
International Journal of Database Theory and Application

Vol. 11, No. 4 (2018), pp.41-58

http://dx.doi.org/10.14257/ijdta.2018.11.4.04

ISSN: 2005-4270 IJDTA

Copyright © 2018 SERSC Australia

ADF: Adaptive Dragonfly Optimization Algorithm Enabled with

the TDD Properties for Model Transformation
1

Pramod P. Jadhav1 and Shashank D. Joshi2

1Assistant Professor, Dr. D.Y. Patil School of Engineering, Logegaon, Pune

jadhavpp64@gmail.com
2Professor, Bharati Vidyapeeth (Deemed to be University)

College of Engineering, Pune

Pune, Maharashtra, 411043, India.

Abstract

Model Transformation (MT) is one of the leading research problems in software

engineering. MT automates the design problem by creating a target model for any source

model and thereby, makes the design simpler. For formulating the target model, MT

defines a set of rules for the transformation. In this work, the model transformation is

achieved through an optimization framework enabled with Test Driven Development

(TDD) properties. This work intends to transform the UML class diagram (CLD) to the

Relational Schema (RS) model, and the suitable blocks for the transformation are chosen

through the proposed Adaptive DragonFly (ADF) algorithm. The proposed ADF

algorithm uses an optimal fitness function by including the TDD test cases. Then, optimal

blocks obtained from the proposed ADF algorithm is used for achieving the

transformation from CLD to RS model. Finally, the experimentation of the proposed

scheme is done by constructing an example base with 3 CLD models. Simulation is

carried out by choosing different optimization algorithms for analysis and evaluated

based on metrics such as AC and fitness measure. The ADF algorithm yielded improved

performance than existing models with high values for 0.7962 and 0.8798 for AC and

fitness respectively.

Keywords: Model transformation, UML class diagram, relational schema, test driven

development, dragonfly algorithm

1. Introduction

The primary task in Model-Driven Development (MDD) [1, 2] is the generation of

Models and Model Transformations (MTs), which need the fully-developed environment

depending on the leading practices of software engineering concepts. The generated

models must be evaluated, synthesized, preserved, and are forced to undergo

configuration management to secure their quality. This process makes the MT as the

primary task in MDD. MT is used in forwarding engineering, and it focuses on the

maintenance of models and produces the code by the transformation mechanism.

Consequently, several transformation languages are rising in the literature [3]. Their

model transformation has different stages suitable for various purposes. For example, the

models are used to detect the missing parts or disputes in the requirements stage. At the

design stage, models are used to find the properties of the architectural choices, and at the

running stage, they are used to monitor the system using the desired model. In software

engineering, both the models and the final artifacts are software, which is the salient

feature divergent to conventional engineering. Model transformation helps in the

Received (September 2, 2018), Review Result (November 2, 2018), Accepted (November 8, 2018)

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

42 Copyright © 2018 SERSC Australia

transition from the model to the system through the automation. In some cases, model

transformations can be described as software manipulation actions [4, 5].

The model transformation [6, 7, 8] performed under certain conditions may yield

different results, and hence, finding the suitable model transformation technique is a

challenging task. Thus, the recent works in the field study of the MT introduce various

verification techniques for finding the effective standard [4, 5]. Two commonly used

methodologies for the MT are 1) TDD [9-12] and 2) Optimization based models [1, 24].

Various literature works [9] have utilized the TDD for the MT through the application of

the test cases and the reusable patterns. The literature works [10-12] have utilized the

TDD criteria for the MT, but have achieved desired results. Other literature works [1, 24]

have used the optimization based approaches for the transformation of the source models

to the target model. The target model yielded through the optimization algorithms have

less compliance with the Metamodel. The optimization based approaches view the

solution as the partial target model obtained through the predefined examples. The MT

driven through the examples has better convergence to the Metamodel. One of the prime

challenges for the transformation with the example is the creation of the example database

suitable for the source model. The manual creation of the example is a tedious process,

and also, the availability of the examples for the source is very scarce. Automating the

database creation process reduces the manual intervention. The literature work [16]

introduced the model transformation as an optimization by examples (MOTOE) approach

for the automation of the MT.

In [3], MOTOE has been utilized for transforming the CLD model to RS model. Using

the optimization based approaches for transforming the models represented as examples

reduced the complexity of the MT process. In MOTOE, an optimization technique is used

along with various example bases for identifying optimal constructs and thereby, achieves

MT. While using a large number of example base source codes, construct involved in

transformation also increases. Hence, it is difficult to identify the suitable block sets for

the transformation. This challenge can be avoided by using the heuristic based strategy for

the search process. The heuristic based algorithms develop a transformation solution for

individual constructs in the source code. Since MOTOE model performed well on

transforming a large number of source models, it can be employed in validating the

industrial data. Transforming the source model to target model can be done through two

strategies, 1) Parallel exploration of different transformation, and 2) initial transformation

possibility improvement. The first strategy of model transformation can be done using the

global search algorithm, like Particle Swarm Optimization (PSO) [17], while the other

strategy requires hybrid search model, like PSO integrated with Simulated Annealing

(SA) [18] [3].

