
International Journal of Database Theory and Application

Vol.10, No.9 (2017), pp.23-38

http://dx.doi.org/10.14257/ijdta.2017.10.9.03

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2017 SERSC Australia

Efficient Filtering Technique for Reducing Time Overhead of

Dynamic Data Race Detection in Multithread Programs*

Ok-Kyoon Ha1, Se-Won Park2 and Sung-Phil Heo3*

1Department of Aeronautics & Software Engineering, Kyungwoon University
2Heavy Industries CI Group, Samsung SDS

3Dept. of Unmanned and Autonomous Vehicle Engineering, Kyungwoon

University

okha@ikw.ac.kr, s-w.park@samsung.com, sungphil.heo@ikw.ac.kr

Abstract

Data races are the hardest defect to handle in multithread programs because they may

lead to unpredictable results of the program caused by nondeterministic interleaving of

concurrent threads. The main drawback of dynamic data race detection is the heavy

additional overhead to monitor and analyze memory operations and thread operations

during an execution of the program. It is important to reduce the additional overheads for

debugging the concurrency bug. This paper presents a monitoring filtering technique that

rules out repeatedly executing regions of parallel loops from the monitoring targets.

Keywords: Multithread programs, dynamic data race detection, runtime overheads,

monitoring filtering

1. Introduction

There is an increasingly necessary to write multithread programs due to fact that multi-

core and multi-processor systems are commonly used. However, the interleaving of

parallel threads may result in concurrency bugs, which are hard to reproduce. Data races

in multithread programs are a well-known concurrency defect that they occur when two or

more threads access to a shared memory location without explicit synchronizations, and at

least one of the accesses is write [1-3]. A multithread program may not exhibit the same

execution instance on different runs with the same input. It is difficult to figure out

whether a program runs into data races, because there are many possible executions of the

program. Detecting data races is therefore important because they may lead to

unpredictable results from an execution of the program.

The techniques detecting data races are divided into two broad categories: static

analysis and dynamic analysis. The static analysis [4-6] analyzes the defects to use only

source codes without any execution. The static analysis is sound, but imprecise because it

produces a lot of false positives through evaluation all of possible executions including

impractical execution paths which are never reached in the actual execution of the

programs. The dynamic analysis employ trace based post-mortem techniques or on-the-fly

techniques, which report data races occurred in an execution of a program [7]. The main

drawback of dynamic analysis is the additional overhead of monitoring program

execution and analyzing every conflicting memory operation. The prior work tries to

Received (December 5, 2016), Review Result (February 16, 2017), Accepted (February 25, 2017)

* This paper is a revised and expanded version of a paper entitled “Empirical Comparison of

Filtering Techniques for On-the-fly Data Race Detection in OpenMP Programs” presented at

ASEA 2016 conference, November 25, 2016, Jeju, Korea.
* Corresponding Author

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

24 Copyright ⓒ 2017 SERSC Australia

reduce the additional runtime overheads, which require from 10 to 100 times than original

run. However, there is still room for reducing runtime overheads.

This paper presents a loop filtering technique that rules out repeatedly execution

regions of loops from the monitoring targets to provide a minimum runtime overhead. We

evaluated the filtering technique under a dynamic data race detection technique,

FastTrack [8] and RaceChaser [9], with multithread programs using a huge amount of

loop. The empirical results using multithread programs show that the filtering technique

reduces the average runtime overhead to 40% of that of dynamic data race detection.

2. Background

Dynamic analysis for detecting data races is precise or imprecise, but unsound since

they cannot guarantee to locate the existence of at least one data race in a given execution

of the program if there exists any. Dynamic analysis employ trace based post-mortem

methods or on-the-fly. On-the-fly methods are based on three different analysis methods:

lockset analysis [10-11], happens-before analysis [8,9,12,13], and hybrid analysis[14-15].

The lockset analysis is simple and can be implemented with low overhead. However,

lockset analysis may lead to many false positives, because it ignores synchronization

primitives which are non-common lock such as signal/wait, fork/join, and barriers. The

happens-before analysis is precise, since it does not report false positives and can be

applied to all synchronization primitives [7]. However, it is quite difficult to be efficiently

implemented due to the performance overheads. The hybrid method tries to reduce the

main drawback of pure lockset analysis and to get more improved performance than pure

happens-before analysis.

