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Abstract 

The classification problem is one of most important problems in Artificial Intelligence 

(AI) Research. Classification is used in various fields such as speech recognition, image 

classification, word prediction in text. Deep Neural Network (DNN) is the most commonly 

used for the classification. However, DNN requires a lot of learning time because of its 

deep network structure and lots of data. At this time, if a new feature or a new category 

class (new data) is added, the existing data on which learning has been completed is also 

re-learned. And the same learning time (very long time) as the previous learning time is 

needed. Therefore, in this paper, we proposes Weight Initialization-based Partial 

Training (WIPT) algorithm, that decompose the existing weight matrix through Singular 

Value Decomposition (SVD) and generate a latent matrix with information learned by the 

existing model. In order to increase the learning efficiency, we use a strategy of learning 

new features or classes by initializing newly added weights to appropriate values. Finally 

we verify the efficiency of the proposed algorithm by comparing it with the existing whole 

learning. 

 

Keywords: We would like to encourage you to list your keywords in this section 

 

1. Introduction 

The classification problem is one of the most important problems in Artificial 

Intelligence (AI) Research [1]. In a real environment, classification problems have a large 

impact on human activities. In order to perceive contexts in contextually or make context-

sensitive decisions, humans first classify the current situation using available information 

[2]. In artificial intelligence, the way a machine determines behavior for a situation is 

similar to human’s behavior. AI first classifies which category of data belongs to a given 

attribute or feature value. Thereafter, the actions that AI can take depends on the class in 

which the data is classified.  

Classification is used in various fields such as speech recognition, image classification, 

word prediction in text information. In order to solve this classification problem, pattern 

recognition is important for patterning given information and matching patterns to 

categories. Typical pattern recognition is generalizing the information given through a 

specific formula and making it a pattern, and it has been difficult to generalize the feature 

values [3]. However, recent development of Deep Neural Networks (DNN) has helped 

solve the problem of pattern recognition. 

DNN consists of a deep layer of basic neural networks. In DNN, pattern recognition is 

a high-level abstraction of data on feature values as they pass through several layers, and 

it means finding a representative pattern representing data through abstraction [4]. These 
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characteristics led to an image recognition competition called ImageNet Challenge, which 

showed a high performance of 97 percent [5-7]. In speech recognition, especially Large 

Vocabulary Continuous SR (LVCSR) task, the performance is higher than that of existing 

machine learning based pattern recognition [8-10]. 

DNN guarantees high performance in the classification problem through pattern 

recognition. In general, in order for the DNN model to have high accuracy, it is necessary 

to acquire a lot of training data and increase the DNN layer depth and network size. At 

this time, time required for learning increases due to large data. And the increase of the 

network size exponentially increases the number of weight parameters inside the DNN 

and the learning time also increases by increasing the number of weight parameters. So, if 

a new feature or a new category class is added, the existing data on which learning has 

been completed is also re-learned, and re-learning time equivalent to the existing learning 

time is required. 

Therefore, in this paper, we propose a Weight Initialization based Partial Training 

(WIPT) algorithm that initializes newly added weights to learn only newly added features 

and parameters in order to improve the temporal efficiency of learning. WIPT algorithm 

initializes the weight parameters for newly added data to appropriate values, and learns 

only newly added data and converges to the optimal point within a short time. Therefore, 

we decompose the existing learned weight matrix through Singular Value Decomposition 

(SVD) and generate a new weight matrix to make a latent matrix containing information 

learned by the existing model. 

The rest of this paper is organized as follows. The existing related work in this research 

field is introduced in Section 2. The WIPT algorithm is presented in Section 3. And 

Section 5 presents a performance evaluation between WIPT algorithm and whole learning. 

Finally, we conclude our remark in Section 5. 

 

2. Related Work 
 

2.1. The Progress of Neural Network 

Figure 1. Shows a typical Feed-Forward Neural Network (FNN). FNN consists of three 

parts: input layer, hidden layer, and output layer. The input layer is responsible for 

transferring learning data to the network. The hidden layer is found representative pattern 

by abstracting the input data. Finally, the output layer shows the result of classifying the 

input data. All layers are fully connected with the weighted parameters and learning in the 

neural network means adjusting the weight parameters and learning in the neural network 

means adjusting the weight parameters to reduce the difference between the output and 

the actual result through the model. 
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Figure 1. Typical Structure of Neural Network 

2.2. Recent Research of Fast Learning 

In DNN, the research on fast learning can be classified into two methods: fast 

convergence to optimal point and meta learning strategy. Recent research has been 

conducted to prevent overfitting by converging through a small number of iterative 

learning operations (epoch).  

