
International Journal of Database Theory and Application

Vol.10, No.8 (2017), pp.43-56

http://dx.doi.org/10.14257/ijdta.2017.10.8.05

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2017 SERSC Australia

Fragment Allocation and Replication in Distributed Databases

Ali Amiri

Department of MSIS

Spears School of Business

Oklahoma State University

Stillwater, OK, 74078, USA

amiri@okstate.edu

Abstract

We study the problem of designing a distributed database system. We develop

optimization models for the problem that deals simultaneously with two major design

issues, namely which fragments to replicate, and where to store those fragments and

replicas. Given the difficulty of the problem, we propose a solution algorithm based on a

new formulation of the problem in which every server is allocated a fragment

combination from a set of combinations generated by a randomized greedy heuristic. The

results of a computational study show that the algorithm outperforms a standard branch

& bound technique for large instances of the problem.

Keywords: Distributed Database; Fragment Allocation, Fragment Replication,

Optimization

1. Introduction

A distributed database is a single logical database that is spread physically across

computers in multiple locations that are connected by a data communications network.

The adoption of distributed databases is nurtured by various business conditions such as

global nature of business operations and transactions, distribution and autonomy of

business units, and telecommunications costs and reliability [7]. A distributed database

offers several potential benefits over a centralized database such as improved availability,

reliability and performance and lower costs. For those benefits to realize, a distributed

database should be properly designed with respects to three important issues: how to

partition the database into fragments, which fragments to replicate, and where to store

those fragments and replicas [1,11].

As stated in [12], logical database design deals with determining the contents of a

database independently of the physical implementation considerations. The guide of the

design process is typically the statement of user view requirements/needs in the form of a

set of user views [12]. Each view defines the data contents and transactions which are

required by a specific job/function that a user view (or group of user views) performs.

Each view requires the identification of the database fragments that are needed to process

retrieval and update transactions of the corresponding user view. The task of fragmenting

the database effectively is a difficult one in itself. However, a variety of approaches exist

for fragmenting databases [2,4], and this paper assumes that the fragments have already

been identified based on the definition of the user views.

The response to a query in a distributed database environment may require assembling

data from several different sites (although with location transparency, the user is unaware

of this need). The volume of data transmitted over the communication network depends

heavily on the type of the query and the locations of the fragments and their replicas

involved in the query. A retrieval query uses only one copy of each fragment in the

query; whereas an update query uses every copy of each fragment in the query to maintain

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

44 Copyright ⓒ 2017 SERSC Australia

up-to-date data. Besides the way a query is formulated by a user view, query optimization

by the database management system affects the query execution efficiency, especially

when the query requires fragments located in different sites. In this paper, we design the

distributed database in such a way that all the fragments required by a user view are

located in the same site. This approach simplifies query optimization and improves

response time to users, especially when processing retrieval queries. As this approach

allows replication of fragments, an update query still requires updating every copy of the

fragments in the queries. While the nonredundant fragment allocation scheme (i.e., storing

one copy of each fragment in the database) makes the problem less difficult to solve, it is

a very restrictive perspective. Under that scheme, the strategy is first to find a

nonredundant solution by ignoring replication and second to apply a heuristic to that

solution to decide how to replicate fragments [6,8]. The quality of the final solution

obtained using this non-integrated strategy is inferior to the solution of the integrated

approach (i.e., which considers fragment replication and allocation simultaneously) that

we adopt in our paper [8].

Many studies have considered various aspects of the distributed database design

problem in a variety of contexts. A comprehensive review of these studies can be found

in [9]. Here, we consider studies that are most related to the topic of our paper. Menon [7]

presented new integer programming formulations for the nonredundant version of the

fragment allocation problem (where exactly one copy of each fragment exits across all

sites). These formulations are solved using the commercial integer programming solver

CPLEX [5]. Menon [7] reported computational test results which show that his

formulations are more effective than prior formulations using up to 200 fragments and 10

servers.