2.1. Redundant Event Filtering

The monitoring filtering techniques are introduced to optimize the performance of on-

the-fly data race detection. The filtering techniques exclude unnecessary monitoring of

memory operations, such as read only operations and local variables, to reduce the

dramatic overheads of the dynamic analysis and to insert minimal monitoring cods. In our

prior work [16], we presented a filtering technique, called Redundant Event Filtering

(REF), which ignores repeated accesses to a shared memory location. Considering the

first access on a thread segment is well-known that it is important to debug a parallel

program, because data races involving the first accesses of each thread segment may

affect later accesses and may lead to other newly appeared data races. REF basis on an

idea to ignore repeated accesses to a shared memory location on a thread segment during

monitoring operation.

The data race detection technique of [16] can be firmly established by REF. The

dynamic data race detection with REF considers only the first access of each access event

type (read and write) in a thread segment, if the accesses to a shared memory location are

performed with redundant locks. Given an event ei, a later same type event ej than ei is

filtered out by the following conditions:

IsFiltered(ei, ej) = {

𝒯(𝑒𝑖) = 𝒯(𝑒𝑗) ∧ 𝑡𝑖 = 𝑡𝑗 ∧

𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ⊂ 𝑡𝑗. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 ∨

𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = 𝑡𝑗. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 = ∅

where 𝒯(𝑒𝑖) represents the event type of ei, and 𝑡𝑖. 𝑙𝑜𝑐𝑘𝑠𝑒𝑡 is a set of locks living on a

thread segment ti when ei occurred. Considering the first event on a thread segment is

important to debug a multithread program, because data races involving the first events of

each thread segment may affect later events and may lead to other newly appeared data

races.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 25

2.2. Memory Hierarchical Filtering

We also presented a hierarchical filtering technique (HIF) [17] that removes non-

necessary monitoring operations at the each of three levels, Image Level (IML), Section

Level (SEL), and Instruction Level (INL), to reduce runtime overhead of dynamic data

race detection.

The objective images which loaded into memory include target binaries for user

application, system libraries, and other APIs. However, detecting data race focuses only

on the user applications and its libraries rather than system libraries and others. Therefore,

HIF selectively filters out memory operations which related standard libraries and other

APIs by using the path of linked images and the name of libraries. There exist several

dynamic section areas in Data Section, such as global variable area, static variable area,

and heap area, that the areas are used to read or write data during the execution of the

program. Moreover, the special areas are located for read only data and constant variables.

Therefore, HIF filters out such the read only memory areas for SEL. The memory

operations should be monitored with each instruction to precisely insert corresponding

monitoring codes into the Code Section. The filtering technique analyzes the opcode and

operand of instructions to decide which operations access shared memory locations.

For example, we can estimate two memory locations, ebp and esp in Figure 1, which

are the pointer to stack area of memory by analyzing operand of the instructions and

comparing their address with information of stack area. Thus, the almost of memory

operations are excluded from the conflicting accesses to memory locations. With HIF, we

filter out non-necessary memory operations for dynamic data race detection. Therefore,

we are possible to insert monitoring codes into the target binaries with considering only a

shared variable SV.

Figure 1. Memory Mapping for an Execution of a Program

With these filtering techniques, we can reduce the average runtime overhead to over 50%

of on-the-fly data race detection. However, each of them provides different performance

by the characteristic of program executions, such as the number of shared variables and

the scale of parallel loops. Thus, we need to compare the effectiveness of the techniques

for efficient on-the-fly analysis of parallel programs.

For more optimization of data race detection, we found that there is still room for

reducing runtime overhead of dynamic monitoring of multithread programs. When

monitoring multithread programs which use a loop-level parallelism with a large number

of threads, the runtime overheads depend on the maximum iteration of the loop

parallelism. Thus, we address the loop parallelism to reduce the runtime overhead of

dynamic data race detection.

