
International Journal of Database Theory and Application

Vol.10, No.7 (2017), pp.27-40

http://dx.doi.org/10.14257/ijdta.2017.10.7.03

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2017 SERSC

Design and Implementation of the Symbol Table for Object-

Oriented Programming Language

Yangsun Lee

Dept. of of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA

yslee@skuniv.ac.kr

Abstract

The symbol table used in the existing compiler stores one symbol information into a

plurality of sub tables, and the abstract syntax tree necessary for generating symbols has

a binary tree structure composed of a single data structure node. This structure increases

the source code complexity of modules that generate symbols and modules that reference

symbol tables, and when designing a compiler for a new language, it is necessary to

newly design an abstract syntax tree and a symbol table structure considering the

characteristics of the language.

In this paper, we apply the object-oriented principle and visitor pattern to improve the

abstract syntax tree structure and design and implement the symbol table for the object -

oriented language. The design of AST (abstract syntax trees) with object-oriented

principles and Visitor patterns reduces the time and cost of redesign because it makes it

easy to add features of the language without the need to redesign the AST (abstract syntax

tree) for the new object-oriented language. In addition, it is easy to create a symbol

through the Visitor pattern. Symbol tables using the open-close principle and the

dependency inversion principle can improve the code reusability of the source code that

creates and refer to the table and improve the readability of the code.

Keywords: Symbol Table, Compiler, Object-oriented Principle, Visitor Pattern, AST

1. Introduction

A compiler is a system software that translates user-written programs into machine-

readable instructions that can be executed by a computer. Because of the nature of the

compiler, the development of a new compiler is required whenever the language and the

platform are different, various studies have been conducted on compiler modularization.

Despite these researches, however, the symbol table for storing and managing symbol

information was made up of a number of sub-tables and was a complicated structure

referring to each other. In addition, since the abstract syntax tree used to represent the

characteristics of the language and generate symbols is a binary tree structure representing

all kinds of nodes with a single data structure, it is necessary to change the overall

structure of the tree when a new language feature is added, There has been a problem that

a whole modification of the routines using the tree is necessary. Symbol generation

process, which collects and completes symbol information, also analyzes the abstract

syntax tree through complex conditional statements and recursive calls, so the complexity

of the compiler source code is still high and maintainability is poor [1,2].

In order to solve this problem in this paper, we have improved the structure of the

abstract syntax tree by applying the object-oriented principle and Visitor pattern to easily

maintain the characteristics of the existing object-oriented language and to easily add new

characteristics. In order to reduce the complexity of reference routines, we designed and

implemented a symbol table based on object-oriented principles. Improved abstract syntax

trees make it easy to add properties without modifying existing tree structures when

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

28 Copyright ⓒ 2017 SERSC

creating a tree for a language of the same object-oriented language. The process of

generating the symbol using the object-oriented principle traverses the abstract syntax tree

node through the Visitor class, performs semantic analysis to collect symbol information

without additional conditional statements, and inserts the symbol information into the

symbol table. Since it is expressed by only two tables, it is possible to reduce the source

code complexity of the process of generating a symbol and the process of referring to a

symbol table.

2. Researches

2.1. AST (Abstract Syntax Tree)

The compiler expresses the program in a tree structure in order to express the meaning

of the input program more effectively, and it is easily reconfigured according to the

characteristic of the code. Parse tree is one of these tree representation methods. However,

because the parse tree contains a lot of unnecessary redundant information, it is

inappropriate for intermediate languages and requires a more efficient method. Therefore,

the abstract syntax tree (AST) is an expression method that removes unnecessary

information from the parse tree. The AST node is divided into a terminal node and a non-

terminal node. A terminal node represents a constant or a variable, and a non-terminal

node represents an AST operator. The operands of one operator are bound to child nodes

and are organized in a subtree form with their operator nodes. Figure 1 shows the Figure 1

shows an example of an AST for the integer type variable x.