Hababeh et al., [3] developed a method for grouping the distributed sites into clusters

and customizing the database fragments allocation to the clusters and their sites. The

method proceeds in three steps: (i) it groups the computing sites into disjoint clusters, (ii)

it allocates the fragments to the clusters, and (iii) it allocates the fragments within each

cluster to its sites independently of the other clusters and sites. Hababeh et al., [3]

reported results of computational tests using a database system with 6 sites and 8

fragments.

Sen et al., [10] studied a general version of the problem where (i) the files/segments

have to be clustered and the clusters need to be assigned to a given number of servers

whose locations are to be chosen from among a pre-determined set of potential locations,

and (ii) query traffic between the users and the servers are routed over a fully connected

backbone network. This general problem is solved indirectly by solving first the data

partitioning problem and then the segment allocation problem.

In this paper, we present an optimization model for the distributed database design

problem (DDDP) that deals simultaneously with two major design issues, namely which

fragments to replicate, and where to store those fragments and replicas. Again, we assume

that the database fragments have already been determined based on the definition of the

user views. We develop a mathematical programming model of the DDDP which allows a

user view to be assigned to a server only if that server is allocated all the fragments

required by the user view. In particular, the model considers the objective of minimizing

total system cost which is composed of three components: (i) the communication and

processing costs of retrieval transactions of the user views, (ii) the communication and

processing costs of update transactions of the user views, and (iii) the cost of storing and

maintaining the fragments and their replicas on the servers. The decisions to make are (i)

how to assign user views to the servers to process their transactions, and (ii) how to

replicate the fragments and allocate them to the servers. A solution to the problem should

satisfy the following requirements: (i) each user view is assigned to one server to process

its transactions, (ii) a user view can be assigned to a server only if all the fragments

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 45

needed by the user view transactions are stored on that server, and (iii) the processing

capacities of the servers are not exceeded.

Given the difficulty of the distributed database design problem, we propose a solution

algorithm based on a new formulation of the problem where every server is allocated a

fragment combination from among all combination or from a well generated set of

combinations. A combination consists of a group of fragments to be allocated to a server.

We run a computational study to study the effectiveness of the solution algorithm. The

results show that the proposed algorithm outperforms a standard branch & bound

technique based on the first formulation of the problem for large instances of the problem.

The remainder of the paper is organized as follows. Section 2 presents two integer

programming formulations of the problem. Two solution procedures are described in

Section 3. Computational results are reported in Section 4 while Section 5 concludes.

2. Problem Formulations

Define N the set of user views that need to be assigned to the set M of servers/sites.

Define F the set of fragments that need to be allocated to the servers, 𝐹𝑖
′ the set of

fragments needed by user view 𝑖 ∈ 𝑁 in retrieval transactions, and 𝐹𝑖
′′ the set of fragments

needed by user view 𝑖 ∈ 𝑁 in update transactions. Define parameters 𝑑𝑖
′ to be processing

demand of retrieval transactions of user view 𝑖 ∈ 𝑁, 𝑑𝑖𝑘
′′ processing demand of update

transactions of fragment 𝑘 ∈ 𝐴 of user view 𝑖 ∈ 𝑁, 𝐶𝑖𝑗
′ communication and processing

cost of retrieval transactions of user view 𝑖 ∈ 𝑁 when it is assigned to server 𝑗 ∈ 𝑀, 𝐶𝑖𝑘𝑗
′′

communication and processing cost of update transactions of user view 𝑖 ∈ 𝑁 for

fragment 𝑘 ∈ 𝐹 when it stored at server 𝑗 ∈ 𝑀, 𝐶𝑘𝑗 cost of storing and maintaining

fragment 𝑘 ∈ 𝐹 in server 𝑗 ∈ 𝑀, and 𝑄𝑗 processing capacity of server 𝑗 ∈ 𝑀. Define the

decision variables as

𝑋𝑖𝑗 = {
1 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑣𝑖𝑒𝑤 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑒𝑟𝑣𝑒𝑟 𝑗 ∈ 𝑀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒𝑠𝑒

𝑌𝑘𝑗 = {
1 𝑖𝑓 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑘 ∈ 𝐹 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑠𝑒𝑟𝑣𝑒𝑟 𝑗 ∈ 𝑀
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒𝑠𝑒

Given these definitions, the distributed database design problem (DDDP) can be

formulated as model DDDP1 below.