…

Code Area

… … …

Stack Area Data Area

…

main :

movl % esp, %ebp

pushl %ecx

call printf

…

…

SV

temp1

…

…

temp

…

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

26 Copyright ⓒ 2017 SERSC Australia

Figure 2. The Process of Monitoring Instructions with Loop Filtering
Technique

3. Loop Region Filtering Technique

This section introduces the key idea of Loop Region Filtering (LRF) technique, and

presents the design of the monitoring filtering technique including the static area and the

dynamic area of LRF.

3.1. The Design of LRF

A loop in a program is intended to repeatedly execute a same code region excluding the

usage of special conditions for control the flow of the execution. For detecting data races

on-the-fly, it is unnecessary to monitor the same execution of the code regions for every

time. Moreover, the monitoring of a same region on a parallel loop with concurrent

threads may lead to a same results. Therefore, we can locate data races only by

monitoring two threads instead of whole threads for a parallel loop.

Our loop filtering considers only two threads, which are allocated for a parallel loop, to

monitor accesses to shared memories. Since it is difficult to identify the common region

Start a Program

Read an
Instruction

YesIn
A Loop?

No

Lcount++

Yes

Access
Monitoring

Lcount<2?

No
E.O.P?

Yes

Exit

NoLoop Filtering Routine

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 27

for repeatedly execution by dynamic analysis, we employ a static analysis method to

collect the information of the regions. With the static analysis, we collect a LoopId of

each loop that consist of a tuple {StartRegion, EndRegion}. Our method dynamically

monitors only two threads which occur earlier than others for a parallel loop. Figure 2

shows the process of monitoring instructions including the loop filtering technique. For

precisely filtering loop regions, LRF consists of two analysis step: a Static analysis step

and a Dynamic analysis step.

3.2. The Design of Static Analysis

The Static analysis step of LRF has two phases: the source code analysis and the object

code analysis. In the source code analysis phase aims to identify the start point and end

point of loop regions by analyzing the loop statements, such as for, while, and do-while.

Figure 3 shows the process of the source code analysis phase.

Figure 3. The Source Code Analysis of LRF

The results of the source code analysis consists of a pair of {statement type, the line

number of start ~ the line number of end, description}. The statement type is classified

into FOR_LOOP, WHILE_LOOP, DO_WHILE_LOOP, and EXPRESSION by the loop

statements of the source code. For the object code analysis phase, only the information

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

28 Copyright ⓒ 2017 SERSC Australia

about the type of the statements and of the start and end points of the loop statements are

needed. However, the details are added to provide information so that the user can review

and directly modify the results of the source code analysis. Using these results, it is

possible to identify all of loop regions in the source code. Figure 4 shows an example of

the result of the source code analysis.

Figure 4. An Example of the Result of the Source Analysis

In the dynamic analysis step, if the loop analysis is compared with the source code

analysis for all instructions, the overheads for comparative analysis may occur more than

the case where no filtering is applied. Therefore, we design the dynamic analysis to

identify the loop regions only by analyzing object code during the static analysis step to

identify the shadow memory addresses. We employ a dynamic binary instrumentation

(DBI) framework, PIN, for dynamic analysis step. The DBI framework addresses all

commands in object code and manages them in shadow memory. Since these shadow

memory addresses do not change their addresses during execution unless they are

compiled, static addresses can be used in dynamic analysis step as well.

The analysis results of the object code are stored in a file for use in dynamic analysis

step and provide a list of identification type, line number, shadow memory address, and

the path of the instruction. The identification type includes “new”, “start”, and “end”.

“new” means the point immediately before the start of a loop region, and “start” is the

point where the repeat is performed first for every iteration within a loop region. “end” is

the point immediately after the end of a loop region. The line number and file path are

provided to directly remove the non-filtering area using the analysis result. Figure 5 is a

result of object code analysis.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 29

Figure 5. A Result of the Object Code Analysis

3.3. The Design of Dynamic Analysis

Dynamic analysis for data race detection bases on monitoring instructions to check

accesses to shared memory locations during an execution of a program. Our loop filtering

technique replaces the monitoring process after read an instruction as shown in Figure 2.

