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Abstract 

The symbol table used in the existing compiler stores one symbol information into a 

plurality of sub tables, and the abstract syntax tree necessary for generating symbols has 

a binary tree structure composed of a single data structure node. This structure increases 

the source code complexity of modules that generate symbols and modules that reference 

symbol tables, and when designing a compiler for a new language, it is necessary to 

newly design an abstract syntax tree and a symbol table structure considering the 

characteristics of the language.  

In this paper, we apply the object-oriented principle and visitor pattern to improve the 

abstract syntax tree structure and design and implement the symbol table for the object - 

oriented language. The design of AST (abstract syntax trees) with object-oriented 

principles and Visitor patterns reduces the time and cost of redesign because it makes it 

easy to add features of the language without the need to redesign the AST (abstract syntax 

tree) for the new object-oriented language. In addition, it is easy to create a symbol 

through the Visitor pattern. Symbol tables using the open-close principle and the 

dependency inversion principle can improve the code reusability of the source code that 

creates and refer to the table and improve the readability of the code. 
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1. Introduction 

A compiler is a system software that translates user-written programs into machine-

readable instructions that can be executed by a computer. Because of the nature of the 

compiler, the development of a new compiler is required whenever the language and the 

platform are different, various studies have been conducted on compiler modularization. 

Despite these researches, however, the symbol table for storing and managing symbol 

information was made up of a number of sub-tables and was a complicated structure 

referring to each other. In addition, since the abstract syntax tree used to represent the 

characteristics of the language and generate symbols is a binary tree structure representing 

all kinds of nodes with a single data structure, it is necessary to change the overall 

structure of the tree when a new language feature is added, There has been a problem that 

a whole modification of the routines using the tree is necessary. Symbol generation 

process, which collects and completes symbol information, also analyzes the abstract 

syntax tree through complex conditional statements and recursive calls, so the complexity 

of the compiler source code is still high and maintainability is poor [1,2]. 

In order to solve this problem in this paper, we have improved the structure of the 

abstract syntax tree by applying the object-oriented principle and Visitor pattern to easily 

maintain the characteristics of the existing object-oriented language and to easily add new 

characteristics. In order to reduce the complexity of reference routines, we designed and 

implemented a symbol table based on object-oriented principles. Improved abstract syntax 

trees make it easy to add properties without modifying existing tree structures when 
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creating a tree for a language of the same object-oriented language. The process of 

generating the symbol using the object-oriented principle traverses the abstract syntax tree 

node through the Visitor class, performs semantic analysis to collect symbol information 

without additional conditional statements, and inserts the symbol information into the 

symbol table. Since it is expressed by only two tables, it is possible to reduce the source 

code complexity of the process of generating a symbol and the process of referring to a 

symbol table. 

 

2. Researches 
 

2.1. AST (Abstract Syntax Tree) 

The compiler expresses the program in a tree structure in order to express the meaning 

of the input program more effectively, and it is easily reconfigured according to the 

characteristic of the code. Parse tree is one of these tree representation methods. However, 

because the parse tree contains a lot of unnecessary redundant information, it is 

inappropriate for intermediate languages and requires a more efficient method. Therefore, 

the abstract syntax tree (AST) is an expression method that removes unnecessary 

information from the parse tree. The AST node is divided into a terminal node and a non-

terminal node. A terminal node represents a constant or a variable, and a non-terminal 

node represents an AST operator. The operands of one operator are bound to child nodes 

and are organized in a subtree form with their operator nodes. Figure 1 shows the Figure 1 

shows an example of an AST for the integer type variable x. 

 

 

Figure 1. Example of an AST for the Integer Type Variable x 

 2.2. Visitor Pattern  

Visitor patterns, one of the software design patterns, allow you to add new behavior to 

the object structure without modifying the existing structure by separating the structure 

and function of the object. It is designed in such a way that a separate visitor class is 

created by collecting the functions of each class and each object is circulated by the 

visitor class. The visitor pattern is suitable for cases where the structure of the object does 

not change well, and is also suitable when additional functions are required in the future. 