The primary intention of this research is to design and develop an optimization aided

MT by integrating TDD properties with the ADF algorithm. Here, the problem of model

transformation is represented as a search problem [3], which means the transformation of

the original model to the target model by defining the constructs randomly. Accordingly,

the solution is represented as mapping blocks selected for each construct. Thus, the initial

particle population with different possibilities (solutions) transforms the source model by

combining blocks from the transformation examples. The finding of the best mapping

blocks of every construct is done using the proposed ADF algorithm, which is designed

by adapting the weights of the Dragonfly Algorithm (DA) [19]. Then, this work proposes

new fitness function with the factors, such as Adequacy, Internal coherence, External

coherence, Association of the transformations and TDD property. The proposed fitness

derives the properties of the TDD for satisfying the Syntactical Correctness and

Semantical Correctness [12] of the target model. Finally, the transformation process

depends on the suitable block sets returned by the proposed ADF algorithm.

The contribution of this work towards the field of the model transformation is enlisted

as follows:

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 43

 The primary contribution is the design of the ADF algorithm by changing the

weights of the DA adaptively.

 The secondary contribution is the design of the TDD based fitness function for

incorporating the properties of the test cases for the MT.

The rest of this paper is organized as follows: Section 1 introduces the MT and the

ways of incorporating the TDD into MT. Section 2 briefs various literature works

contributed towards the model transformation, and it also discusses the research gaps in

the works. Section 3 provides the basics and the standard definition involved in the MT.

Section 4 provides a brief explanation of the proposed ADF algorithm driven with the

properties of the TDD for the MT. Section 5 provides the simulation results of the

proposed ADF algorithm while applied to the various standard datasets. Section 6

concludes the paperwork.

2. Motivation

2.1. Literature Review

Literature presents the different methods employed for MT. Here, various related

works in the field of model transformation are described, and the advantages and

disadvantages of each work are presented. From the literature, the model transformation is

classified as, a) MT by optimization, b) MT by TDD, and c) MT by other methods.

a) MT by optimization: Marouane Kessentini et al. [3] have presented the MT based on

PSO algorithm. The main advantage of this method is that it produces the transformation

of a source model, even if the rule induction is not possible or is arduous to perform. For

large models, it takes more time for performing the transformation, which is the drawback

of this method. Marouane Kessentini et al. [13] have developed the model transformation

based on heuristic search. This method provides various colors for traceability links,

which help the tester to identify the error source. The drawback of this method is that it is

very tricky to fetch the transformation examples and the performance of the system is

based on these transformation examples. J.W. Ko et al. [24] have presented the model

transformation based on the PSO algorithm and the graph transformation. The advantage

of this method is that the establishment of the algorithm for testing the model

transformation is very simple. The graph transformation and the optimization algorithm

take more time for performing the computation.

b) MT by TDD: J. Ko and Y. Song [9] have introduced the model transformation by the

test driven development by means of reusable patterns. The test creation process of this

method is very fast, and it was based on the interaction among the users and the software

systems. The test scripts generated by this method were not admissible by the test

automation tool. P. Giner and V. Pelechano [10] have suggested the model-to-model

transformation by the test-driven method. In this method, the effects of changes occurred

in the Metamodel affect the tests only, so that the maintainability was enhanced. This

method did not consider the test case quality, which is the drawback of this approach. J.

Steel and M. Lawley [11] have proposed the Model-based test-driven approach. The

advantages of this method are that it gives the detailed definition and development of test

suites. This method had limitations, like version skew. Timo Kehrer and Sven Wenzel

[12] have suggested the MT by the TDD method. The benefit of this method is that it

utilizes the models, which were taken from real scenarios. The method used models from

real scenarios. This method was troubled by the dull design of reference models and the

complex target/actual-comparison.

c) MT by Other methods: Andrea Ciancone et al. [5] have introduced the model

transformation by testing operational transformations. The unit testing performed by this

method was simple and fast. The drawback is it needs a wide validation of usability.

Zoltán Balogh and Dániel Varró [14] have suggested the MT based on inductive logic

https://www.google.co.in/search?biw=1366&bih=662&noj=1&q=define+admissible&forcedict=admissible&sa=X&ved=0ahUKEwjqqtGk24zUAhVFRY8KHboKDqYQ_SoIUjAA

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

44 Copyright © 2018 SERSC Australia

programming. This method uses the Aleph for deriving the transformation rules of the

object-relational mapping. This method had the practical and conceptual limitations.

Esther Guerra and Mathias Soeken [15] have introduced the Specification-driven model

transformation testing. This method has various advantages like the models are valuable

even if there is a minimum exhaustive coverage, non-deliberate errors are identified, and

so on. The disadvantage of this method is that it cannot detect the extra classes in the

input models.