Figure 1. Example of an AST for the Integer Type Variable x

 2.2. Visitor Pattern

Visitor patterns, one of the software design patterns, allow you to add new behavior to

the object structure without modifying the existing structure by separating the structure

and function of the object. It is designed in such a way that a separate visitor class is

created by collecting the functions of each class and each object is circulated by the

visitor class. The visitor pattern is suitable for cases where the structure of the object does

not change well, and is also suitable when additional functions are required in the future.

Regardless of the type or structure of the object, you can use the Visitor object to perform

the function anywhere you have an interface for the visit. Figure 2 shows the Visitor class

of the visitor pattern visiting each element.

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 29

Figure 2. Visitor Pattern Visiting Each Element

 2.3. Code Metrics

A code metrics is a measure of the quality of source code quality. It includes

maintenance index, class linkage, inheritance level, number of lines of code, and halstead

metrics. A maintenance index is a measure of the relative ease of maintenance of a code

with a value between 0 and 100. Numerical values are calculated using the number of

lines of code, program volume, and cyclic complexity. The larger the value, the more

convenient the maintenance work. The color value can be set according to the numerical

value, and the ease of maintenance of the code can be visually judged.

Class coupling metrics measure the degree of association of classes by parameters in a

class, local variables, return types, method invocations, and interface implementations.

The lower the degree of class coupling, the higher the cohesion, which means that the

higher the degree of coupling, the more difficult it is to maintain the source code.

Inheritance level refers to the number of class definitions that extend to the root in the

class hierarchy. The more complex the hierarchy, the more difficult it is to determine

where certain methods and fields are defined or redefined.

The number of lines of code is a measure of the number of lines in the source code,

which tells you how much work is done on the method, and the higher the number, the

more difficult it is to maintain. Circular complexity is a metric developed by McCabe in

1976 that measures the complexity by the number of paths based on a control flow graph

that represents the logic flow of the program. It is easy to compare different programs by

measuring the complexity of the source code and presenting the result as a single value.

Numbers are calculated based on the number of control statements.

Halstead metrics is an index of quantitative complexity based on the number of

operators and operands in source code. It was introduced by Maurice Howard Halstead in

1977. Halstead metrics is a program that measures the program length, the number of

program vocabulary, the program volume, the program's level of understanding of the

program and its maintainability, and the effort required to understand and implement the

program code. , And method and type, and the number of estimated bugs, which is the

estimated value of the number of bugs that can occur in the package.

To compare the analysis and improvement of the symbol table structure to which the

object-oriented principle is applied, a code metric based on the control flow of the code is

required. Typical metrics include a halstead metrics and cyclic complexity. Halsted

metrics can obtain maintenance-specific values that can’t be calculated by cyclic

complexity, but they are difficult to use in the program design stage because they are

calculated based on the number of operators and operands. Also, unlike the cyclic

complexity, which shows the complexity of the control flow, the control flow is not

reflected, so the halstead metrics can be high even in source code without conditional

statements. Therefore, we use the cyclomatic complexity based on control flow for

analysis and evaluation of symbol table source code.

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

30 Copyright ⓒ 2017 SERSC

3. AST Structure Improvement

The structure of the AST (Abstract Syntax Tree) node used in the existing compiler

expresses information of all terminals and non-terminal nodes as one structure. In this

structure, the analysis module using the AST can classify the node type through the

attribute of the node, and the analysis process according to the type can be performed.

Therefore, the maintenance complexity of the source code is increased and the

maintainability is degraded. The complexity of the AST analysis process affects the

symbol generation process because of the structure of the compiler that generates symbols

through the analysis of AST. To solve this problem, we designed the node structure of

AST as layered object structure according to object orientation principle.

The information of the AST node is represented as a class object. The hierarchical

structure of the node is the highest class, and there exists the AST Node class and the non-

terminal Node class and the terminal node class which inherit it. Figure 3 shows the

hierarchy of the AST nodes.