Regardless of the type or structure of the object, you can use the Visitor object to perform 

the function anywhere you have an interface for the visit. Figure 2 shows the Visitor class 

of the visitor pattern visiting each element.  
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Figure 2. Visitor Pattern Visiting Each Element 

 2.3. Code Metrics 

A code metrics is a measure of the quality of source code quality. It includes 

maintenance index, class linkage, inheritance level, number of lines of code, and halstead 

metrics. A maintenance index is a measure of the relative ease of maintenance of a code 

with a value between 0 and 100. Numerical values are calculated using the number of 

lines of code, program volume, and cyclic complexity. The larger the value, the more 

convenient the maintenance work. The color value can be set according to the numerical 

value, and the ease of maintenance of the code can be visually judged. 

Class coupling metrics measure the degree of association of classes by parameters in a 

class, local variables, return types, method invocations, and interface implementations. 

The lower the degree of class coupling, the higher the cohesion, which means that the 

higher the degree of coupling, the more difficult it is to maintain the source code. 

Inheritance level refers to the number of class definitions that extend to the root in the 

class hierarchy. The more complex the hierarchy, the more difficult it is to determine 

where certain methods and fields are defined or redefined. 

The number of lines of code is a measure of the number of lines in the source code, 

which tells you how much work is done on the method, and the higher the number, the 

more difficult it is to maintain. Circular complexity is a metric developed by McCabe in 

1976 that measures the complexity by the number of paths based on a control flow graph 

that represents the logic flow of the program. It is easy to compare different programs by 

measuring the complexity of the source code and presenting the result as a single value. 

Numbers are calculated based on the number of control statements. 

Halstead metrics is an index of quantitative complexity based on the number of 

operators and operands in source code. It was introduced by Maurice Howard Halstead in 

1977. Halstead metrics is a program that measures the program length, the number of 

program vocabulary, the program volume, the program's level of understanding of the 

program and its maintainability, and the effort required to understand and implement the 

program code. , And method and type, and the number of estimated bugs, which is the 

estimated value of the number of bugs that can occur in the package. 

To compare the analysis and improvement of the symbol table structure to which the 

object-oriented principle is applied, a code metric based on the control flow of the code is 

required. Typical metrics include a halstead metrics and cyclic complexity. Halsted 

metrics can obtain maintenance-specific values that can’t be calculated by cyclic 

complexity, but they are difficult to use in the program design stage because they are 

calculated based on the number of operators and operands. Also, unlike the cyclic 

complexity, which shows the complexity of the control flow, the control flow is not 

reflected, so the halstead metrics can be high even in source code without conditional 

statements. Therefore, we use the cyclomatic complexity based on control flow for 

analysis and evaluation of symbol table source code. 



International Journal of Database Theory and Application 

Vol.10, No.7 (2017) 

 

 

30   Copyright ⓒ 2017 SERSC 

3. AST Structure Improvement 

The structure of the AST (Abstract Syntax Tree) node used in the existing compiler 

expresses information of all terminals and non-terminal nodes as one structure. In this 

structure, the analysis module using the AST can classify the node type through the 

attribute of the node, and the analysis process according to the type can be performed. 

Therefore, the maintenance complexity of the source code is increased and the 

maintainability is degraded. The complexity of the AST analysis process affects the 

symbol generation process because of the structure of the compiler that generates symbols 

through the analysis of AST. To solve this problem, we designed the node structure of 

AST as layered object structure according to object orientation principle. 

The information of the AST node is represented as a class object. The hierarchical 

structure of the node is the highest class, and there exists the AST Node class and the non-

terminal Node class and the terminal node class which inherit it. Figure 3 shows the 

hierarchy of the AST nodes. 