DDDP1:

𝑚𝑖𝑛 ∑ ∑ 𝐶𝑖𝑗
′

𝑗∈𝑀𝑖∈𝑁

𝑋𝑖𝑗 + ∑ ∑ ∑ 𝐶𝑖𝑘𝑗
′′ 𝑌𝑘𝑗

𝑗∈𝑀𝑘∈𝐹𝑖
′′𝑖∈𝑁

 + ∑ ∑ 𝐶𝑘𝑗

𝑘∈𝐹𝑗∈𝑀

𝑌𝑘𝑗 (1)

st

∑ 𝑋𝑖𝑗

𝑗∈𝑀

= 1 ∀ 𝑖 ∈ 𝑁 (2)

𝑋𝑖𝑗 ≤ 𝑌𝑘𝑗 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐹𝑖
′ ∪ 𝐹𝑖

′′, 𝑗 ∈ 𝑀 (3)

∑ 𝑑𝑖
′𝑋𝑖𝑗

𝑖∈𝑁

+ ∑ ∑ 𝑑𝑖𝑘
′′ 𝑌𝑘𝑗

𝑘∈𝐹𝑖
′′𝑖∈𝑁

 ≤ 𝑄𝑗 ∀𝑗 ∈ 𝑀 (4)

𝑋𝑖𝑗 , 𝑌𝑘𝑗 ∈ {0,1} ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐹, 𝑗 ∈ 𝑀 (5)

The goal is to minimize the total communication and processing cost of user view

retrieval and update transactions and cost of setting up and maintaining fragments in the

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

46 Copyright ⓒ 2017 SERSC Australia

servers. Constraints (2) ensures that each user view is assigned to one server to handle its

retrieval and update transactions. Constraints (3) ensure that if a user view is assigned to

a server, then every fragment required by the user view is stored in that server.

Constraints (4) limit the total processing demand of the user views assigned to a server to

the capacity of the server. The first and second terms in the left hand sides of constraints

(4) represent the processing requirements of retrieval and update transactions,

respectively. Constraints (5) are restrict the decision variables to be binary.

Since the distributed database design problem (DDDP1) is NP-complete, it is

extremely difficult to solve it optimally in an acceptable computing time. This difficulty is

the direct result of the fact that both the allocation of fragments to the servers and the

assignment of user views to the servers have to be handled concurrently. We conducted

computational tests that show that the linear programming relaxation of (DDDP1)

produces non-integer values of the decision variables and, hence, a standard branch &

bound technique using formulation (DDDP1) is not likely to generate an optimal solution

in reasonable time. We next develop a second formulation of the distributed database

design problem that will be used in solving the problem more effectively.

A new formulation for the distributed database design problem can be obtained by

viewing it as a covering problem. This formulation stems from the observation that in

any feasible solution to the problem, the user views have to be covered by the servers they

are assigned to, with a user view being allocated to one server that maintains all the

fragments the user view needs in its retrieval and update transactions. As a result, we can

solve the problem using all combinations of fragments and assign the “best” combinations

to the servers for which the total cost is minimized. Every combination of fragments is a

valid configuration that can be allocated to a server.

Using the above insight, the distributed database design problem can now be

reformulated in the following way. Define G as the set of all combinations, where a

combination is simply a subset of fragments that can be assigned to a server. Define

parameter 𝐺𝑖 to be the set of combinations which contain all fragments used in processing

transactions of user view 𝑖 ∈ 𝑁. Define parameter 𝑎𝑘𝑔 to be 1 if fragment k is included in

combination g. Define a binary variable 𝑊𝑗𝑔 to be 1 if server j is allocated fragment

combination g and 0 if not. Each server needs to be assigned one combination, including

the empty combination to leave the possibility that a server may not be used. This can be

stated mathematically as

∑ 𝑊𝑗𝑔

𝑔∈𝐺

= 1 ∀ 𝑗 ∈ 𝑀

Each user view should be assigned to one server whose configuration should include

all fragments that the user view needs. Mathematically, this is equivalent to saying

𝑋𝑖𝑗 ≤ ∑ 𝑊𝑗𝑔 ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀

𝑔∈𝐺𝑖

The distributed database design problem can now be reformulated as DDDP2.