First at all, the optimization method is an approach to adaptively adjust a fixed learning 

rate. This objective is to change learning rate largely away from the optimal point and to 

change the learning rate to a small value near the optimal point, so that it can converge to 

the optimal point with a small epoch. J. Duchi poposed an algorithm called Adagrad [11]. 

The poposed algorithm continuously keeps track of the squared value of the gradient 

vector and performs a kind of standardization function for each weight at the time of 

parameter update through the slope vector. At this time, the weight parameters having a 

high slope value decrease the effective learning rate and the weight parameters having a 

low slope value or less updating value increase the real learning speed. G. Hinton found 

that the Adagrad algorithm has a disadvantage that the weight parameter increases or 

decreases radically in one direction or stops learning too quickly because the learning is 

monotonic, and RMSprop [12] is proposed. RMSprop showed that the problem can be 

solved by change Adagrad algorithm to a moving average of the gradient vector. Thus, 

the actual learning speed is similar to that of Adagrad, but there is no monotonically 

decreasing in learning rate. D.Kingma recently proposed the Adam algorithm [13]. The 

Adam algorithm works as if we added a momentum term to RMSprop to speed up the 

learning rate of RMSprop. This leads to a better convergence speed than the RMSprop 

algorithm on average. In the case of this optimization methodology, since the initial value 

of the weight is greatly affected, it takes a considerable time to converge the optimal point 

when the initial value is biased. 

And seconds, the meta learning strategy is a subroutine integrated into other algorithms 

to complement the optimization method. X.Glorot [14] found that learning using a 

random initialization method in the DNN using the sigmoid activation function does not 

work because of the average value, and he proposed the Xavier initialization method. 

Xavier initialization improves the convergence speed of neural networks by using a 

method of distributing the neurons of one layer to approximately the same output 

distribution through the dispersion correction method. This can prevent bias of weights 

that may occur through initialization by assuming that the output of the neural network to 

the input data has the same identically distribution. After that K. He [15] proposed He’s 
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initialization, which is a weight initialization method in a neuron unit using the ReLu 

activation function. He’s initialization allowed the asymmetry of the neurons using the 

ReLu activation function by fixing the variance of the neurons to 2/n  

Recently, many studies have been conducted to accelerate the learning speed of deep 

learning [11-15]. However, for partial learning of newly added data, it is importanct not 

only to quickly converge to the optimal point but also to set an initial value for the weight 

parameters to be added appropriately. 

 

3. SVD based Weight Initialization 

This chapter describes what WIPT algorithm proposed in this paper. And this chapter 

consists of four parts and describes the motivation for the WIPT and defines the cost 

function for parameter initialization. Then, the update rule for the gradient descent method 

is drived based on the defined cost function. Finally, the procedure of the WIPT algorithm 

is described. 

 

3.1. Motivation 

 

 

Figure 2. Concept of Weight Initialization 

G. E. Hinton found that well-defined parameters in DNN shows very good learning 

efficiency. It is important to initialize weight parameters through the study of Hinton, and 

it can be assumed that weight parameters of DNN that has been learned already has 

information on the previous training data. The idea of this paper start from the above 

assumption. If a new feature is added, new weight parameters are created that is linked to 

the neuron as shown in the Figure 2. If the new weight parameters is generated based on 

the already learned parameter instead of the random initialization, it will contain the 

existing characteristic and it will be able to converge quickly to the optimal point even if 

only the newly added data is learned. If we simplify problem to obtain added new edges, 

the problem is to extend new matrix of m x (n +1) as in Figure 2 when the existing matrix 

X of adjacent layer is m x n. However, at that time we have restrictions for example if a 

learned neural network model was well classified training data, the learned weight 

matrices already have information regarding training data. Accordingly, the new matrices 

should have same characteristics as existing matrix X as a latent matrix. To do this end, 

we use Singular Value Decomposition (SVD) [3] which used to extract singular values 

and also estimate similar based on cost function. 
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Figure 3. Concept of Weight Initialization 

Therefore, the procedure to initialize the newly created weight parameters is shown in 

Figure 3. First, the existing learned weight parameters are decomposed using SVD. Then, 

the matrix to be newly generated is decomposed using SVD, and then the diagonal 

matrices of the two matrices are compared. The cost function then reduces the difference 

between two diagonal matrices, so, that information on the data of the existing weight 

parameters are also given a new weight parameters. Thereafter, weight parameter 

initialization including information on existing data is possible by copying only the 

portion of the new weight parameters. 