2.2 Research Gaps

The various research gaps presented in the literature works for the successful model

transformation are briefed in this section. Many works tend to create a manual database

for the transformation process [15]. Creation of the manual database for the

transformation process requires more time and besides it concentrates on the single issue.

Otherwise, the manual database created for the training is suitable for the specified

applications, and thus, it ignores maximum test cases. Some works tend to create a more

manual database to avoid the above mentioned problems. The real challenge arises during

the design of the evaluation function for selecting the suitable models for the

transformation. Thus, an increase in the problem size makes the design of the

evaluation/objective function to be a tedious process.

The literature works [20, 21] used the heuristic search strategy to find the suitable

block sets for the transformation. Finding the correctness of the target model from the

optimization problem requires a standard reference model [23]. Many methodologies

have not defined a standard reference model to check the compliance of the target model.

The optimization problem applied to the complex environment may suffer from the

candidate transformation errors. Rectification of these errors requires more resource and

time [22]. Some works [13, 22] have included the target Metamodel for finding the

correctness of the transformation. The testing of the transformation process should also

find the error causes in the model. The works [1, 3, 24] have used the PSO algorithm for

the MT. The PSO based MT suffers from local convergence. Hence improved search

strategy need to be utilized for the MT.

3. Model Transformation

This section introduces the basics of the MT and the various terms involved in the MT.

MT defines the creation or transformation of one type of database to another database.

The software developers require a different database based on their application. The

transformation of one model to another reduces the time for the software development.

Transformation of one database to another should not alter the basic information in the

database. Some of the basic definitions involving in the model transformation are defined

as follows,

Model to transform: The model to transform defines the source model subjected to the

transformation. In this work, the transformation of the Unified modeling language (UML)

database to the RS database is performed. Hence, the UML database is considered as the

model to transform, and the RS database defines the target model. The model contains

various constructs, with various classes, association, and aggregation. The constructs of

the models have predefined syntax.

Model constructs: Model constructs define each element present in the source and the

target model. The various constructs in the UML model are classes, associations, and

generalizations. For the CLD database, the class acts as a construct. Many databases

contain complexly structured constructs, in which each construct has its subconstructs.

The constructs in the model define the properties of the class.

Block: The block in the MT defines the required transformation trace to change one

model to another. To perform the transformation, the block must be defined for each

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 45

construct involving in the transformation. The block is formed by combining the

constructs that can be transformed together. The construct 1C
and 2C

can be mapped

together to form a block if it posses the similar properties. The blocks in the MGT are

represented as a concrete model.

4. Proposed Methodology: Integration of the TDD with the Proposed

ADF Algorithm for the Model Transformation

Figure 1 shows the block diagram of the proposed TDD based model transformation

model. This paper aims to transform the source model represented as UML class diagrams

(CLD) into RS model. The proposed MT technique achieves the transformation from base

model to target model by using MOTOE technique as implemented in [3]. For

transforming the CLD model to RS model by optimization based approaches, this model

additionally includes the TDD properties for block selection. As shown in figure 1, the

proposed MT technique has two phases, 1) training phase to select the optimal blocks, and

2) testing phase to perform the transformation based on the selected optimal blocks.

Figure 1. The Architecture of the Proposed TDD based Model
Transformation

In the training phase, the proposed MT model uses ‘ A ’ CLD models collected to form

an example base. The CLD model constitutes different constructs under a different class,

aggregation, association, and generalization. Then, the constructs present in CLD is

manually split into different blocks. Each block set is given as the data to the proposed

ADF algorithm. For achieving transformation, it is necessary to select the optimal blocks

from a set of blocks obtained from the example base. The proposed ADF algorithm

chooses the optimal blocks among ‘ X ’ blocks available in example base. For evaluating

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

46 Copyright © 2018 SERSC Australia

the fitness of the proposed ADF algorithm, this paper uses novel TDD based fitness

measure. After the training, a CLD model is provided to the proposed MT model.

In the testing phase, based on the optimal block sets obtained from the proposed ADF

algorithm, the transformation of CLD to the RS model is done. The blocks sets are chosen

based on class information of CLD.

4.1. Building the Block sets for the model transformation

This work achieves MT based on MOTOE technique as represented in [3]. Here, the

CLD model is transformed into a RS model by defining a new optimization scheme along

with TDD test cases. For the transformation process, an example base and source model is

provided as input to the MOTOE framework. Transformation of CLD model to RS model

can be represented as
 zz RS,CLD,EB

. While transforming the source model to target

model, it is necessary to provide the source model and the example base to the MOTOE

system. The output from MOTOE system is the target model.

The initial step in the proposed model transformation scheme is building the necessary

block sets from example base. This work aims to transform the CLD models present in

example base to its equivalent RS. The primary step in the transformation process is

building the block sets from the example base. The example base contains the CLD

models with different constructs. The CLD in example base is represented as

 Az21 CLD,,CLD,,CLD,CLD 
. The CLD has different cases and thus, has

varying constructs. The constructs in zCLD
are represented as

 Pc21 C,,C,,C,C 
.