  

 

Figure 3. Hierarchy Structure of the AST Nodes 
 

The terminal node class represents the terminal node information, and the node 

corresponding to the variable and constant information is defined by the corresponding 

class. The non-terminal node class classifies non-terminal nodes into child classes that 

represent information of non-terminal nodes. In this way, the node class classified 

according to each node information has a structure suitable to the principle of single 

responsibility. In addition, the AST Node class, which is the best parent class of a node, is 

defined as an abstract class so that it can observe the polymorphism and the liskov 

substitution principle in the semantic analysis step of analyzing the AST structure. The 

improvement of the AST structure does not require any additional cost since only the type 

of node generated in the same manner as the existing generation routine is changed into 

the hierarchical class without changing the generation routine. 

Figure 4 shows an example of the layered node structure of the AST structure in Figure 

2. The non-terminal node indicates the type of the non-terminal node by the name of the 

node, and the terminal node class indicates 'T:' meaning terminal, and the corresponding 

class is the terminal node class. 

 

 

Figure 4. Layered Node Structure of the AST Structure 
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4. Symbol Table Design 

We design a symbol table structure using object-oriented principles and design a 

hierarchical symbol class to store symbols according to the symbol table to which this 

principle applies. In addition, a type class for storing the necessary type information in the 

symbol is designed and a type table for managing the type object is designed.  

 

4.1. Hierarchical Design of Symbols  

The symbol table stores hierarchical symbol objects to obtain symbol information with 

minimum conditions. The symbol class is designed as a hierarchical structure that has the 

abstract class Symbol as its top class and has Variable, Field, Function, Method, and 

Parameter as subclasses. Unlike the existing symbol table structure, which stores symbols 

in multiple tables, the symbol table to which the object-oriented principle is applied stores 

symbol attributes as one of the subclasses of the symbol class in the hierarchical structure.  

Figure 5 shows the hierarchy of symbols. Each symbol subclass derived from Symbol 

class is a class for a node that represents the characteristics of a symbol among non-

terminal nodes. The nodes corresponding to the variable information are subclasses 

inheriting the Variable class, and the nodes having the function and method information 

inherit the Function and Method classes.  

 

 

Figure 5. Hierarchical Symbol Table Structure 
 

4.2. Symbol Table Structure  

The symbol table stores the symbol object as a value with the symbol name as a key. 

The attributes of a symbol are stored in a symbol defined as a subclass type of a symbol 

hierarchy applying the object-oriented principle, and symbol type information is 

referenced in a type table. When referring to a symbol table from the outside, a symbol is 

searched based on the symbol name. Since it is made up of objects corresponding to each 

kind of symbols, additional analysis of symbols is not necessary. Figure 6 shows the 

structure in which the symbol table has symbol names and symbol values.  

 

 

Figure 6. Symbol Table Structure 
 



International Journal of Database Theory and Application 

Vol.10, No.7 (2017) 

 

 

32   Copyright ⓒ 2017 SERSC 

4.3. Hierarchical Design of Type  

The type table is a table for managing symbol type information. The type is designed 

as a hierarchical structure having the abstract class Type as the top class as the symbol. 

Primitive, which is a subclass of Type, is a general type class such as Int and Char. It is 

composed of Reference class, which is a reference type, and UserDefined class, which is a 

user defined type such as Typedef, Interface, and Struct. Figure 7 shows the type 

hierarchy.  

 

 

Figure 7. Type Hierarchy Structure  
 

4.4. Type Table Structure 

The type table stores the name of the type as a key and the type object as a value. The 

type attribute is stored in a hierarchical type, and the type information stored in the type 

table is referred to when referring to the symbol type. If multiple types exist in one type 

information, such as a typedef, the type information is linked and managed in a list form. 

Figure 8 shows the structure for storing basic type objects in a type table.  

 

 

Figure 8. Type Table Structure 
 

4.5. Symbol Generator 

The symbol generator traverses the abstract syntax tree through the abstract syntax tree 

visitor class applying the visitor pattern structure, collects symbol information, inserts the 

symbol into the symbol table, and completes the symbol. Figure 9 shows the structure of 

the symbol generator.  

