
International Journal of Database Theory and Application 

Vol.10, No.9 (2017), pp.23-38 

http://dx.doi.org/10.14257/ijdta.2017.10.9.03 

 

 

ISSN: 2005-4270 IJDTA 

Copyright ⓒ 2017 SERSC Australia 

Efficient Filtering Technique for Reducing Time Overhead of 

Dynamic Data Race Detection in Multithread Programs* 
 

 

Ok-Kyoon Ha1, Se-Won Park2 and Sung-Phil Heo3* 

1Department of Aeronautics & Software Engineering, Kyungwoon University 
2Heavy Industries CI Group, Samsung SDS 

3Dept. of Unmanned and Autonomous Vehicle Engineering, Kyungwoon 

University 

okha@ikw.ac.kr, s-w.park@samsung.com, sungphil.heo@ikw.ac.kr 

Abstract 

Data races are the hardest defect to handle in multithread programs because they may 

lead to unpredictable results of the program caused by nondeterministic interleaving of 

concurrent threads. The main drawback of dynamic data race detection is the heavy 

additional overhead to monitor and analyze memory operations and thread operations 

during an execution of the program. It is important to reduce the additional overheads for 

debugging the concurrency bug. This paper presents a monitoring filtering technique that 

rules out repeatedly executing regions of parallel loops from the monitoring targets.  

 

Keywords: Multithread programs, dynamic data race detection, runtime overheads, 
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1. Introduction 

There is an increasingly necessary to write multithread programs due to fact that multi-

core and multi-processor systems are commonly used. However, the interleaving of 

parallel threads may result in concurrency bugs, which are hard to reproduce. Data races 

in multithread programs are a well-known concurrency defect that they occur when two or 

more threads access to a shared memory location without explicit synchronizations, and at 

least one of the accesses is write [1-3]. A multithread program may not exhibit the same 

execution instance on different runs with the same input. It is difficult to figure out 

whether a program runs into data races, because there are many possible executions of the 

program. Detecting data races is therefore important because they may lead to 

unpredictable results from an execution of the program. 

The techniques detecting data races are divided into two broad categories: static 

analysis and dynamic analysis. The static analysis [4-6] analyzes the defects to use only 

source codes without any execution. The static analysis is sound, but imprecise because it 

produces a lot of false positives through evaluation all of possible executions including 

impractical execution paths which are never reached in the actual execution of the 

programs. The dynamic analysis employ trace based post-mortem techniques or on-the-fly 

techniques, which report data races occurred in an execution of a program [7]. The main 

drawback of dynamic analysis is the additional overhead of monitoring program 

execution and analyzing every conflicting memory operation. The prior work tries to 
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reduce the additional runtime overheads, which require from 10 to 100 times than original 

run. However, there is still room for reducing runtime overheads. 

This paper presents a loop filtering technique that rules out repeatedly execution 

regions of loops from the monitoring targets to provide a minimum runtime overhead. We 

evaluated the filtering technique under a dynamic data race detection technique, 

FastTrack [8] and RaceChaser [9], with multithread programs using a huge amount of 

loop. The empirical results using multithread programs show that the filtering technique 

reduces the average runtime overhead to 40% of that of dynamic data race detection. 

 

2. Background 

Dynamic analysis for detecting data races is precise or imprecise, but unsound since 

they cannot guarantee to locate the existence of at least one data race in a given execution 

of the program if there exists any. Dynamic analysis employ trace based post-mortem 

methods or on-the-fly. On-the-fly methods are based on three different analysis methods: 

lockset analysis [10-11], happens-before analysis [8,9,12,13], and hybrid analysis[14-15]. 

The lockset analysis is simple and can be implemented with low overhead. However, 

lockset analysis may lead to many false positives, because it ignores synchronization 

primitives which are non-common lock such as signal/wait, fork/join, and barriers. The 

happens-before analysis is precise, since it does not report false positives and can be 

applied to all synchronization primitives [7]. However, it is quite difficult to be efficiently 

implemented due to the performance overheads. The hybrid method tries to reduce the 

main drawback of pure lockset analysis and to get more improved performance than pure 

happens-before analysis. 