Block sets can be formed by combining the related constructs, which can be transformed

in together. The block sets computed from example base EB can be referred as follows,

 Xb21 B,,B,,B,B 
. From the example base, a total of X blocks sets are found.

Figure 2 presents the example of CLD model in the example base. The CLD model

constitutes four classes, two associations, and one aggregation, i.e., a total of 7 constructs.

To transform the CLD model to its equivalent RS model as depicted in figure 3, the

proposed MT technique need to identify seven optimal blocks among X block sets from

example base. Here, the selection of optimal blocks is done as an optimization problem

and is solved with the proposed ADF algorithm.

Figure 2. Example of the CLD

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 47

Figure 3. Equivalent RS Model for the CLD Model Presented in Figure 2

4.2. ADF Agorithm: Finding the Suitable Block Set for the Model Transformation

The block sets produced in the previous step from example base vary between 1 and

X . Only certain blocks from the block sets are suitable for the MT. This paper proposes a

novel heuristic-based search strategy, ADF algorithm, along with the test cases to find the

optimal blocks suitable for the transformation. The proposed ADF algorithm finds its

basics from the existing DA [19]. DA provides better convergence in the larger search

space. The proposed ADF algorithm adaptively changes the weight of the parameters

used in the DA.

4.2.1. Solution Encoding

Figure 4 provides the solution encoding of the proposed ADF algorithm. The proposed

ADF algorithm aims at finding the suitable blocks from the block sets obtained from the

previous section. The CLD model considered for the transformation, represented as

zCLD
, contains seven constructs. Also, the example base contains a total of A CLD

models with X number of blocks. The proposed ADF algorithm can choose equivalent

optimal blocks for the seven constructs of CLD. The block sets from example base

contain a total of X blocks. The proposed ADF algorithm tries to find the seven optimal

blocks from the X blocks. The individual blocks in the block sets are represented as bB
.

The solution encoding for the proposed ADF algorithm for zCLD
with seven constructs

has the size of 71 . Each solution takes the block number between 1 and X .

Figure 4. Solution Encoding for the ADF Algorithm

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

48 Copyright © 2018 SERSC Australia

As shown in the above figure, the CLD model considered for transformation zCLD

has seven constructs, with four classes, one aggregation class, and two association class.

The proposed ADF algorithm tries to find the seven optimal matching blocks for each

construct of CLD among X block sets.

4.2.2 Proposed TDD Property based Fitness Function

This work proposes the TDD based fitness function to find the optimal block value for

the transformation. The fitness utilized in work [3] depends on the factors, such as

Adequacy, Internal coherence, External coherence, and Association of the

transformations. The proposed fitness function includes the TDD property along with

these parameters for defining the fitness of the selected optimal block by the ADF

algorithm. The test cases required for the transformation of the UML database to its

equivalent model is utilized from work [12]. The proposed fitness function based on the

TDD property is expressed in the following expression,

 21 FFFitness 
 (1)

where, the fitness terms 1F
 and 2F

are represented by the following expression,





7

1c

ccc1)EI(*aF

 (2)

where, ca
represents the adequacy factor, cI

represents the internal coherence, and cE

represents the external coherence factor for the
thc construct. The fitness regarding the

TDD is represented as follows,

 casestestofnumberTotal

casestestsatisfiedofNumber
F2 

 (3)

The proposed fitness function uses the test cases from work [12] to satisfy the

following factors,

 Syntactical correctness

 Semantical correctness

The syntactical correctness verifies the fact whether the target RS model conforms to

the Metamodel. Semantical correctness verifies the fact whether the target RS model

satisfies the user's requirement.

4.2.3 Algorithmic Steps of the Proposed ADF Algorithm

For finding the optimal blocks suitable for transformation, this work introduces the

ADF algorithm by modifying the DA. DA finds the optimal solution based on heuristic

properties of the dragonfly. Accordingly, to DA [19], the dragonfly alters its position

from one place to another with varying velocity based on five factors. The factors altering

the position of the dragonfly are 1) separation, 2) alignment, 3) Cohesion, 4) attraction

towards the food source, and 5) distraction from the enemy. These factors influence the

survival of the dragonfly. Existing DA uses weight parameters between [0, 1] for each

factor and thereby, improve the convergence. Since DA is inspired by natural behavior;

the movement of dragonfly need not be the same during iteration. Hence, to capture the

adaptive behavior of a dragonfly at varying iteration, it is necessary to adjust the weights

regarding the iteration count. In the proposed ADF algorithm, adaptive weights are

employed for calculating the velocity and position update. The adaptive weights are

calculated based on the current iteration count and total iteration.