Figure 3. Hierarchy Structure of the AST Nodes

The terminal node class represents the terminal node information, and the node

corresponding to the variable and constant information is defined by the corresponding

class. The non-terminal node class classifies non-terminal nodes into child classes that

represent information of non-terminal nodes. In this way, the node class classified

according to each node information has a structure suitable to the principle of single

responsibility. In addition, the AST Node class, which is the best parent class of a node, is

defined as an abstract class so that it can observe the polymorphism and the liskov

substitution principle in the semantic analysis step of analyzing the AST structure. The

improvement of the AST structure does not require any additional cost since only the type

of node generated in the same manner as the existing generation routine is changed into

the hierarchical class without changing the generation routine.

Figure 4 shows an example of the layered node structure of the AST structure in Figure

2. The non-terminal node indicates the type of the non-terminal node by the name of the

node, and the terminal node class indicates 'T:' meaning terminal, and the corresponding

class is the terminal node class.

Figure 4. Layered Node Structure of the AST Structure

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 31

4. Symbol Table Design

We design a symbol table structure using object-oriented principles and design a

hierarchical symbol class to store symbols according to the symbol table to which this

principle applies. In addition, a type class for storing the necessary type information in the

symbol is designed and a type table for managing the type object is designed.

4.1. Hierarchical Design of Symbols

The symbol table stores hierarchical symbol objects to obtain symbol information with

minimum conditions. The symbol class is designed as a hierarchical structure that has the

abstract class Symbol as its top class and has Variable, Field, Function, Method, and

Parameter as subclasses. Unlike the existing symbol table structure, which stores symbols

in multiple tables, the symbol table to which the object-oriented principle is applied stores

symbol attributes as one of the subclasses of the symbol class in the hierarchical structure.

Figure 5 shows the hierarchy of symbols. Each symbol subclass derived from Symbol

class is a class for a node that represents the characteristics of a symbol among non-

terminal nodes. The nodes corresponding to the variable information are subclasses

inheriting the Variable class, and the nodes having the function and method information

inherit the Function and Method classes.

Figure 5. Hierarchical Symbol Table Structure

4.2. Symbol Table Structure

The symbol table stores the symbol object as a value with the symbol name as a key.

The attributes of a symbol are stored in a symbol defined as a subclass type of a symbol

hierarchy applying the object-oriented principle, and symbol type information is

referenced in a type table. When referring to a symbol table from the outside, a symbol is

searched based on the symbol name. Since it is made up of objects corresponding to each

kind of symbols, additional analysis of symbols is not necessary. Figure 6 shows the

structure in which the symbol table has symbol names and symbol values.

Figure 6. Symbol Table Structure

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

32 Copyright ⓒ 2017 SERSC

4.3. Hierarchical Design of Type

The type table is a table for managing symbol type information. The type is designed

as a hierarchical structure having the abstract class Type as the top class as the symbol.

Primitive, which is a subclass of Type, is a general type class such as Int and Char. It is

composed of Reference class, which is a reference type, and UserDefined class, which is a

user defined type such as Typedef, Interface, and Struct. Figure 7 shows the type

hierarchy.

Figure 7. Type Hierarchy Structure

4.4. Type Table Structure

The type table stores the name of the type as a key and the type object as a value. The

type attribute is stored in a hierarchical type, and the type information stored in the type

table is referred to when referring to the symbol type. If multiple types exist in one type

information, such as a typedef, the type information is linked and managed in a list form.

Figure 8 shows the structure for storing basic type objects in a type table.

Figure 8. Type Table Structure

4.5. Symbol Generator

The symbol generator traverses the abstract syntax tree through the abstract syntax tree

visitor class applying the visitor pattern structure, collects symbol information, inserts the

symbol into the symbol table, and completes the symbol. Figure 9 shows the structure of

the symbol generator.