 

2.1. Redundant Event Filtering 

The monitoring filtering techniques are introduced to optimize the performance of on-

the-fly data race detection. The filtering techniques exclude unnecessary monitoring of 

memory operations, such as read only operations and local variables, to reduce the 

dramatic overheads of the dynamic analysis and to insert minimal monitoring cods. In our 

prior work [16], we presented a filtering technique, called Redundant Event Filtering 

(REF), which ignores repeated accesses to a shared memory location. Considering the 

first access on a thread segment is well-known that it is important to debug a parallel 

program, because data races involving the first accesses of each thread segment may 

affect later accesses and may lead to other newly appeared data races. REF basis on an 

idea to ignore repeated accesses to a shared memory location on a thread segment during 

monitoring operation.  

The data race detection technique of [16] can be firmly established by REF. The 

dynamic data race detection with REF considers only the first access of each access event 

type (read and write) in a thread segment, if the accesses to a shared memory location are 

performed with redundant locks. Given an event ei, a later same type event ej than ei is 

filtered out by the following conditions: 

IsFiltered(ei, ej) = {

𝒯(𝑒𝑖) = 𝒯(𝑒𝑗)  ∧  𝑡𝑖 = 𝑡𝑗   ∧

𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ⊂  𝑡𝑗. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ∨

𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = 𝑡𝑗. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = ∅

 

where 𝒯(𝑒𝑖) represents the event type of ei, and 𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 is a set of locks living on a 

thread segment ti when ei occurred. Considering the first event on a thread segment is 

important to debug a multithread program, because data races involving the first events of 

each thread segment may affect later events and may lead to other newly appeared data 

races. 
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2.2. Memory Hierarchical Filtering 

We also presented a hierarchical filtering technique (HIF) [17] that removes non-

necessary monitoring operations at the each of three levels, Image Level (IML), Section 

Level (SEL), and Instruction Level (INL), to reduce runtime overhead of dynamic data 

race detection. 

The objective images which loaded into memory include target binaries for user 

application, system libraries, and other APIs. However, detecting data race focuses only 

on the user applications and its libraries rather than system libraries and others. Therefore, 

HIF selectively filters out memory operations which related standard libraries and other 

APIs by using the path of linked images and the name of libraries. There exist several 

dynamic section areas in Data Section, such as global variable area, static variable area, 

and heap area, that the areas are used to read or write data during the execution of the 

program. Moreover, the special areas are located for read only data and constant variables. 

Therefore, HIF filters out such the read only memory areas for SEL. The memory 

operations should be monitored with each instruction to precisely insert corresponding 

monitoring codes into the Code Section. The filtering technique analyzes the opcode and 

operand of instructions to decide which operations access shared memory locations.  

For example, we can estimate two memory locations, ebp and esp in Figure 1, which 

are the pointer to stack area of memory by analyzing operand of the instructions and 

comparing their address with information of stack area. Thus, the almost of memory 

operations are excluded from the conflicting accesses to memory locations. With HIF, we 

filter out non-necessary memory operations for dynamic data race detection. Therefore, 

we are possible to insert monitoring codes into the target binaries with considering only a 

shared variable SV. 

 

 

Figure 1. Memory Mapping for an Execution of a Program  

With these filtering techniques, we can reduce the average runtime overhead to over 50% 

of on-the-fly data race detection. However, each of them provides different performance 

by the characteristic of program executions, such as the number of shared variables and 

the scale of parallel loops. Thus, we need to compare the effectiveness of the techniques 

for efficient on-the-fly analysis of parallel programs.  

For more optimization of data race detection, we found that there is still room for 

reducing runtime overhead of dynamic monitoring of multithread programs. When 

monitoring multithread programs which use a loop-level parallelism with a large number 

of threads, the runtime overheads depend on the maximum iteration of the loop 

parallelism. Thus, we address the loop parallelism to reduce the runtime overhead of 

dynamic data race detection.  
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Figure 2. The Process of Monitoring Instructions with Loop Filtering 
Technique 

3. Loop Region Filtering Technique 

This section introduces the key idea of Loop Region Filtering (LRF) technique, and 

presents the design of the monitoring filtering technique including the static area and the 

dynamic area of LRF. 