The algorithmic steps involved in the proposed ADF algorithm are briefed below:

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 49

i) Initialization

The initial step in the proposed ADF algorithm is random assignment of blocks to the

solution space. Each element in solution can be referred with the dragonfly, and the

characteristics of dragonfly influence the solution update. The proposed ADF algorithm is

set to identify the optimal blocks for the transformation, and thus, the solution space is

represented as follows,

 7i21 Z,,Z,,Z,ZZ 

 (4)

where, iZ
indicates the position of

thi dragonfly in the solution.

ii) Calculate the fitness of each solution in the population

The randomly initialized blocks in the initial step are subjected to the fitness

evaluation. The quality of transformation from CLD to RS model can be made significant

if the blocks selected among X blocks represent each construct of zCLD
. For this

process, the fitness of the solution is evaluated based on equation (1). The solutions

satisfying the fitness derived in (1) is further taken for evaluation.

iii) Update the velocity of the dragonfly with the adaptive weight

Movement of dragonflies from one place to another depends on the velocity of the

dragonfly. The velocity factor acts as the step vector for a position update. Thus, the

velocity of the dragonfly depends on factors, such as separation, alignment, Cohesion,

attraction towards the food source, and distraction from the enemy. Now, the velocity

update can be expressed as,

     tZ.O.oN.nM.mL.lK.k1tZ 2iiiii  

 (5)

where, k , l , m , n and o refer to the weight for adjusting separation, alignment,

cohesion, attraction, and distraction, respectively. Also, iK
, iL

, iM
, iN

and iO
indicate

the separation, alignment, cohesion, attraction, and distraction of the
thi dragonfly

influencing the velocity update. The term 2
indicates the weight for adjusting the step

vector at the current iteration. In the proposed ADF algorithm, the weights influencing the

velocity update are adaptively chosen for each iteration, and thus, initially an equal value

1 is chosen, i.e.) k = l = m = n = o = 1 . For each iteration, the value of 1 is

adaptively chosen, and thus, the velocity update equation of proposed ADF algorithm is

modified as follows,

     tZONMLKtZ iiiii  .1 21 

 (6)

where, 1 and 2
refers to the adaptive weight parameters, which depend on iteration

count. The expressions for the adaptive weights are formulated as follows,

 12 1  
 (7)

 max

1
T

t


 (8)

where, t indicates the current iteration, and maxT
refers to the maximum iteration count.

The expression of factors influencing the velocity of the dragonfly is expressed in the

following equations,





7

1j

ji ZZK,Seperation

 (9)

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

50 Copyright © 2018 SERSC Australia

where, jZ
refers to the position of

thj neighbour dragonfly.

 7

v

L,Alignment

7

1j

j

i





 (10)

where, jv
indicates the velocity of

thj neighbour dragonfly in the solution.

Z

7

Z

M,Cohesion

7

1j

j

i 




 (11)

 ZZN,Attraction i  

 (12)

 ZZO,nDistractio i  

 (13)

where,
Z and

Z indicate the attraction, and distraction caused due to the presence of

food source and enemy.

iv) Update the position of the dragonfly

Now, the velocity update achieved by the proposed ADF algorithm influences the

position of dragonfly and thus, the position update of the ADF algorithm is given by

below expression.

     1tZtZ1tZ 

 (14)

Substituting the velocity update of proposed ADF algorithm in above equation yields

the final position update equation for proposed ADF algorithm, and it is expressed as,

       tZ.ONMLKtZtZ iiiii  211

 (15)

v) Update the position of the dragonfly based on levy flight movement

Besides several factors, the dragonfly also moves from one place to another based on

Levy flight movement, and it is expressed as,

     tZ)r(LevytZ1tZ 

 (16)

where,
)r(Levy

indicates the levy flight with dimension r .

vi) Termination

Finally, at the end of the iteration, maxT
, the best solution (satisfying the fitness

criteria) is retained. The final solution provides the suitable seven block sets for

transforming the CLD to its equivalent RS model, i.e. zz RStoCLD
.

Algorithm 1 indicates the pseudo code of the proposed ADF algorithm for identifying

the optimal blocks for transforming CLD to RS model.

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 51

Algorithm 1. The Pseudo Code of the Proposed ADF Algorithm for MT

Sl. no Proposed ADF algorithm

1 Inputs: Block sets, Population size

2 Outputs: Suitable block sets for the model transformation

3 Begin

4 Initialize the block sets as the population of the ADF algorithm

5 Initialize the step vectors of the Z

6 If (t < Tmax)

7 For (t=1; t < Tmax)

8 Find the TDD based fitness value of the block sets defined in the population

9 Find the adaptive weight for each iteration

10 If (solution i has neighbor)

11 Update the velocity of the solution using the (6)

12 Update the position of the solution using the (15)

13 Else

14 Update the position of the solution using the (16)

15 End if

16 End for

17 End if

18 If (t = Tmax)

19 Return suitable block sets

20 End if

21 End

5. Results and Discussion

This section presents the simulation results achieved by TDD property and

optimization driven MT model. The performance of the proposed ADF algorithm is

evaluated by considering different UML class diagrams, and evaluated based on fitness

and automatic correctness metrics.