The filtering technique checks that the current instruction is related in a loop whenever an

instruction is read by the LoopId, where a Lcount for each LoopId is employed to count a

LoopId execution. Thus, the technique checks the Lcount is less than or equal to 2 to

decide continuously monitoring the current instruction. Finally, with our filtering

technique, it significantly reduces the runtime overhead of detecting data races.

1

2

3

4

1

2

3

4

1

2

3

4

LRF_New(tid)

{

 Loop_Stack[tid].Push(0);

}

LRF_Start(tid)

{

 Loop_Stack[tid].Increas;

}

LRF_End(tid)

{

 Loop_Stack[tid].Pop();

}

Figure 6. Algorithm for Dynamic Analysis of LRF

The key to dynamic analysis is to identify the “new”, “start”, and “end” points of the

loop regions. It can be simply filtered out by checking whether it is excluded from

monitoring by loop area filtering before monitoring all memories. Figure 6 shows the

dynamic analysis algorithms for “new”, “start”, and “end” point of the loop region.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

30 Copyright ⓒ 2017 SERSC Australia

4. Implementation and Experimentation

4.1. Implementation

We implemented LRF into a dynamic data race detector which use PIN dynamic binary

instrumentation framework [18-19]. Figure 7 shows the architecture of a dynamic detector

with the filtering technique. Our filtering technique run on top of the PIN during detection

of data races by Detector. A hash algorithm and a stack structure were used in the loop

filtering technique to remove the centralized bottleneck of accessing LoopId. For the

implementation, we considered an exception that a thread executes a same loop region for

two times because it may lead to miss data races in the region. The implementations were

carried on a system with Intel® Xeon 2.4 GHz CPU and 48GB Memory under CentOS

using Kernel 2.6. To evaluate the filtering technique, we employed FastTrack and

RaceChaser algorithm as a dynamic detector.

Figure 7. The Overall Architecture of Dynamic Detector with LRF

To combine the data race detector with LRF, the source code of the RaceChaser was

partially modified. The modified RaceChaser enables access to shared variables using the

“IMG_AddinstrumentFunction” function of PIN and also enables access to thread

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 31

information using the “PIN_AddThreadStartFunction” and “PIN_AddThread FinFunction”

functions. The routine of LRF was inserted into the “IMG_AddinstrumentFunction”.

The modified detector obtains the first section address of the object file by calling

"IMG_SecHead" function as the parameter of the current binary image. The tool obtains

the addresses of the routines by calling "SEC_RtnHead" with the section addresses, and

calls "RTN_InsHead" with the routine addresses to collect the shadow addresses of the

instructions. The detector repeatedly also calls all the "SEC_Next", "RTN_Next",

"INS_Next" to check all of instruction addresses, and it compares the addresses of each

instruction with the shadow memory addresses of the static analysis result file. If a

matching address is found, it inserts proper function defined by the identification type of

the result file using "INS_InsertCall".

4.2. Design of Experimentation

The implementations were carried on a system with Intel® Xeon 2.4 GHz CPU and

48GB Memory under CentOS using Kernel 2.6. To evaluate the filtering technique. We

developed the synthetic programs considering two criteria such as using sing loop and

using serialized loops. The designed synthesis also consider read-only access and read-

write accesses to identify data race detection. The synthetic programs appear in Table 1.

We measured the runtime overheads of detecting data races under both pure detector and

filtered detector using the loop filtering. For the experimentation, each synthetic program

has the maximum number of iterations for a parallel loop which ranges from 50K to

5000K.

Table 1. Design of Synthetic Programs

 Read-Only Accesses Read-Write Accesses

Single Loop Single-RO Single-RW

Serialized Loops Serial-RO Serial-RW

Figure 8. Design of Serial-RW Program

We also empirically compared the efficiency of LRF with REF using OpenMP

bechmarks. For the experiments, we consider four cases, Non-Filtering, With-REF, With-

LRF, and With-All, and measure the runtime overheads of each case.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

32 Copyright ⓒ 2017 SERSC Australia

We chose four applications, FFT6, MD, Mandelbrot, and PI, from the OmpSCR (the

OpenMP Source Code Repository) benchmark set considering the features of programs,

such as the number of shared variables and the scale of parallel loops. Their features are

specified in Table 2.