 

3.1. The Design of LRF 

A loop in a program is intended to repeatedly execute a same code region excluding the 

usage of special conditions for control the flow of the execution. For detecting data races 

on-the-fly, it is unnecessary to monitor the same execution of the code regions for every 

time. Moreover, the monitoring of a same region on a parallel loop with concurrent 

threads may lead to a same results. Therefore, we can locate data races only by 

monitoring two threads instead of whole threads for a parallel loop. 

Our loop filtering considers only two threads, which are allocated for a parallel loop, to 

monitor accesses to shared memories. Since it is difficult to identify the common region 
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for repeatedly execution by dynamic analysis, we employ a static analysis method to 

collect the information of the regions. With the static analysis, we collect a LoopId of 

each loop that consist of a tuple {StartRegion, EndRegion}. Our method dynamically 

monitors only two threads which occur earlier than others for a parallel loop. Figure 2 

shows the process of monitoring instructions including the loop filtering technique. For 

precisely filtering loop regions, LRF consists of two analysis step: a Static analysis step 

and a Dynamic analysis step. 

 

3.2. The Design of Static Analysis 

The Static analysis step of LRF has two phases: the source code analysis and the object 

code analysis. In the source code analysis phase aims to identify the start point and end 

point of loop regions by analyzing the loop statements, such as for, while, and do-while. 

Figure 3 shows the process of the source code analysis phase.   

 

 

Figure 3. The Source Code Analysis of LRF 

The results of the source code analysis consists of a pair of {statement type, the line 

number of start ~ the line number of end, description}. The statement type is classified 

into FOR_LOOP, WHILE_LOOP, DO_WHILE_LOOP, and EXPRESSION by the loop 

statements of the source code.  For the object code analysis phase, only the information 



International Journal of Database Theory and Application 

Vol.10, No.9 (2017) 

 

 

28   Copyright ⓒ 2017 SERSC Australia 

about the type of the statements and of the start and end points of the loop statements are 

needed. However, the details are added to provide information so that the user can review 

and directly modify the results of the source code analysis. Using these results, it is 

possible to identify all of loop regions in the source code. Figure 4 shows an example of 

the result of the source code analysis. 

 

 

Figure 4. An Example of the Result of the Source Analysis 

In the dynamic analysis step, if the loop analysis is compared with the source code 

analysis for all instructions, the overheads for comparative analysis may occur more than 

the case where no filtering is applied. Therefore, we design the dynamic analysis to 

identify the loop regions only by analyzing object code during the static analysis step to 

identify the shadow memory addresses. We employ a dynamic binary instrumentation 

(DBI) framework, PIN, for dynamic analysis step. The DBI framework addresses all 

commands in object code and manages them in shadow memory. Since these shadow 

memory addresses do not change their addresses during execution unless they are 

compiled, static addresses can be used in dynamic analysis step as well.  

The analysis results of the object code are stored in a file for use in dynamic analysis 

step and provide a list of identification type, line number, shadow memory address, and 

the path of the instruction. The identification type includes “new”, “start”, and “end”. 

“new” means the point immediately before the start of a loop region, and “start” is the 

point where the repeat is performed first for every iteration within a loop region. “end” is 

the point immediately after the end of a loop region. The line number and file path are 

provided to directly remove the non-filtering area using the analysis result. Figure 5 is a 

result of object code analysis. 
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Figure 5. A Result of the Object Code Analysis 

3.3. The Design of Dynamic Analysis 

Dynamic analysis for data race detection bases on monitoring instructions to check 

accesses to shared memory locations during an execution of a program. Our loop filtering 

technique replaces the monitoring process after read an instruction as shown in Figure 2. 