5.1 Experimental setup

The proposed ADF algorithm with TDD properties for model transformation is

implemented in the JAVA platform, and PC used for the simulation purpose has the

configuration of Windows 10 OS, 4 GB RAM, and Intel I3 processor.

5.1.1 Database description

For the experimentation purpose, an example base with 3 CLD model is constructed.

The simulation criterion is to train the example database and transform the individual

CLD respectively. The example base for simulation is manually constructed, and it

contains different CLD with a different number of classes, aggregation, association,

attributes, and generalization. Table 1 presents the information about the three CLD

models used for the experimentation.

Table 1. Class Information about CLD Models

Name of

CLD model

No. of

classes

No. of

generalization

No. of

association

CLD 1 5 2 2

CLD 2 7 2 4

CLD 3 6 2 2

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

52 Copyright © 2018 SERSC Australia

After training the example base, a total of 6X  blocks are obtained. Thus, for

transforming the CLD model to the RS model, it is necessary to identify the suitable

blocks among X blocks from example base. Since the class variable for CLD differs from

one other, it is necessary to set the population size of the ADF algorithm differently

during transformation.

Parameter setting for transforming CLD 1: The CLD 1 model has five classes, two

generalizations, and two association, and size of the population
Q

of ADF for CLD 1 is

set as 9.

Parameter setting for transforming CLD 2: The CLD 2 model has a total of 13

constructs, and hence, the size of the population of ADF while transforming CLD is

chosen to be 13.

Parameter setting for transforming CLD 3: The CLD 3 model has a total of 10

constructs, and thus, the population size of ADF for CLD 3 is set as 10.

5.1.2 Evaluation Metrics

The performance of the proposed ADF algorithm for finding the optimal blocks

suitable in MT is verified using metrics, such as fitness measure, and Automatic

Correctness (AC). In this work, the expression for the fitness measure is defined as the

maximization function and thus, the model with high fitness is considered to be a better

model. The definition of automatic correctness is defined below:

Automatic Correctness: AC measure is obtained by comparing the class variables

present in the transformed RS model to the already known RS model of the source. For

measuring the RS value, the comparison is made by evaluating each construct. The value

of AC varies between 0 and 1, and a high value indicates improved performance.

5.1.3 Comparative techniques

For evaluating the performance of the proposed ADF algorithm for MT, several

optimization algorithms have been utilized for the comparative analysis. The existing

works used for the comparative analysis are briefed below:

Simulated annealing [3]: In the work [3], Simulated Annealing (SA) has been utilized

along with the PSO algorithm for achieving the model transformation.

PSO [3]: In [3], PSO has been used along with SA to build a new optimization namely

PSO-SA for model transformation. It has not used TDD properties for model

transformation and thereby, achieved reduced performance.

DA [19]: DA in [19] is applied in the proposed method instead of the ADF algorithm

for the optimal selection of blocks and thereby, achieved model transformation.

5.2 Comparative Analysis

Here, the comparative analysis of the proposed ADF algorithm against various existing

models is analyzed while transforming the CLD model to its equivalent RS model.

Evaluation is done by varying the total iteration count maxT
 and evaluated based on

metrics, such as fitness and AC. For improved performance, it is necessary to achieve

high values for AC and fitness measure, respectively.

5.2.1 Comparative Analysis for CLD 1

Figure 5 presents the comparative analysis of techniques while transforming the CLD 1

to its equivalent RS 1. Figure 5.a evaluates the performance of comparative models based

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 53

on AC metric, while CLD 1 is provided as test input. For maximum iteration maxT
=100,

the existing SA, PSO, and DF algorithm achieved AC value of 0.519155, 0.672651, and

0.657059, respectively. The performance of the proposed ADF algorithm is better than

the existing algorithms, by achieving a high AC value of 0.795121. Similarly, while maxT

=500, the existing SA, PSO, and DA (represented as Dragonfly in the graph) achieved AC

value of 0.74476, 0.712651, and 0.697059, respectively, but the proposed ADF algorithm

has high AC value of 0.763989.

Figure 5.b presents the performance of comparative models based on fitness measure

while transforming the CLD 1 model. For maximum iteration maxT
=100, the existing SA,

PSO, and Dragonfly have achieved low fitness measure of 0.697059, 0.596229, and

0.720346 respectively, while the proposed ADF algorithm has a high fitness value of

0.779866. Increasing the iteration limit to 400 increased the performance of comparative

models. At this iteration, the proposed ADF algorithm has an overall high fitness measure

of 0.827051 overcoming other existing models.

(a)

(b)

Figure 5. Comparative Analysis of Models while Transforming CLD 1 based
on (a) AC, and (b) Fitness Measure

5.2.2 Comparative Analysis for CLD 2

Figure 6 presents the comparative analysis of models while transforming the CLD 2 to

its equivalent RS 2 model. Figure 6.a evaluates the performance of comparative models

based on AC metric while CLD 2 is provided as test input. For maximum iteration maxT

=100, the existing SA, PSO, and Dragonfly achieved AC value of 0.509678, 0.47988,

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

54 Copyright © 2018 SERSC Australia

0.575217 respectively. The performance of the proposed ADF algorithm is better than

existing algorithms, and it has achieved high AC value of 0.780298. Similarly, while

maxT
=200, the existing SA, PSO, and Dragonfly achieved AC value of 0.595203,

0.48988, and 0.585217 respectively, but the proposed ADF algorithm has high AC value

of 0.789479.