DDDP2:

𝑚𝑖𝑛 ∑ ∑ 𝐶𝑖𝑗
′

𝑗∈𝑀𝑖∈𝑁

𝑋𝑖𝑗 + ∑ ∑ ∑ ∑ 𝐶𝑖𝑘𝑗
"

𝑘∈𝐹𝑖
":𝑎𝑘𝑔=1𝑔∈𝐺𝑗∈𝑀𝑖∈𝑁

𝑊𝑗𝑔 + ∑ ∑ ∑ 𝐶𝑘𝑗

𝑘∈𝐹:𝑎𝑘𝑗=1𝑔𝑗

𝑊𝑗𝑔 (6)

st

∑ 𝑋𝑖𝑗

𝑗∈𝑀

= 1 ∀ 𝑖 ∈ 𝑁 (7)

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 47

𝑋𝑖𝑗 ≤ ∑ 𝑊𝑗𝑔 ∀ 𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁 (8)

𝑔∈𝐺𝑖

∑ 𝑊𝑗𝑔

𝑔

= 1 ∀ 𝑗 ∈ 𝑀 (9)

∑ 𝑑𝑖
′𝑋𝑖𝑗

𝑖∈𝑁

+ ∑ ∑ ∑ 𝑑𝑖𝑘
′′ 𝑊𝑗𝑔

𝑘∈𝐹𝑖
′′:𝑎𝑘𝑔=1𝑔∈𝐺𝑖∈𝑁

 ≤ 𝑄𝑗 ∀𝑗 ∈ 𝑀 (10)

𝑋𝑖𝑗 , 𝑊𝑗𝑔 ∈ {0,1} ∀𝑗 ∈ 𝑀, 𝑖 ∈ 𝑁, 𝑔 ∈ 𝐺 (11)

The goal (6) minimizes the overall cost made of the three components as in (1).

Constraints (7) serve the same purpose as constraints (2). Constraints (8) ensure that a

user view can be allocated to a server only if the server is assigned a configuration that

has all the fragments needed by the user view. Constraints (9) state that each server is

allocated a fragment combination. Constraints (10) serve the same purpose as constraints

(4). Constraints (11) represent the binary restrictions on the variables.

The following example illustrates the definition of the problem. There are 20 user

views, 20 fragments, and 5 servers. The parameters for the retrieval and update

transactions are in table 1. All the servers have the same capacity 3663. The storage and

maintenance costs for the 20 fragments are {371, 617, 414, 313, 73, 936, 464, 220, 412,

924, 578, 831, 707, 540, 461, 477, 326, 558, 227, 60} for all servers. One possible

solution has a total cost of 61706 and consits of assigning user views {6, 7, 9, 10, 12, 20}

to server 1, user views {11, 16, 18} to server 2, user views {4, 14, 15, 17} to server 3,

user views {2, 3, 5, 19} to server 4, and user views {1, 8, 13} to server 5, and allocationg

fragments {1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 18, 19, 20} to server 1, fragments {1, 2, 3,

4, 5, 6, 7, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20} to server 2, fragments {1, 5, 6, 7, 8, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20} to server 3, fragments {1, 2, 4, 8, 9, 10, 11, 13, 14, 17,

19, 20} to server 4, and fragments {1, 3, 6, 8, 10, 13, 16, 19} to server 5. The utilizations

of the five servers are 96%, 94%, 98%, 55%, and 39%, respectively.