The filtering technique checks that the current instruction is related in a loop whenever an 

instruction is read by the LoopId, where a Lcount for each LoopId is employed to count a 

LoopId execution. Thus, the technique checks the Lcount is less than or equal to 2 to 

decide continuously monitoring the current instruction. Finally, with our filtering 

technique, it significantly reduces the runtime overhead of detecting data races. 
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LRF_New(tid) 

{ 

    Loop_Stack[tid].Push(0); 

} 

 

LRF_Start(tid) 

{  

    Loop_Stack[tid].Increas; 

} 

 

LRF_End(tid) 

{ 

    Loop_Stack[tid].Pop( ); 

} 

 

Figure 6. Algorithm for Dynamic Analysis of LRF 

The key to dynamic analysis is to identify the “new”, “start”, and “end” points of the 

loop regions. It can be simply filtered out by checking whether it is excluded from 

monitoring by loop area filtering before monitoring all memories. Figure 6 shows the 

dynamic analysis algorithms for “new”, “start”, and “end” point of the loop region. 
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4. Implementation and Experimentation 
 

4.1. Implementation 

We implemented LRF into a dynamic data race detector which use PIN dynamic binary 

instrumentation framework [18-19]. Figure 7 shows the architecture of a dynamic detector 

with the filtering technique. Our filtering technique run on top of the PIN during detection 

of data races by Detector. A hash algorithm and a stack structure were used in the loop 

filtering technique to remove the centralized bottleneck of accessing LoopId. For the 

implementation, we considered an exception that a thread executes a same loop region for 

two times because it may lead to miss data races in the region. The implementations were 

carried on a system with Intel®  Xeon 2.4 GHz CPU and 48GB Memory under CentOS 

using Kernel 2.6. To evaluate the filtering technique, we employed FastTrack and 

RaceChaser algorithm as a dynamic detector. 

 

 

Figure 7. The Overall Architecture of Dynamic Detector with LRF 

To combine the data race detector with LRF, the source code of the RaceChaser was 

partially modified. The modified RaceChaser enables access to shared variables using the 

“IMG_AddinstrumentFunction” function of PIN and also enables access to thread 
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information using the “PIN_AddThreadStartFunction” and “PIN_AddThread FinFunction” 

functions. The routine of LRF was inserted into the “IMG_AddinstrumentFunction”.  

The modified detector obtains the first section address of the object file by calling 

"IMG_SecHead" function as the parameter of the current binary image. The tool obtains 

the addresses of the routines by calling "SEC_RtnHead" with the section addresses, and 

calls "RTN_InsHead" with the routine addresses to collect the shadow addresses of the 

instructions. The detector repeatedly also calls all the "SEC_Next", "RTN_Next", 

"INS_Next" to check all of instruction addresses, and it compares the addresses of each 

instruction with the shadow memory addresses of the static analysis result file. If a 

matching address is found, it inserts proper function defined by the identification type of 

the result file using "INS_InsertCall". 

 

4.2. Design of Experimentation 

The implementations were carried on a system with Intel®  Xeon 2.4 GHz CPU and 

48GB Memory under CentOS using Kernel 2.6. To evaluate the filtering technique. We 

developed the synthetic programs considering two criteria such as using sing loop and 

using serialized loops. The designed synthesis also consider read-only access and read-

write accesses to identify data race detection. The synthetic programs appear in Table 1. 

We measured the runtime overheads of detecting data races under both pure detector and 

filtered detector using the loop filtering. For the experimentation, each synthetic program 

has the maximum number of iterations for a parallel loop which ranges from 50K to 

5000K. 

Table 1. Design of Synthetic Programs 

 Read-Only Accesses Read-Write Accesses 

Single Loop Single-RO Single-RW 

Serialized Loops Serial-RO Serial-RW 

 

 

Figure 8. Design of Serial-RW Program 

We also empirically compared the efficiency of LRF with REF using OpenMP 

bechmarks. For the experiments, we consider four cases, Non-Filtering, With-REF, With-

LRF, and With-All, and measure the runtime overheads of each case.  
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We chose four applications, FFT6, MD, Mandelbrot, and PI, from the OmpSCR (the 

OpenMP Source Code Repository) benchmark set considering the features of programs, 

such as the number of shared variables and the scale of parallel loops. Their features are 

specified in Table 2. 

Table 2. The Features of OpenMP Benchmarks 

Applications Lines Accesses Locks Loop Count 

Read Write 

FFT6 542 2285K 15399K 1 38K 

MD 266 23584K 9451K 0 5632 

Mandelbrot 144 114537K 8 0 1024 

PI 83 20000K 8 0 50000K 

 

4.3. Results and Analysis 

We verified the accuracy of the static analysis of LRF using the synthetic programs. 