 

 

Figure 9. Symbol Generator Structure 
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The structure of the abstract syntax tree visitor is divided into the visitor generation 

class that traverses the tree and the node visit, and the symbol generation process that 

collects the semantic analysis functions of the abstract syntax tree nodes. The function of 

abstract syntax tree visitor is divided into tree traversal and node visit. First, the tree 

traversal traverses the abstract syntax tree received as input. Next, the node visit visits the 

node that is encountered during the tree traversal, and performs the symbol generation 

process of the visited node through the visitor to collect symbol information from the 

node. Figure 10 shows how a visitor visits an abstract syntax tree node and processes the 

node. 

 

Figure 10. AST Node Processing through Visitor 

The node visiting the abstract syntax tree traverses the symbol generation process 

through the visitor and collects the symbol information of each node. It collects 

information such as name, type, level, initial value and so on necessary to construct the 

symbol, and completes one symbol. The completed symbol is inserted into the symbol 

table.  

 

4.6. Structure of Symbol Table  

The symbol table structure using the proposed symbol table is as follows. Figure 11 

shows the management structure of a single type symbol. In the symbol table, VarA, 

which is a variable name, acts as a key of a symbol table. A Variable object stored as a 

value refers to Char type, which is a type of VarA, in the type table, Const information 

indicating a constant type variable, whether or not to initialize, and the like are stored in 

the object.The type table handles the basic type as an object in the same way as the 

symbol table, and it shows the storing of Char and int type information used in VarA and 

VarB. 

 
 

Figure 11. Management Structure of a Single Type Symbol 
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4. Experimental Results and Analysis 

First, we confirmed that a compiler applying the proposed AST structure for CPP, 

Objective C, and Java language input programs having the same meaning normally 

generates AST. Example 1 shows the AST generation for the CPP source code, example 2 

shows the AST generation for the Objective C source code, and finally example 3 shows 

the AST generation for the Java source code. 

 

CPP Source Code CPP AST 
 
class Point  

{ 

double x, y; 

public : 

void set(double x, double y)  
{ 

   this->x = x; this->y = y;  

} 
void showPoint() 

{ 
std::cout << "(" << x << ", "<< y << ")"<<endl; 

} 

}; 
 

class ColorPoint : public Point 
{ 

char* color; 

public: 
void setColor(char* color)  

{  

this->color = color; 

} 

void showColorPoint() 
{ 

  cout << color << ":"; 
  showPoint(); 

} 

}; 
 

void main() 
{ 

 Point p; 

 ColorPoint cp; 
 cp.set(3,4); 

 cp.setColor("Red"); 
 cp.showColorPoint(); 

} 

 

 

Nonterminal: PROGRAM 

      Nonterminal: DCL 

         Nonterminal: DCL_SPEC 

            Nonterminal: CLASS_DCL 

               Nonterminal: CLASS_HEAD 

                  Terminal( Type:id / Value:Point ) 

               Nonterminal: MEMBER_DCL 

                  Nonterminal: DCL_SPEC 

                     Nonterminal: DOUBLE 

                  Nonterminal: DCL_ITEM 

                     Nonterminal: SIMPLE_VAR 

                        Terminal( Type:id / Value:x ) 

                  Nonterminal: DCL_ITEM 

                     Nonterminal: SIMPLE_VAR 

                        Terminal( Type:id / Value:y ) 

               Nonterminal: PUBLIC 

                  Terminal( Type:tpublic / Value:public ) 

               Nonterminal: MEMBER_FUNC_DEF 

...  
      Nonterminal: FUNC_DEF 

         Nonterminal: DCL_SPEC 

            Nonterminal: INT 

         Nonterminal: FUNC_DCL 

            Nonterminal: SIMPLE_VAR 

               Terminal( Type:id / Value:main ) 

         Nonterminal: COMPOUND_ST 

            Nonterminal: DCL 

               Nonterminal: DCL_SPEC 

                  Nonterminal: TYPE_NAME 

                     Nonterminal: CLASS_TAG 

                        Terminal( Type:className / Value:Point ) 

               Nonterminal: DCL_ITEM 

                  Nonterminal: SIMPLE_VAR 

                     Terminal( Type:id / Value:p ) 

...  
 