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

48 Copyright ⓒ 2017 SERSC Australia

3. CONFIG: A Solution Procedure based on Formulation (DDDP2)

While formulation (DDDP2) is equivalent to formulation (DDDP1), it hides the fact

there is an exponential number of configurations, and enumerating all configurations is

not a reasonable undertaking. Therefore, we describe a randomized greedy algorithm

(RGA) to solve the distributed database design problem and, as a by-product, to identify

good configurations which can be fed into formulation (DDDP2) to solve the problem. A

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 49

simple deterministic greedy algorithm involves sequentially selecting a pair of user view

and server and allocating the user view to the server. The criterion used in the selection is

the net increase in overall cost per unit of demand of the user view. For every user view,

we identify the least expensive server to assign the user view to taking into account the

fragments that are already allocated to the server. From all pairs of user views and servers,

we choose the “best” pair of user view and server that produces the least increase in

overall cost per unit of demand of the user view. The heuristic finishes when we assign all

user views to the servers. To escape a possible local optimum, we randomize the search

by perturbing the costs as follows. If we let ∆𝑖𝑗=Increase in total cost if user view i is

allocated to server j, then we use ∆̃𝑖𝑗= (1 + 𝜀𝑖𝑗)∆𝑖𝑗 in selecting the next pair of user view

and server, where i is a random number from the uniform distribution U[-0.05, 0.05].

An outline of the algorithm RGA is described below.

The following notation is used in describing the algorithm.

C overall cost, initially TC=0

�̅� set of un-assigned user views, initially �̅� = 𝑁

�̿� set of processed user views (i.e., user views assigned to servers), initially �̿� = ∅

𝐹𝑗 set of fragments allocated to server 𝑗 ∈ 𝑀, initially 𝐹𝑗 = ∅

�̅�𝑗 remaining capacity of server 𝑗 ∈ 𝑀, initially �̅�𝑗 = 𝑄𝑗

Randomized Greedy Algorithm (RGA):

 Let 𝐵∗ be the best feasible solution found until now.

Repeat 500 times

Step 1: Initialize

 𝐶 = 0, �̅� = 𝑁, �̿� = ∅, 𝐹𝑗 = ∅, �̅�𝑗 = 𝑄𝑗 ∀𝑗 ∈ 𝑀, B is the solution to construct.

Step 2: User view selection and allocation

While �̅� ≠ ∅ do

 For evey pair (𝑖, 𝑗) ∈ �̅� × 𝑀, compute ∆̃𝑖𝑗= (1 + 𝜀𝑖𝑗)∆𝑖𝑗; the remaining capacity

of server j (i.e., 𝑅𝑗) should large enough to handle the additional retrieval and

update demand

 Select the pair (𝑖∗, 𝑗∗) with the smallest ∆̃𝑖𝑗. Assign user view 𝑖∗ to server 𝑗∗.

 Update

 Current solution B.

 𝐶

 �̅� = �̅�\{𝑖∗},

 �̿� = �̿� ∪ {𝑖∗},

 𝐹𝑗∗ = 𝐹𝑗∗ ∪ 𝐹𝑖
′ ∪ 𝐹𝑖

"

 �̅�𝑗∗

End While

If solution B has a better objective function value than solution 𝐵∗, then 𝐵∗ = 𝐵.

End Repeat

Retain 𝐵∗ as the best feasible solution and stop.

During the execution of the algorithm RGA, many distinct server configurations are

produced; each configuration identifies a set of fragments to store on a server. Such

configurations can be fed into formulation (DDDP2) which can be solved with a standard

branch & bound algorithm to produce theoretically the best feasible solution to the

original problem using those configurations. We refer to this procedure as algorithm

CONFIG. Given that the subset of configurations employed does not necessarily contain

the complete set of best configurations, the optimal solution to the distributed database

design problem (DDDP1) is not ensured. In order to expedite the branch and bound

algorithm, we limit the number of configurations used in formulation (DDDP2) to 200

which are part of the "best" solutions generated during the application of RGA. The reason

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

50 Copyright ⓒ 2017 SERSC Australia

for setting up this limit is that we observed that when we solve model (DDDP2) using all

the distinct configurations generated by RGA the solution quality deteriorates significantly

because the solver has to spend a lot of time evaluating all those configurations rather

than concentrating on the most promising ones.