Figure 6.b presents the performance of comparative models based on fitness measure

while transforming the CLD 2 model. At iteration maxT
=400, the existing SA, PSO, and

Dragonfly have achieved low fitness measure of 0.616834, 0.786885, and 0.733107

respectively, while the proposed ADF algorithm has a high fitness value of 0.803559. At

the iteration maxT
of 300, the performance of comparative models is poor. Here, the

existing SA, PSO, and Dragonfly achieved fitness value of 0.545825, 0.746384, and

0.698969 respectively, while the proposed ADF algorithm has a value of 0.7481.

(a)

(b)

Figure 6. Comparative Analysis of Models while Transforming CLD 2 based
on (a) AC, and (b) Fitness Measure

5.2.3 Comparative Analysis for CLD 3

Figure 7 presents the comparative analysis of models while transforming the CLD 3 to

its equivalent RS 3 model. Figure 7.a evaluates the performance of comparative models

based on AC metric while CLD 3 is provided as test input. For maximum iteration maxT

=100, the existing SA, PSO, and Dragonfly achieved AC value of 0.523753, 0.503976,

and 0.58746479 respectively. The performance of the proposed ADF algorithm is better

than existing algorithms, and it has achieved high AC value of 0.741164. Similarly, while

maxT
=500, the existing SA, PSO, and Dragonfly achieved AC value of 0.721834,

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 55

0.543976, and 0.62746479 respectively, but the proposed ADF algorithm has high AC

value of 0.799995.

Figure 7.b presents the performance of comparative models based on fitness measure

while transforming the CLD 3 model. For maximum iteration maxT
=100, the existing SA,

PSO, and Dragonfly have achieved low fitness measure of 0.308858, 0.780605, and

0.765173 respectively, while the proposed ADF algorithm has a high fitness value of

0.749576. Increasing the iteration limit to 500 increased the performance of comparative

models. At this iteration, the proposed ADF algorithm has an overall high fitness measure

of 0.879874 overcoming other existing SA, PSO, and Dragonfly, which have the low

fitness of 0.812074, 0.756204, and 0.746557, respectively.

(a)

(b)

Figure 7. Comparative Analysis of Models while Transforming CLD 3 based
on (a) AC, and (b) Fitness Measure

5.3 Comparative Discussion

Table 2 presents the comparative discussion of comparative models against the

existing models. For the experimentation, 3 CLD models were utilized and transformed

into their equivalent RS model. After training the example base with 3 CLD, the CLD is

individually tested. Comparative discussion table depicted below evaluates the

transformation quality regarding AC and fitness measure while transforming individual

CLDs. As the simulation is done by iteration count of comparative algorithms, table 2

constitutes the best values while transforming individual CLDs. While performing MT for

CLD 1, the proposed ADF algorithm achieved AC and fitness values of 0.7951 and

0.8270, respectively. For CLD 2 model, the proposed ADF algorithm achieved AC and

fitness measure of 0.7894, and 0.8035. While transforming the CLD 3 model to its

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

56 Copyright © 2018 SERSC Australia

equivalent RS, the performance of ADF was better with the values of 0.7962 and 0.8798

for AC and fitness, respectively.

Table 2. Comparative Discussion

Input
Evaluation

metrics

Comparative techniques

SA PSO DF
Proposed

ADF

CLD 1
AC 0.5191 0.6726 0.6570 0.7951

Fitness 0.616 0.7447 0.7227 0.8270

CLD 2
AC 0.5952 0.4898 0.5852 0.7894

Fitness 0.6168 0.7868 0.7331 0.8035

CLD 3
AC 0.6092 0.5239 0.6074 0.7962

Fitness 0.81207 0.7562 0.7465 0.8798

6. Conclusion

This paper introduces the optimization driven MT framework for transforming the

CLD model to its equivalent RS model. The proposed MT framework introduces an

optimization algorithm, namely ADF, by modifying existing DF algorithm. Initially, a

group of CLD models is grouped for training and forms an example base. Since the

proposed model transformation scheme is driven by example, and optimization, the block

sets in each CLD models, are found. Then, based on the proposed ADF algorithm finds

optimal block sets from example base. The fitness of ADF solution includes TDD test

cases. Finally, the CLD model gets transformed into a RS model based on optimal blocks

selected by the proposed ADF algorithm. Experimentation of MT scheme with ADF

algorithm is evaluated by considering example base with 3 CLD models. Several existing

heuristic models, such as SA, PSO, and DA are used for comparative analysis, and the

performance of models is evaluated based on AC and fitness measure. From the analysis,

it is evident that the proposed MT model with the ADF algorithm achieved improved

performance with the values of 0.7962 and 0.8798 for AC and fitness respectively.