Example 1. AST Generation for the CPP Source Code 

 

Objective C Source Code Objective C AST 
 
//Point.h 

@interface Point : NSObject  

@property (readwrite) double _x; 
@property (readwrite) double _y; 

-(void) showPoint; 
@end; 

 

//point.m 

@implemantation Point 

@synthesize _x; 
@synthesize _y; 

-(void) showPoint  

{ 

Nonterminal: PROGRAM 

      Nonterminal: CLASS_INTERFACE 

           Terminal( Type:%ident / Value:Point ) 

           Nonterminal: INTERFACE_DCL_LIST 

                Nonterminal: PROPERTY_DCL 

                     Terminal( Type:@property / Value:@property ) 

                     Nonterminal: PROPERTY_ATTRIBUTES 

                          Nonterminal: SIMPLE_PROPERTY_ATTRIBUTE 

                               Terminal( Type:%ident / Value:readwrite ) 

                     Nonterminal: DCL 

                          Nonterminal: DCL_SPEC 

                               Nonterminal: DOUBLE 

                          Nonterminal: DCL_ITEM 

                               Nonterminal: SIMPLE_VAR 

                                    Terminal( Type:%ident / Value:_x ) 

                Nonterminal: PROPERTY_DCL 

                     Terminal( Type:@property / Value:@property ) 
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 NSLog(@"(%lf, %lf)\n",_x, _y); 

} 
@end 

 
//ColorPoint.h 

@interface ColorPoint : Point 

@property (copy) NSString* _color; 
-(void) showColorPoint; 

@end 
 

//ColorPoint.m 

@implemantation ColorPoint 
@synthesize _color; 

-(void) showColorPoint  
{ 

 NSLog(@"%@ : ",_color); 

 [super showPoint]; 

} 

@end 
 

//main.m 

void main (int argc, const char * argv[]) 
{ 

 Point *p = [[Point alloc] init]; 
 

 ColorPoint *cp = [[ColorPoint alloc] init]; 

 cp._x = 3.1; 
 cp._y = 4.5; 

 cp._color = @"Black"; 
  

 [cp showColorPoint]; 

} 
 

...  
     Nonterminal: FUN_DEF 

           Nonterminal: DCL_SPEC 

                Nonterminal: INT 

           Nonterminal: FUNC_DCL 

                Nonterminal: SIMPLE_VAR 

                     Terminal( Type:%ident / Value:main ) 

                Nonterminal: PARAM_DCL 

                     Nonterminal: INT 

                     Nonterminal: SIMPLE_VAR 

                          Terminal( Type:%ident / Value:argc ) 

                Nonterminal: PARAM_DCL 

                     Nonterminal: CONST 

                     Nonterminal: CHAR 

                     Nonterminal: POINTER 

                     Nonterminal: ARRAY_VAR 

                          Nonterminal: SIMPLE_VAR 

                               Terminal( Type:%ident / Value:argv ) 

           Nonterminal: COMPUND_ST 

                Nonterminal: DCL 

                     Nonterminal: DCL_SPEC 

                          Nonterminal: CLASS 

                               Terminal( Type:%class_name / Value:Point ) 

                     Nonterminal: DCL_ITEM 

                          Nonterminal: POINTER 

                          Nonterminal: SIMPLE_VAR 

                               Terminal( Type:%ident / Value:p ) 

                          Nonterminal: MESSAGE_EXP 

                               Nonterminal: RECEIVER_PART 

                                    Nonterminal: MESSAGE_EXP 

                                         Nonterminal: RECEIVER_PART 

...  
 