We illustrate the performance of the two formulations using the small example

described earlier. The solution produced using formulation (DDDP1) is optimal with a

total cost of 51908 and consits of assigning user views {6, 8, 9, 12, 15, 20} to server 1,

user views {7, 11} to server 2, user views {2, 3, 5, 10, 13, 14, 16} to server 3, and user

views {1, 4, 17, 18, 19} to server 5, and allocationg fragments {1, 2, 3, 5, 6, 11, 13, 14,

15, 16, 18, 19, 20} to server 1, fragments {1, 3, 5, 7, 9, 15, 20} to server 2, fragments {1,

2, 3, 6, 7, 8, 10, 13, 14, 16, 17, 18, 19, 20} to server 3, and fragments {1, 4, 5, 6, 7, 8, 9,

10, 11, 12, 14, 17, 19, 20} to server 5. The utilizations of the five servers are 99%, 29%,

98%, 0%, and 97%, respectively. The solution produced using algorithm CONFIG has a

total cost of 52358, corresponding to an optimality gap of only 0.87%, and it consits of

assigning user views {6, 8, 9, 12, 15, 20} to server 1, user views {7, 11} to server 2, user

views {1, 3, 5, 10, 13, 14, 16} to server 3, and user views {2, 4, 17, 18, 19} to server 5,

and allocationg fragments {1, 2, 3, 5, 6, 11, 13, 14, 15, 16, 18, 19, 20} to server 1,

fragments {1, 3, 5, 7, 9, 15, 20} to server 2, fragments {1, 2, 3, 6, 7, 8, 10, 13, 14, 16, 17,

18, 19} to server 3, and fragments {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 19, 20} to

server 5. The utilizations of the five servers are 99%, 29%, 95%, 0%, and 99%,

respectively.

4. Computational Study and Results

We run a computational study to assess the effectiveness of the proposed algorithm in

solving the distributed database design problem (DDDP). We coded the algorithm in

Visual Studio .Net and run on Intel Core i7 with 3.6 GHz and 8 GB of RAM. We describe

here the process of generating the test problems and present and discuss the results.

4.1. Test Problems

We explore the effect of various parameters of the problem, namely number of user

views, number of fragments, and number of servers on the effectiveness of the solution

procedures using the test problems. We varied the number of user views between 60 and

180, the number of fragments between 10 and 30, and the number of servers between 5

and 25. Ten instances in each category with similar structure were created randomly and

solved so as to assess properly the effectiveness of the solution methods on that problem

structure. We used in each problem instance three categories of user views of equal sizes:

small (S), medium (M), and large (L). Each small user view 𝑖 ∈ 𝑁 requires a number of

fragments 𝑛𝑖 drawn uniformly from [0.1|A|,0.2|A|], where |A| is the total number of

fragments in the database and the retrieval demand 𝑑𝑖
′ is uniformly distributed between

[20𝑛𝑖, 40𝑛𝑖]. Each medium user view 𝑖 ∈ 𝑁 requires a number of fragments 𝑛𝑖 drawn

uniformly from [0.2|A|,0.3|A|] and the retrieval demand 𝑑𝑖
′ is uniformly distributed

between [50𝑛𝑖, 70𝑛𝑖]. Each large user view 𝑖 ∈ 𝑁 requires a number of fragments 𝑛𝑖

drawn uniformly from [0.3|A|,0.5|A|] and the retrieval demand 𝑑𝑖
′ is uniformly distributed

between [80𝑛𝑖, 100𝑛𝑖]. For each user view 𝑖 ∈ 𝑁, the number fragments that need to be

updated is 0.5𝑛𝑖 and the update processing demand 𝑑𝑖𝑘
′′ is drawn uniformly from [10,20]

if the user view is small, from [25,35] if the user view is medium, and from [40,50] if the

user view is large. The capacity of each server is set to ⌊1.5 ∗ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐷𝑒𝑚/|𝑀|⌋, where