Figure 9. Symbol Generator Structure

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 33

The structure of the abstract syntax tree visitor is divided into the visitor generation

class that traverses the tree and the node visit, and the symbol generation process that

collects the semantic analysis functions of the abstract syntax tree nodes. The function of

abstract syntax tree visitor is divided into tree traversal and node visit. First, the tree

traversal traverses the abstract syntax tree received as input. Next, the node visit visits the

node that is encountered during the tree traversal, and performs the symbol generation

process of the visited node through the visitor to collect symbol information from the

node. Figure 10 shows how a visitor visits an abstract syntax tree node and processes the

node.

Figure 10. AST Node Processing through Visitor

The node visiting the abstract syntax tree traverses the symbol generation process

through the visitor and collects the symbol information of each node. It collects

information such as name, type, level, initial value and so on necessary to construct the

symbol, and completes one symbol. The completed symbol is inserted into the symbol

table.

4.6. Structure of Symbol Table

The symbol table structure using the proposed symbol table is as follows. Figure 11

shows the management structure of a single type symbol. In the symbol table, VarA,

which is a variable name, acts as a key of a symbol table. A Variable object stored as a

value refers to Char type, which is a type of VarA, in the type table, Const information

indicating a constant type variable, whether or not to initialize, and the like are stored in

the object.The type table handles the basic type as an object in the same way as the

symbol table, and it shows the storing of Char and int type information used in VarA and

VarB.

Figure 11. Management Structure of a Single Type Symbol

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

34 Copyright ⓒ 2017 SERSC

4. Experimental Results and Analysis

First, we confirmed that a compiler applying the proposed AST structure for CPP,

Objective C, and Java language input programs having the same meaning normally

generates AST. Example 1 shows the AST generation for the CPP source code, example 2

shows the AST generation for the Objective C source code, and finally example 3 shows

the AST generation for the Java source code.

CPP Source Code CPP AST

class Point

{

double x, y;

public :

void set(double x, double y)
{

 this->x = x; this->y = y;

}
void showPoint()

{
std::cout << "(" << x << ", "<< y << ")"<<endl;

}

};

class ColorPoint : public Point
{

char* color;

public:
void setColor(char* color)

{

this->color = color;

}

void showColorPoint()
{

 cout << color << ":";
 showPoint();

}

};

void main()
{

 Point p;

 ColorPoint cp;
 cp.set(3,4);

 cp.setColor("Red");
 cp.showColorPoint();

}

Nonterminal: PROGRAM

 Nonterminal: DCL

 Nonterminal: DCL_SPEC

 Nonterminal: CLASS_DCL

 Nonterminal: CLASS_HEAD

 Terminal(Type:id / Value:Point)

 Nonterminal: MEMBER_DCL

 Nonterminal: DCL_SPEC

 Nonterminal: DOUBLE

 Nonterminal: DCL_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal(Type:id / Value:x)

 Nonterminal: DCL_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal(Type:id / Value:y)

 Nonterminal: PUBLIC

 Terminal(Type:tpublic / Value:public)

 Nonterminal: MEMBER_FUNC_DEF

...
 Nonterminal: FUNC_DEF

 Nonterminal: DCL_SPEC

 Nonterminal: INT

 Nonterminal: FUNC_DCL

 Nonterminal: SIMPLE_VAR

 Terminal(Type:id / Value:main)

 Nonterminal: COMPOUND_ST

 Nonterminal: DCL

 Nonterminal: DCL_SPEC

 Nonterminal: TYPE_NAME

 Nonterminal: CLASS_TAG

 Terminal(Type:className / Value:Point)

 Nonterminal: DCL_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal(Type:id / Value:p)

...