Example 2. AST Generation for the Objective C Source Code 

Java Source Code Java AST 
 

class Point  
{ 

private double x; 
private double y; 

Point() 

{ 
this.x = 0.0; 

this.y = 0.0; 
} 

Point(double x, double y)  

{ 
this.x = x; 

this.y = y; 
} 

public double getX()  

{ 
return x; 

} 
public double getY()  

{ 

return y; 
}  

public String toString()  
{ 

return "(" + x + ", " + y + ")"; 

} 
} 

class ColorPoint extends Point 
{ 

private StringBuffer color = new StringBuffer(); 

 
ColorPoint()  

{ 
super(); 

 

Nonterminal: PROGRAM 

        Nonterminal: CLASS_DCL 

             Terminal: Point 

             Nonterminal: CLASS_BODY 

                  Nonterminal: FIELD_DCL 

                       Nonterminal: PRIVATE 

                       Nonterminal: DCL_SPEC 

                            Nonterminal: DOUBLE_TYPE 

                       Nonterminal: VAR_ITEM 

                            Nonterminal: SIMPLE_VAR 

                                 Terminal: x 

                  Nonterminal: FIELD_DCL 

                       Nonterminal: PRIVATE 

                       Nonterminal: DCL_SPEC 

                            Nonterminal: DOUBLE_TYPE 

                       Nonterminal: VAR_ITEM 

                            Nonterminal: SIMPLE_VAR 

Terminal: y  

   ...  
         Nonterminal: CLASS_DCL 

             Nonterminal: PUBLIC 

             Terminal: javaClassTest 

             Nonterminal: CLASS_BODY 

                  Nonterminal: METHOD_DCL 

                       Nonterminal: METHOD_HEAD 

                            Nonterminal: PUBLIC 

                            Nonterminal: STATIC 

                            Nonterminal: METHOD_ITEM 

                               Terminal: main 

                               Nonterminal: PARAM_DCL_LIST 

                                   Nonterminal: PARAM_DCL 

                                      Nonterminal: DCL_SPEC 

                                         Nonterminal: ARRAY_TYPE 

                                           Nonterminal: SIMPLE_NAME 

                                                       Terminal: String 

                                        Nonterminal: SIMPLE_VAR 

                                             Terminal: args 

                     Nonterminal: METHOD_BODY 

                          Nonterminal: BLOCK (start : 46  end : 52) 
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color.append("White"); 

} 
ColorPoint(double x, double y, String newColor)  

{ 
super(x, y); 

color.append(newColor); 

} 
public StringBuffer getColor()  

{ 
return color; 

}   

public String toString()  
{ 

return getColor() + super.toString(); 
} 

} 

public class javaClassTest  

{ 

public static void main(String[] args)  
{ 

ColorPoint a = new ColorPoint(2.1, 4.1, "Black"); 

ColorPoint b = new ColorPoint(); 
 

System.out.println("ColorPoint a: " + a); 
System.out.println("ColorPoint b: " + b);   

} 

} 

                               Nonterminal: LOCAL_VAR_DCL 

                                  Nonterminal: DCL_SPEC 

                                   Nonterminal: CLASS_INTERFACE_TYPE 

                                            Nonterminal: SIMPLE_NAME 

                                                   Terminal: ColorPoint 

                                      Nonterminal: VAR_ITEM 

                                           Nonterminal: SIMPLE_VAR 

                                                Terminal: a 

...  
 

Example 3. AST Generation for the Java Source Code 

Since the basic object information of each language has the same meaning, the AST of 

each object-oriented language can be expressed by extending the specific nodes having 

different differences in the language in the proposed AST structure. 

Next, to investigate the source code complexity of the symbol generation structure, the 

cyclomatic complexity is calculated for the symbol table generation structure and the 

analysis structure for obtaining symbol information using SourceMonitor which is a 

complexity calculation tool. McCabe suggested cyclomatic complexity. If the complexity 

exceeds a certain value, it is difficult to manage the code. Therefore, it is recommended to 

keep the complexity below 10, and Microsoft's MSDN recommends keeping the 

complexity below 25. Table 1 shows the bad fix probability according to the cyclomatic 

complexity[3]. The bad fix probability represents the odds of introducing an error while 

maintaining code. 