Table 2. The Features of OpenMP Benchmarks

Applications Lines Accesses Locks Loop Count

Read Write

FFT6 542 2285K 15399K 1 38K

MD 266 23584K 9451K 0 5632

Mandelbrot 144 114537K 8 0 1024

PI 83 20000K 8 0 50000K

4.3. Results and Analysis

We verified the accuracy of the static analysis of LRF using the synthetic programs.

Figure 9 shows the source code analysis result for Serial-RW program. From the result,

we see that lines 8 to 9, lines 10 to 11, lines 17 to 18, and lines 19 to 20 are loop regions.

Figure 9. The Source Code Analysis Result for Serial-RW

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 33

Table 3 presents the results of data race detection by using LRF and non-applied LRF

for each synthesis.

Table 3. The Results of Data Race Detection for Synthetic Programs

Detectors Synthesis Without LRF With LRF

FastTrack Single-RO 0 0

 Serial-RO 0 0

 Single-RW 2 2

 Serial-RW 6 6

RaceChaser Single-RO 0 0

 Serial-RO 0 0

 Single-RW 2 2

 Serial-RW 6 6

Figure 10. The Results of Runtime Overheads for Single-RO

Figure 11. The Results of Runtime Overheads for Single-RW

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

34 Copyright ⓒ 2017 SERSC Australia

Figure 12. The Results of Runtime Overheads for Serial-RO

Figure 13. The Results of Runtime Overheads for Serial-RW

From Figure 10 to Figure 11 show the results of measured runtime overheads for single

loops programs. In the figures, the detectors with filtering incurred an average runtime

overhead of 33.0x, whereas the detectors without filtering incurred an average runtime

overhead of 97.5x. In Figure 11, we can see that the runtime overheads are less than the

results of Single-RO due to the additional runtime for write accesses. However, the results

in Figure 11 were included for LRF. The measured results for serialized loop programs

appear in Figure 12 and Figure 13. From the figures, we see that the detector with filtering

incurred an average runtime overhead of 30.5x, whereas the detector without filtering

averaged more than 104x slowdown.

From the empirical results, our loop filtering technique not only reduces runtime

overheads of detecting data races but also provides a fix overhead to monitor accesses to

shared memories, while the detector without filtering depends on the maximum iteration

of the loop parallelism. Finally, the filtering technique reduces the average runtime

overhead to 60% of that of pure data race detection.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 35

Figure 14. The Measured Results of Runtime Overhead for OpenMP
Programs

We measured the runtime of the benchmarks over the four cases of on-the-fly data race

detection using RaceChaser. Figure 14 shows the average runtime overhead for each case

as a proportion of the original run. In the figure, Non-Filtering means the pure detection

without any filtering techniques. With-REF and With-LRF means that we measured the

runtime overhead of the execution of benchmarks under detection with each filtering

technique, and With-All indicates the measured results that the runtime overhead under

dynamic detection with both REF and LRF.

As shown in the results of Figure 14, the With-REF case and the With-LRF case

reduces the average runtime overhead to 92.2% and 14.2%, respectively, of that of Non-

Filtering case. Moreover, the dynamic data race detection incurred only an average

runtime overhead of 8.7% than the Non-Filtering case. The empirical results show that the

With-All case is practical method for on-the-fly data race detection.

5. Conclusion

It is important to reduce the additional overheads for dynamic detection of data races in

multithread programs. This paper presents a loop filtering technique that rules out

repeatedly execution regions of loops from the monitoring targets in the programs. The

loop filtering technique not only reduces runtime overheads of detecting data races but

also provides a fix overhead to monitor accesses to shared memories, while the detector

without filtering depends on the maximum iteration of the loop parallelism. We compared

the runtime overheads of detecting data races under both pure detector and filtered

detector using the loop filtering. The empirical results using multithread programs show

that the filtering technique reduces the average runtime overhead to 60% of that of pure

data race detection. We also empirically compared the efficiency of two monitoring

filtering techniques, REF and LRF, which reduces the dramatic overheads of the dynamic

analysis by excluding unnecessary monitoring memory operations. The experimental

results using OpenMP benchmarks show that the case of the detection with both REF and

LRF is practical for on-the-fly data race detection, since it reduces the average runtime

overhead to under 10% of that of the pure detection.