Figure 9 shows the source code analysis result for Serial-RW program. From the result, 

we see that lines 8 to 9, lines 10 to 11, lines 17 to 18, and lines 19 to 20 are loop regions. 

 

 

Figure 9. The Source Code Analysis Result for Serial-RW 
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Table 3 presents the results of data race detection by using LRF and non-applied LRF 

for each synthesis. 

Table 3. The Results of Data Race Detection for Synthetic Programs 

Detectors Synthesis Without LRF With LRF 

FastTrack Single-RO 0 0 

 Serial-RO 0 0 

 Single-RW 2 2 

 Serial-RW 6 6 

RaceChaser Single-RO 0 0 

 Serial-RO 0 0 

 Single-RW 2 2 

 Serial-RW 6 6 

 

 

Figure 10. The Results of Runtime Overheads for Single-RO 

 

Figure 11. The Results of Runtime Overheads for Single-RW 
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Figure 12. The Results of Runtime Overheads for Serial-RO 

 

Figure 13. The Results of Runtime Overheads for Serial-RW 

From Figure 10 to Figure 11 show the results of measured runtime overheads for single 

loops programs. In the figures, the detectors with filtering incurred an average runtime 

overhead of 33.0x, whereas the detectors without filtering incurred an average runtime 

overhead of 97.5x. In Figure 11, we can see that the runtime overheads are less than the 

results of Single-RO due to the additional runtime for write accesses. However, the results 

in Figure 11 were included for LRF. The measured results for serialized loop programs 

appear in Figure 12 and Figure 13. From the figures, we see that the detector with filtering 

incurred an average runtime overhead of 30.5x, whereas the detector without filtering 

averaged more than 104x slowdown. 

From the empirical results, our loop filtering technique not only reduces runtime 

overheads of detecting data races but also provides a fix overhead to monitor accesses to 

shared memories, while the detector without filtering depends on the maximum iteration 

of the loop parallelism. Finally, the filtering technique reduces the average runtime 

overhead to 60% of that of pure data race detection. 
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Figure 14. The Measured Results of Runtime Overhead for OpenMP 
Programs 

We measured the runtime of the benchmarks over the four cases of on-the-fly data race 

detection using RaceChaser. Figure 14 shows the average runtime overhead for each case 

as a proportion of the original run. In the figure, Non-Filtering means the pure detection 

without any filtering techniques. With-REF and With-LRF means that we measured the 

runtime overhead of the execution of benchmarks under detection with each filtering 

technique, and With-All indicates the measured results that the runtime overhead under 

dynamic detection with both REF and LRF. 

As shown in the results of Figure 14, the With-REF case and the With-LRF case 

reduces the average runtime overhead to 92.2% and 14.2%, respectively, of that of Non-

Filtering case. Moreover, the dynamic data race detection incurred only an average 

runtime overhead of 8.7% than the Non-Filtering case. The empirical results show that the 

With-All case is practical method for on-the-fly data race detection.  

 

5. Conclusion 

It is important to reduce the additional overheads for dynamic detection of data races in 

multithread programs. This paper presents a loop filtering technique that rules out 

repeatedly execution regions of loops from the monitoring targets in the programs. The 

loop filtering technique not only reduces runtime overheads of detecting data races but 

also provides a fix overhead to monitor accesses to shared memories, while the detector 

without filtering depends on the maximum iteration of the loop parallelism. We compared 

the runtime overheads of detecting data races under both pure detector and filtered 

detector using the loop filtering. The empirical results using multithread programs show 

that the filtering technique reduces the average runtime overhead to 60% of that of pure 

data race detection. We also empirically compared the efficiency of two monitoring 

filtering techniques, REF and LRF, which reduces the dramatic overheads of the dynamic 

analysis by excluding unnecessary monitoring memory operations. The experimental 

results using OpenMP benchmarks show that the case of the detection with both REF and 

LRF is practical for on-the-fly data race detection, since it reduces the average runtime 

overhead to under 10% of that of the pure detection. 
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