 

3.2. Cost Function 

In this section, we explain the cost function that can check the degree of similarity 

between the existing matrix and the newly added matrix.  

In order to obtain , we divided existing matrix into 3 matrices including left singular 

matrix, singular value matrix, and right singular matrix (U, S, V) through formula (1). 

 

𝑋 = 𝑈𝑆𝑉𝑇                  (1) 

 

Where U is left singular matrix, S is singular matrix, and V is right singular matrix. 

After that we induced formula (2) using characteristics, which multiply left and right 

singular matrix of SVD by transposed matrix in order to obtain identity matrix.  

 

𝑆 = 𝑈𝑇𝑋𝑉                    (2) 

 

Accordingly, formula (2) is became standard in order to create matrix   in which we 

modified existing SVD to obtain singular value. 

The created matrix S is a diagonal matrix and it has unique value regarding right and 

left singular matrix. From this, we can estimate matrix   with added new weight matrices 

and then obtain matrix via matrix. Accordingly, the cost function which shows difference 

between exiting matrix 𝑋 and crated new matrix 𝑋̂ obtained by formula (3). At this time, 

g() is summation of the diagonal elements of matrix. 

𝑐𝑜𝑠𝑡 = 𝐶 = 
1

2
(𝑔(𝑆) − 𝑔(𝑆̂))2                 (3) 
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3.3. Update Rule 

In this section, gradient descent method is used to update the new matrix 𝑋̂ to reduce 

the difference between the original weight matrix 𝑋 and the newly generated matrix 𝑋̂. 

Therefore, the update rule is derived using equation (3) and the cost of equation (3) is 

reduced through repeat of update rule. That means the newly generated matrix 𝑋̂ is getting 

closer to the original matrix 𝑋. In order to update the direction to reduce the cost, we need 

to know how the cost changes with the amount of change the newly generated matrix 𝑋̂. 

And use of a partial derivative can be expressed as equation (4) in order to show the 

change of cost according to the change of matrix 𝑋̂.  

 
𝜕𝐶

𝜕𝑋̂
                     (5) 

 

Because we are only concerning ourselves with the 𝑋̂, so we can substitute the cost. 

And for convenience of formula derivation, the g() function is replaced by the letters S 

and 𝑆̂. 

 

𝜕𝐶

𝜕𝑋̂
=

𝜕(
1

2
(𝑆−𝑆̂))

2

𝜕𝑋̂
                     (6) 

 

And equation (7) shows split into two derivatives using chain rule. And to find left 

derivative, we simply apply the general power rule. 

 

=
𝜕(

1

2
(𝑆−𝑆̂))

2

𝜕𝑆̂

𝜕𝑆̂

𝜕𝑋̂
= −(S − 𝑆̂)

𝜕𝑆̂

𝜕𝑋̂
                 (7) 

 

In order to derive the final update expression, 𝑆̂ must be partially differentiated by 𝑋̂. 𝑆̂ 

is a scalar value according to the sum of the diagonal elements of matrix. Therefore, we 

can derive the gradient function for equation (5) by differentiating the scalar value with a 

matrix. Equation (8) represents the gradient function for equation (5).  

 

𝜕𝐶

𝜕𝑋̂
= −(S − 𝑆̂)

[
 
 
 

𝜕𝑦

𝜕𝑥11
⋯

𝜕𝑦

𝜕𝑥𝑚1

⋮ ⋱ ⋮
𝜕𝑦

𝜕𝑥1𝑛
⋯

𝜕𝑦

𝜕𝑥𝑚𝑛]
 
 
 

                    (8) 

 

Gradient descent method indicates that the change to 𝑋̂ should be proportional to the 

gradient. In order to select the proportional constant alpha and remove the minus sign to 

move it in the negative direction of the gradient to minimize the error, the final equation is 

as shown in (9)  

 

∆𝑋̂ = 𝛼(𝑆 − 𝑆̂) 
𝜕𝑆̂

𝜕𝑋̂
                   (9) 