0

20

40

60

80

100

FFT6 MD Mandelbrot Pi

R
u

n
t
im

e
 O

v
e
r
h

e
a

d
 R

a
t
e
 (

T
im

e
s
)

OpenMP Applications

Overheads for Dynamic Race Detection

Non-Filtering With-REF

with-LRF With-All

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

36 Copyright ⓒ 2017 SERSC Australia

Acknowledgments

This work was supported by the Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-

2014R1A1A2060082), and also was supported by a grant (#S0144-15-1007) from

Gyungbuk Software Convergence Cluster Project funded by MSIP(Ministry of Science,

ICT and Future Planning) and NIPA(National IT Industry Promotion Agency).

References

[1] R. H. B. Netzer and B. P. Miller, “What are Race Conditions?: Some Issues and Formalizations”, in

Proceeding of Letters on Programming Languages and Systems, LOPLAS 1992, ACM, (1992), pp. 74-

88.

[2] E. Farchi, Y. Nir and S. Ur, “Concurrent Bug Patterns and How to Test Them”, Proceeding of the 17th

International Symposium on Parallel and Distributed Processing, IPDPS 2003. IEEE, (2003), pp. 7.

[3] U. Banerjee, B. Bliss, Z. Ma and P. Petersen, “A Theory of Data Race Detection”, Proceedings of the

2006 workshop on Parallel and distributed systems: testing and debugging, PADTAD 2006, ACM, pp.

69-78, (2006).

[4] D. Callahan and J. Sublok, “Static Analysis of Low-level Synchronization”, SIGPLAN Not., ACM, vol.

24, (1988), pp. 100-111.

[5] C. E. McDowell, “A Practical Algorithm for Static Analysis of Parallel Programs”, Journal of Parallel

and Distributed Computing, Springer-verlag, vol. 6, no. 3, (1989), pp. 515-536.

[6] D. Engler and K. Ashcraft, “RacerX: Effective, Static Detection of Race Conditions and Deadlocks”,

Proceedings of the nineteenth ACM symposium on Operating systems principles, SOSP 2003, ACM,

(2003), pp. 237-252.

[7] O.-K. Ha, “Case Study of Dynamic Detectors for Data Races”, In Proceedings of International

Conference on Electronic Engineering and Computer Science (EECS 2013), IERI Procedia, Beijing,

China, vol. 4, (2013), pp. 174-180.

[8] C. Flanagan and S. N. Freund, “FastTrack: Efficient and Precise Dynamic Race Detection”, Proceedings

of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI

2009, ACM, (2009), pp. 121-133.

[9] O.-K. Ha and Y.-K. Jun, “An Efficient Algorithm for On-the-Fly Data Race Detection Using an Epoch-

Based Technique”, In Journal of Scientific Programming, Article No. 13, (2015) January.

[10] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro and T. Anderson, “Eraser: A Dynamic Data Race

Detector for Multithreaded Programs”, ACM Transactions on Computer Systems (TOCS), ACM, vol.

15, (1997), pp. 391-411.

[11] H. Nishiyama, “Detecting Data Races using Dynamic Escape Analysis based on Read Barrier”, In

Proceedings of the 3rd conference on Virtual Machine Research and Technology Symposium, Berkeley,

CA, USA, 2004. USENIX Association, vol. 3, pp. 10-10.

[12] E. Pozniansky and A. Schuster, “Efficient On-the-fly Data Race Detection in Multithreaded C++

Programs”, Proceeding of the ninth ACM SIGPLAN symposium on Principles and practice of parallel

programming, PPoPP 2003, ACM, (2003), pp. 179-190.

[13] A. Jannesari and W. F. Tichy, “On-the-fly Race Detection in Multi-threaded Programs”, Proceedings of

the 6th workshop on Parallel and distributed systems: testing, analysis, and debugging, PADTAD 2008,

ACM, (2008), pp. 6:1-6:10.