OverallDem is the total retrieval and update demands of all user views. The

communication and processing cost (𝐶𝑖𝑗
′) of retrieval transactions of user view 𝑖 ∈ 𝑁

when it is assigned to server 𝑗 ∈ 𝑀 is set equal to 𝑑𝑖
′ ∗ 𝑐𝑖

′, where 𝑐𝑖
′ is a uniform random

number in [2,6]; the values of 𝐶𝑖𝑘𝑗
′′ are set equal to 𝑑𝑖𝑘

′" ∗ 𝑐𝑖𝑘
" where 𝑐𝑖𝑘

" is a uniform

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 51

number in [1,2]; and the values of 𝐶𝑘𝑗 were generated from the uniform distribution

[50,1000].

4.2. Results and Analysis

The results shown in tables 2-5 are the averages of the ten instances in each category.

In Tables 2, 3 and 5, “Iteration Count” represents the number of simplex iterations, “Node

Count” represents the number of nodes in the branch & bound tree, and “Gap” is the

optimality gap between the best feasible solutions and lower bounds. Table 2 reports the

results from solving the distributed database problem with formulation (DDDP1) by

running CPLEX with the default setting for two hours. As shown in the table, the

difficulty of the problem increases in general when its size increases as indicated by the

higher optimality gaps. For instance, when the number of servers is 5, the optimal

solutions were obtained for all test problems, and when the number of servers is 25, the

average gap jumped to 53%. This confirms that it is difficult to solve the problem

optimally, or even approximately, using the original formulation (DDDP1).

Table 3 reports the results of the tests to evaluate the effectiveness of solving the

problem using algorithm CONFIG which incorporates the set of fragment combinations

produced by the heuristic RGA into formulation DDDP2. Each combination defines a

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

52 Copyright ⓒ 2017 SERSC Australia

subset of fragments that can be allocated to a server. The average number of such

combinations used in formulation DDDP2 is 38.1. The distributed database design

problem (DDDP2) is computationally less difficult than the problem with formulation

(DDDP1). The average optimality gap for the solutions obtained using CONFIG is only

2.83%. However, it is worth noting that the problem with formulation (DDDP2) is still

NP-complete, and hence its complexity can grow drastically with problem size. Even

though a small number of configurations are used in formulation (DDDP2), the

effectiveness of this formulation is on average better than that of formulation (DDDP1).

Indeed, the solutions produced using CONFIG are on average 2.20% cheaper than the

solutions produced using formulation (DDDP1). Algorithm CONFIG based on

formulation (DDDP2) outperforms formulation (DDDP1) when the number servers

increases. For instance, when there are 5 servers, both CONFIG and CPLEX applied to

(DDPP1) obtained optimal solution; however, when there are 25 servers, the costs of the

solutions produced using CONFIG are on average 6.56% lower than those produced using

formulation (DDDP1).

Table 4 sheds some light on the characteristics of solutions obtained using CONFIG

such as allocation of cost among its three components, server capacity utilization, number

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 53

of fragments stored in the servers, and number of user views allocated to the servers.

When the number of servers increases, the contributions of the update and fragment

components increase at the expense of the retrieval component. For example, for test

problem with 180 user views, when the number of servers is 5, the shares of the retrieval,

update and fragment components are 79.9%, 12.3%, and 7.8%, respectively; whereas

those numbers become 35.9%. 39.3%, and 24.8% when the number of servers is 25. In

addition, when the number of servers increases, server capacity utilization increases, and

the number of user views per server decreases; but, the number of fragments per server

does not change significantly.

Table 5 shows the computational results of the performance of algorithm CONFIG as a

results of varying the number of fragments in the database. The table also shows that

CONFIG produced solutions which have 2.71% lower costs than those produced using

formulation (DDDP1). This outperformance seems to improve when the number of

fragments increases. For instances, when there are 10 fragments in the database, solutions

produced using CONFIG have on average 1.32% lower costs than solutions produced

using formulation (DDDP1). However, when the number of fragments increases to 30,

solutions produced using CONFIG have on average 4.86% lower costs than produced

using formulation (DDDP1.