References

[1] R. France, B. Rumpe, "Model-driven development of complex software: a research roadmap," in

Proceedings of International Conference on Software Engineering (ICSE), (2007), pp.37-54.

[2] A. Kleppe, J. Warmer, W. Bast, "MDA Explained: The Model Driven Architecture: Practice and

Promise," Addison-Wesley, (2003).

[3] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben Omar, "Search-based

model transformation by example," Software & Systems Modeling, vol. 11, no. 2, (2012), pp 209–226,.

[4] M.J. Harrold, "Testing: a roadmap," Proceedings of the Conference on the Future of Software

Engineering, (2000), pp. 61-72.

[5] Andrea Ciancone, Antonio Filieri, and Raffaela Mirandola, "Testing operational transformations in

model-driven engineering," Innovations in Systems and Software Engineering, vol. 10, no. 1, (2014), pp

19–32.

[6] Tomasz Straszak and Michał Smiałek, "Model-Driven Acceptance Test Automation Based on Use

Cases," Computer Science and Information Systems, vol. 12, no. 2, (2015), pp.707–728.

[7] Gürkan Alpaslan and Oya Kalıpsız, "Model Driven Web Application Development with Agile

Practices," International Journal of Software Engineering & Applications (IJSEA), vol.7, no.5, (2016),

pp. 1-11,

[8] Mina Boström Nakićenović, "An Agile Driven Architecture Modernization to a Model Driven

Development Solution," International Journal on Advances in Software, vol. 5, no. 3 & 4, (2012), pp.

308-322.

[9] J. Ko and Y. Song, "Test Driven Development of Model Transformation with Reusable Patterns,"

Lecture Notes in Electrical Engineering, vol. 114, (2012).

[10] P. Giner and V. Pelechano, "Test-Driven Development of Model Transformations," Lecture Notes in

Computer Science, vol. 5795, (2009).

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

Copyright © 2018 SERSC Australia 57

[11] J. Steel and M. Lawley, "Model-based test driven development of the Tefkat model-transformation

engine," Proceedings of 15th International Symposium on Software Reliability Engineering, (2004), pp.

151-160.

[12] T. Kehrer and S. Wenzel, "Test-Driven Development of Model Transformations," In Proceedings of the

7th Nordic Workshop on Model-Driven Engineering (NW-MODE'09). (2009).

[13] M. Kessentini, H.Sahraoui, and M. Boukadoum, "Example-based model-transformation testing,"

Automated Software Engineering, vol. 18, no. 2, (2011), pp. 199–224.

[14] Z. Balogh and D. Varró, "Model transformation by example using inductive logic programming,"

Software & Systems Modeling, vol. 8, no. 3, (2009), pp. 347–364.

[15] Esther Guerra and Mathias Soeken, "Specification-driven model transformation testing," Software &

Systems Modeling, vol. 14, no. 2, (2015), pp. 623–644.

[16] M. Kessentini, H. Sahraoui, M. Boukadoum, "Model transformation as an optimization problem," in

Proceedings of International Conference on Model Driven Engineering Languages and Systems, vol.

5301, (2008), pp 159-173.

[17] J. Kennedy, R.C. Eberhart, "Particle swarm optimization," in Proceedings of IEEE International

Conference on Neural Networks, (1995), pp. 1942–1948.

[18] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, "Optimization by simulated annealing," Sciences, vol. 220, no.

4598, (1983), pp. 671–680.

[19] S. Mirjalili, "Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-

objective, discrete, and multi-objective problems," Neural Computing and Applications, vol. 27, no. 4,

(2016), pp. 1053–1073.

[20] J.M. Mottu, B. Baudry, Y.L. Traon, "Model transformation testing: Oracle issue," in Proceedings of

IEEE International Conference on Software Testing Verification and Validation Workshop, (2008).

[21] Y. Lin, J.Zhang, J.Gray, "A testing framework for model transformations," Model-Driven Software

Development, (2005), pp. 219-236.

[22] B. Baudry, T. Dinh-Trong, J.M. Mottu, D. Simmonds, R.France, S. Ghosh, F. Fleurey, Y.L. Traon,

"Model transformation testing challenges," In Proceedings of the IMDDMDT workshop at ECMDA,

(2006).

[23] J. Kuster and M. Abd-El-Razik, "Validation of model transformations—first experiences using a white

box approach," Proceedings of 3rd International Workshop on Model Development, Validation and

Verification, (2006).

[24] J.W. Ko, S.J.Beak, and Y.J. Song, "Model Optimization with Graph Transformation and PSO Algorithm

for Model Transformation Verification," Proceedings of the International Conference on IT

Convergence and Security, vol. 120, (2012).

International Journal of Database Theory and Application

Vol. 11, No. 4 (2018)

58 Copyright © 2018 SERSC Australia