[14] T. Elmas, S. Qadeer and S. Tasiran, “Goldilocks: A Race and Transaction-aware Java Runtime”,

Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and

implementation, PLDI 2007, ACM, (2007), pp. 245-255.

[15] A. Jannesari, B. Kaibin, V. Pankratius and W. F. Tichy, “Helgrind+: An Efficient Dynamic Race

Detector”, Proceedings of the 2009 IEEE International Symposium on Parallel & Distributed Processing,

IPDPS 2009, IEEE Computer Society, (2009), pp. 1-13.

[16] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue and Y.-K. Jun, “On-the-fly Detection of Data Races in OpenMP

Programs”, In Proceedings of the 2012 Workshop on Parallel and Distributed Systems: Testing,

Analysis, and Debugging (PADTAD'2012), ACM, Minneapolis, USA, (2012) July, pp. 1-10.

[17] O.-K. Ha and Y.-K. Jun, “Effective Monitoring Memory Operations for Dynamic Race Detection

through Hierarchical Filtering Method”, In International Journal of Multimedia and Ubiquitous

Engineering, (2014), pp. 199-208.

[18] H. Patil, C. Pereira, M. Stallcup, G. Lueck and Cownie, “Pinplay: A Framework for Deterministic

Replay and Reproducible Analysis of Parallel Programs”, Proceedings of the 8th annual IEEE/ACM

international symposium on Code generation and optimization, CGO 2010, ACM, (2010), pp. 2-11.

[19] A. R. Bernat and B. P. Miller, “Anywhere, Any-time Binary Instrumentation”, Proceedings of the 10th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools, PASTE 2011, ACM,

(2011), pp. 9-16.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

Copyright ⓒ 2017 SERSC Australia 37

[20] S.-W. Park, O.-K. Ha and Y.-K. Jun, “A Loop Filtering Technique for Reducing Time Overhead of

Dynamic Data Race Detection”, In Proceedings of the 8th International Conference on Database Theory

and Application (DTA 2015), IEEE, Jeju, Korea, (2015), pp. 29-32.

Authors

Ok-Kyoon Ha received the BS degree in Computer Science under

the Bachelor’s Degree Examination Law for Self-Education from

National Institute for Lifelong Education, and the MS and PhD

degree in Informatics from Gyeongsang National University (GNU),

South Korea. He is now a professor of department of aeronautics &

software engineering in Kyungwoo University, South Korea. He

worked as the manager of IT department in Korea industry for

several years. His research interests including parallel/distributed

programming, software testing and debugging, embedded system

programs, dependable software, and software development activities

for avionics. Dr. Ha is a member of Korean Institute of Information

Technology (KIIT), Korea Institute of Information Scientist and

Engineers (KIISE), and Korea Society of Computer Information

(KSCI).

Se-Won Park received the BS degree in Informatics, and the MS

degree in Informatics from Gyeongsang National University (GNU),

South Korea. He is now a software engineer for Heavy Industries CI

Group in Samsung SDS, South Korea. His research interests

including parallel/distributed programming and its debugging,

embedded system programs, and dependable software. Mr. Park is a

member of Korea Institute of Information Scientist and Engineers

(KIISE) and Korea Society of Computer Information (KSCI).

Sung-Phil Heo received the Ph.D. degree in Information Sciences

from Tohoku University, Sendai, Japan, in 2004. From 1993 to 2014,

he was a Principle Researcher, Team Leader, and Project Director in

the Korea Telecom R&D Center, Seoul, Korea. He joined Kumoh

National Institute of Technology in 2014, where he was a professor

of ICT Convergence Research Center. Currently he is an associate

professor of Dept. of Unmanned and Autonomous Vehicle

Engineering, Kyungwoon University, South Korea. His research

interests include IoT/M2M, contents based multimedia retrieval, and

next generation wireless communication technology.

International Journal of Database Theory and Application

Vol.10, No.9 (2017)

38 Copyright ⓒ 2017 SERSC Australia