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

54 Copyright ⓒ 2017 SERSC Australia

5. Conclusion

A distributed database should be properly designed to benefit from the potential

advantages it offers. Effective distribution of the database fragments plays a crucial role

in the functioning of the database, affecting both cost and performance. We developed

optimization models for the problem that deals simultaneously with two major design

issues, namely which fragments to replicate, and where to store those fragments and

replicas. Since the problem is very complex, we developed a new formulation of the

problem where every server is assigned a fragment combination from a subset of

combinations properly produced by a randomized greedy algorithm in which the

randomization feature allows the exploration of a larger search space. We conducted an

elaborate computational study which shows that the reformulation is far more effective

than the original formulation especially for large size instances.

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

Copyright ⓒ 2017 SERSC Australia 55

References

[1] H. I. Abdalla, “A New Data Re-allocation Model for Distributed Database Systems”, International

Journal of Database Theory and Application vol. 5, no. 2, (2012), pp. 45-60.

[2] P. R. Bhuyar, A. D. Gawande and A. B. Deshmukh, “Horizontal Fragmentation Technique in

Distributed Database”, International Journal of Scientific and Research Publications, vol. 2, no. 5,

(2012), pp. 1-7.

[3] I. O. Hababeh, M. Ramachandran and N. Bowring, “A High-Performance Computing Method for Data

Allocation in Distributed Database Systems”, The Journal of Supercomputing, vol. 39, no. 1, (2007), pp.

3-18.

[4] Y. F. Huang and C. J. Lai, “Integrating Frequent Pattern Clustering and Branch-and-Bound Approaches

for Data Partitioning”, Information Sciences, vol. 328, (2016), 288-301.

[5] IBM ILOG CPLEX Optimization Studio 12.5, IBM (2012).

[6] K. Karlapalem and N. M. Pun, “Query-Driven Data Allocation Algorithms for Distributed Database

Systems”, International Conference on Database and Expert Systems Application, Springer Berlin

Heidelberg, (1997), pp. 347-356.

[7] S. Menon, “Allocating Fragments in Distributed Databases”, IEEE Transactions on Parallel and

Distributed Systems, vol. 16, no. 7, (2005), 577-585.

[8] M. T. Ö zsu and P. Valduriez, “Principles of Distributed Database Systems”, Springer Science &

Business Media, (2011).

[9] G. Sen, M. Krishnamoorthy, N. Rangaraj and V. Narayanan, “Facility Location Models to Locate Data

in Information Networks: A Literature Review”, Annals of Operations Research, vol. 246, no. 1, (2015),

pp. 1-36.

[10] G. Sen, M. Krishnamoorthy, N. Rangaraj and V. Narayanan, “Exact Approaches for Static Data

Segment Allocation Problem in an Information Network”, Computers & Operations Research, vol. 62,

(2015), pp. 282-295.

[11] S. Song, “Design of Distributed Database Systems: An Iterative Genetic Algorithm”, Journal of

Intelligent Information Systems, vol. 45, no. 1, (2015), pp. 29-59.

[12] V. C. Storey and R. C. Goldstein, “A methodology for creating user views in database design”, ACM

Transactions on Database Systems, vol. 13, no. 3, (1988), pp. 305-338.

Author

Ali Amiri received the MBA and Ph.D. degrees in Management

Science/information systems from The Ohio State University,

Columbus, OH, in 1988 and 1992, respectively. He is a Professor

of Management Science and Information Systems at Oklahoma

State University. His research interests include data

communications, electronic commerce, data mining, and database

management. His papers have appeared in a variety of journals

including IEEE Transactions on Communications, European

Journal of Operational Research, Computers and Operations

Research, INFORMS Journal on Computing, Decision Support

Systems, ACM Transactions on Internet Technology, Information

Sciences, and Naval Research Logistics.

International Journal of Database Theory and Application

Vol.10, No.8 (2017)

56 Copyright ⓒ 2017 SERSC Australia

