of X’ (T). If items in X have not parent-child relation each other, 
we consider whether its support satisfies the minimum support or not (ms(X’) is computed by 
remark 1). If it satisfies ms(X’), then we add this node to Lc. 

 

4.2. Illustration 

Consider the database in Table 6, we have results as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. GIT-tree for mining generalized frequent itemsets 

Each node in GIT-tree includes 3 elements: itemset, Tidset and ms. Example: DG belongs 
to transactions (tids) 1, 4 and ms(DG) = 1. When we combine nodes X, Y at higher level to be 
node at lower level, we compute the intersection between two tidsets and find min{ms(X), 
ms(Y)}.  
Example:  

Consider the combination between D and G to be DG, we compute Tidset(DG) = 
Tidset(D)  Tidset(G) = 14, and then compute ms(DG) = min{ms(D), ms(G)} = min{1, 2} = 
1. Because |Tidset(DG)|  ms(DG) so we add DG to next level. 

Note: Although GI has support is 3 (Tidset(GI) = Tidset(G)  Tidset(I) = 134  1234 = 
134) ≥ ms(GI) = min(ms(G), ms(I)) = 2, but I is a generalized item of G, GI does not combine 
together. 



International Journal of Database Theory and Application 

Vol. 2, No. 3, September 2009 

 

 

8 

4.3. Diffset for fast computing the support 

In [7], authors used Diffset for fast computing the support of itemset and saving memory 
that stores Tidset. We also use it for mining generalized frequent itemsets to reduce run-time 
and memory. 

Table 8. Average size of Tidset and Diffset in database from UCI [7] 
Database MinSup 

(%) 
Avg. of 

Diffset size 
Avg. of 

Tidset size 
Scale 

Tidset/Diffset 

chess 0.5 26 1820 70 

connect 90 143 62204 434.99 

mushroom 5 60 622 10.37 

pumsb_star 35 301 18977 63.04 

pumsb 90 330 45036 136.47 

T10I4D100K 0.1 31 230 7.42 

T40I10D100K 0.5 96 755 7.86 

 
5. Experimental results 

Experimental results are performed in databases from Microsoft Foodmart2000 of 
Microsoft SQL2000. We call the algorithm based on GIT-tree is MMS_GIT-Tree. Database 
Foodmart is results from sales_fact_1997 and synthetized database is gotten from 
sales_fact_1997, sales_fact_1998 and sales_fact_dec_1998 in Foodmart2000. Hierarchical 
items include 3 levels: 1560 items in level 1 (products), 110 general items in level 2 (product 
subset) and 47 general items in top level (product types). Both of them have 5581 
transactions. 

For accurate purpose, we run 5 times with each minConf, and the result is averaged of 5 
times. 

Table 9. Comparing run-time in database Sales_fact_1997 with minConf  
thresholds 

minConf  
(%) 

Time (s) 

MMS_Cumulate MMS_GIT-Tree 

90 25.14 24.68 

85 25.38 24.82 

80 26.12 24.96 

75 27.86 25.05 

70 30.92 25.21 

65 39.25 25.39 

60 57.69 26.85 

55 104.85 27.09 

50 257.36 27.36 
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Figure 4. Comparing the run-time between MMS_Cumulate and MMS_GIT-Tree 
in Sales_fact_1997 

Table 10. Comparing the run-time in database sales_fact_synthetized 
minConf 

(%) 
Time (s) 

MMS_Cumulate MMS_GIT-Tree 
90 104.36 101.88 
85 115.83 102.29 
80 156.22 103.02 
75 252.91 103.34 
70 580.10 108.21 

 

Figure 5. Comparing run-time between MMS_Cumulate and MMS_GIT-Tree in 
Sales_fact_synthetized 

 

From Figures 4 and 5, we see that the run-time based on GIT-tree is more effective than 
that of MMS_Cumulate, especially when minConf is low. It happens because the smaller the 
minConf is, the larger the number of candidates MMS_Cumulate are. This costs a lot of time 
to mine candidates and compute the support of candidates. In contrast, GIT-tree based on the 
intersection of Tidset to compute the support of itemsets fast, so the mining time is faster. 

 
6. Conclusion and future works 
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Identifying the minimum support (minSup) for mining association rules in database and 
hierarchical database has many difficulties. Thus, authors in [5] proposed the method to direct 
compute the minimum support of items based on their support. However, the Apriori-based 
algorithm consumed a lot of time. This paper introduces an efficient algorithm to mine 
frequent itemsets in hierarchical database with multiple minimum supports that based on 
GIT-tree. Experimental results show the effect of proposed algorithm. 

In future, we will develop the efficient algorithm for fast mining generalized association 
rules which are generated among generalized frequent itemsets. Besides, the evaluation of 
rules through measures is considered to find the best rules for users. Next, efficient algorithm 
for mining frequent closed itemsets from hierarchical database will be discussed. 
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