Table 1. Bad Fix Probability According to the Cyclomatic Complexity 

Cyclomatic Complexity Bad Fix Probability 

1 ~ 10 5% 

20 - 30 20% - 40% 

50-100 40% 

> 100 60% 

Next, Figure 12 shows the result of analyzing the source code complexity of the 

existing symbol generation structure and the proposed symbol generation structure. The 

existing symbol generation structure has a complexity of 27.5 on average, another error of 

20-40%, and a probability of error of 60% in routines with a maximum of 405 

complexity. The average complexity of the proposed symbol generation structure is 1.94, 

and the error probability is less than 5%. The maximum complexity is 6, so that the 

probability of error occurrence is also less than 5% for the most complex routines. The 

generated code has a block depth of up to 9 and a mean block depth of 4.77, whereas the 

proposed symbol generation structure has a maximum block depth of 4 and an average 

block depth of 1.53. So, it can be seen that the routine is simplified. As a result of 
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analysis, it is confirmed that the complexity and the block depth of the proposed 

generation structure are greatly improved compared with the existing generation structure. 

 

 

Figure 12. Source Code Complexity Analysis Result of Existing Symbol 
Generation Structure and Proposed Symbol Generation Structure 

Figure 13 shows the results of the cyclomatic complexity analysis of the intermediate 

language generator module that generates the intermediate language by referring to the 

existing symbol table and the improved symbol table. As a result of investigation of the 

complexity of the routine for generating the intermediate language by referring to the 

symbol table, the intermediate language generation structure using the existing symbol 

table has a complexity of 11.5 on average and another error of 20-40%. Also, the routine 

with the maximum complexity has a value of 361 and has a probability of occurrence of 

error of 60%. In contrast, the intermediate language generation structure using the 

proposed symbol table exhibits an average complexity of 1.67, the probability of error 

occurrence is less than 5%, and the routine with the maximum complexity has a 

complexity of 33, which shows 90% improvement compared to the existing structure. 

 

 

Figure 13. Source Code Complexity Analysis Result of the Intermediate 
Language Generation Structure using the Existing Symbol Table and the 

Proposed Symbol Table 
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The generated code has a block depth of up to 9 and a mean block depth of 2.55, while 

the proposed structure has a maximum block depth of 5 and an average block depth of 

1.73. It can be seen that the routine for generating the intermediate language is simplified 

by referring to the symbols. As a result of the analysis, it is confirmed that the complexity 

and the block depth of the intermediate language generation structure using the proposed 

symbol table are greatly improved when using the existing symbol table. As a result of the 

analysis, it can be seen that the average and maximum complexity are improved when the 

existing symbol table and the proposed symbol table are used in both the symbol 

generation structure and the intermediate language generation structure. 

 

5. Conclusions 

Since a conventional symbol table can’t represent symbols in one table, symbol 

attributes are divided and stored in a plurality of tables. A module referring to a symbol 

table refers to each of a plurality of tables, collects attributes, and had to complete symbol 

information again. In addition, in the case of an abstract syntax tree used to express the 

characteristics of a language and to generate symbols, since the language features are 

expressed through simple nodes, the abstract syntax tree has to be newly designed to add 

linguistic features even if the basic object-oriented language is the same, and new symbol 

generation routines and symbol table reference routines for the languages have to be 

added. Such an abstract syntax tree structure and a symbol expression scheme increase the 

complexity of a routine for generating symbols and a routine for referring to symbols. 

In order to solve this problem, this paper has designed hierarchical structure of AST 

nodes by applying object orientation principle and Visitor pattern and improved the 

symbol table by hierarchical structure of symbols. With the improved AST structure, the 

symbol generation routine analyzes the nodes of the AST without additional conditional 

statements, and collects symbol information and makes it possible to easily add additional 

linguistic features into the hierarchical subclass form. The complexity of the symbol 

generation routine can be reduced because the symbols are assembled into the symbol 

table by the node traversal and inserted into the symbol table using the object orientation 

principle. Since the improved symbol table stores symbols designed in a hierarchical 

structure, symbol information can be directly obtained from the symbol reference 

routines. Therefore, a module using a symbol table simplifies the process of obtaining 

symbol information, and even if the information of the symbol is complicated, the 

additional complexity is not needed, and the complexity becomes simpler than the 

conventional one. 
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