 

3.4. Procedure of WIPT 

Table 1 shows how 𝑋̂ is initialized using the cost function and update rules.  
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Table 1. Pseudocode of WIPT Algorithm 

01  Input : 

02      existing weight matrix 𝑋 

03  Output : 

04      extended weight matrix 𝑋̂ 

05 

06  [S, V, D] = SVD(𝑋) 

07  Random initialization to 𝑋̂ 

08  While ( cost < ε ) 

09      [𝑆̂, 𝑉̂, 𝐷̂] =SVD(𝑋̂) 

10      calculate to cost 

11          if (cost < ε ) 

12              break; 

13      gradient descent to ∆𝑋̂ 

14    Copy 𝑋 to 𝑋̂ 

 

Lines 1 to 4 represent the input and output of the algorithm. The input of the algorithm 

is the current weight matrix 𝑋 and the output is the expansion matrix 𝑋̂ that has been 

initialized. Line 6 decompose the existing matrix through SVD. And line 7 initializes the 

matrix 𝑋̂ before updating to a random value between 0 and 1. Lines 8 to 13 show the 

process of reducing the cost of the matrix 𝑋̂ and updating it. First, 𝑋̂ is decomposed into 

SVD, and then the cost of the current matrix 𝑋 and matrix 𝑋̂ is calculated cost is less than 

ε, escape the loop and copy the existing matrix 𝑋 to the newly matrix 𝑋̂. In this way, an 

extended matrix 𝑋̂ is generated, which is similar to an existing matrix and has existing 

information. 

 

4. Experiments and Results 

For the experiments, we compare with whole-learning and WITP algorithm. Data set 

which used for learning use MNIST data set of UCI. The MNIST data set [16] include 16 

features for recognition of character. The procedure of experiments is as bellows: 

 

a. We extract features regarding A and E from the MNIST data set 

b. The DNN learn only 15 features regarding A and E. 

c. We add 1 feature into the DNN and then compare with whole-learning and 

partial-learning. 

 

Parameters of neural network for creating model are same as below 

 

a. Neural networks has 15 input units, 8 hidden units, and 2 output units. 

b. Hyperparameters: 

- Learning rate : 0.001, momentum : 0.5, layer : 5. 

c. For learning, the neural network use backpropagation and Epoch is set as 500 

times. 
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Table 1. Average Results of Two Methods 

 Time Accuracy 

Whole-Learning 23.078 90.725 

Partial-Learning 10.785 83.247 

 

Table 1 shows the average time and accuracy of the 100 times model generated for 

whole-learning and WIPT algorithm. As shown Table 1, the proposed WIPT algorithm 

has lower accuracy value than existing whole-learning. This is because the proposed 

WIPT algorithm has updating weight whenever it learns added new features. However, 

the proposed WIPT algorithm only added new features without learning whole training 

data. Accordingly, it has lower learning time than whole-learning. 

 

 

Figure 4. Accuracy Evaluation 

Figure 4. shows the change in accuracy with the number of epoch. Typical neural 

networks shows low accuracy when there are not many epoch times. And as the number 

of epoch increases, it converges with high accuracy. This experiment is also same. But, in 

the case of the WIPT algorithm, the accuracy increases rapidly at a low epoch, and then 

the accuracy decreases at intervals of 150 ~ 200 epoch. It is not shown in the graph, if we 

epoch about 750 times, we can see that the accuracy is similar to that of whole learning. 

This is because when the number of epoch is small at the beginning, it is presumed that 

the weight is largely adjusted because the magnitude of the error with respect to the 

weight of the newly added feature is large, and when the fine tune of the newly added 

weight is completed, every weight is fine tune. 

 

5. Conclusion 

In this paper, we propose a WIPT algorithm to expand the latent matrix based on 

existing weight matrices to learn only newly added features and parameters in order to 

improve the efficiency learning. The proposed algorithm aims to maximize the temporal 
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efficiency of learning by learning only newly added data as a potential matrix with newly 

existing information. In this way, data can be learned in a short time than whole learning, 

which re-learns the whole data. However, there is a problem that the accuracy is lower 

than the existing learning method. In order to improve to the existing accuracy level, it is 

necessary to spend learning time similar to the whole learning. Also, it takes some time to 

decompose the matrix with SVD and update it using the gradient descent method. 

Therefore, future work is needed to overcome the above problems.  
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