Example 1. AST Generation for the CPP Source Code

Objective C Source Code Objective C AST

//Point.h

@interface Point : NSObject

@property (readwrite) double _x;
@property (readwrite) double _y;

-(void) showPoint;
@end;

//point.m

@implemantation Point

@synthesize _x;
@synthesize _y;

-(void) showPoint

{

Nonterminal: PROGRAM

 Nonterminal: CLASS_INTERFACE

 Terminal(Type:%ident / Value:Point)

 Nonterminal: INTERFACE_DCL_LIST

 Nonterminal: PROPERTY_DCL

 Terminal(Type:@property / Value:@property)

 Nonterminal: PROPERTY_ATTRIBUTES

 Nonterminal: SIMPLE_PROPERTY_ATTRIBUTE

 Terminal(Type:%ident / Value:readwrite)

 Nonterminal: DCL

 Nonterminal: DCL_SPEC

 Nonterminal: DOUBLE

 Nonterminal: DCL_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal(Type:%ident / Value:_x)

 Nonterminal: PROPERTY_DCL

 Terminal(Type:@property / Value:@property)

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 35

 NSLog(@"(%lf, %lf)\n",_x, _y);

}
@end

//ColorPoint.h

@interface ColorPoint : Point

@property (copy) NSString* _color;
-(void) showColorPoint;

@end

//ColorPoint.m

@implemantation ColorPoint
@synthesize _color;

-(void) showColorPoint
{

 NSLog(@"%@ : ",_color);

 [super showPoint];

}

@end

//main.m

void main (int argc, const char * argv[])
{

 Point *p = [[Point alloc] init];

 ColorPoint *cp = [[ColorPoint alloc] init];

 cp._x = 3.1;
 cp._y = 4.5;

 cp._color = @"Black";

 [cp showColorPoint];

}

...
 Nonterminal: FUN_DEF

 Nonterminal: DCL_SPEC

 Nonterminal: INT

 Nonterminal: FUNC_DCL

 Nonterminal: SIMPLE_VAR

 Terminal(Type:%ident / Value:main)

 Nonterminal: PARAM_DCL

 Nonterminal: INT

 Nonterminal: SIMPLE_VAR

 Terminal(Type:%ident / Value:argc)

 Nonterminal: PARAM_DCL

 Nonterminal: CONST

 Nonterminal: CHAR

 Nonterminal: POINTER

 Nonterminal: ARRAY_VAR

 Nonterminal: SIMPLE_VAR

 Terminal(Type:%ident / Value:argv)

 Nonterminal: COMPUND_ST

 Nonterminal: DCL

 Nonterminal: DCL_SPEC

 Nonterminal: CLASS

 Terminal(Type:%class_name / Value:Point)

 Nonterminal: DCL_ITEM

 Nonterminal: POINTER

 Nonterminal: SIMPLE_VAR

 Terminal(Type:%ident / Value:p)

 Nonterminal: MESSAGE_EXP

 Nonterminal: RECEIVER_PART

 Nonterminal: MESSAGE_EXP

 Nonterminal: RECEIVER_PART

...

Example 2. AST Generation for the Objective C Source Code

Java Source Code Java AST

class Point
{

private double x;
private double y;

Point()

{
this.x = 0.0;

this.y = 0.0;
}

Point(double x, double y)

{
this.x = x;

this.y = y;
}

public double getX()

{
return x;

}
public double getY()

{

return y;
}

public String toString()
{

return "(" + x + ", " + y + ")";

}
}

class ColorPoint extends Point
{

private StringBuffer color = new StringBuffer();

ColorPoint()

{
super();

Nonterminal: PROGRAM

 Nonterminal: CLASS_DCL

 Terminal: Point

 Nonterminal: CLASS_BODY

 Nonterminal: FIELD_DCL

 Nonterminal: PRIVATE

 Nonterminal: DCL_SPEC

 Nonterminal: DOUBLE_TYPE

 Nonterminal: VAR_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal: x

 Nonterminal: FIELD_DCL

 Nonterminal: PRIVATE

 Nonterminal: DCL_SPEC

 Nonterminal: DOUBLE_TYPE

 Nonterminal: VAR_ITEM

 Nonterminal: SIMPLE_VAR

Terminal: y

 ...
 Nonterminal: CLASS_DCL

 Nonterminal: PUBLIC

 Terminal: javaClassTest

 Nonterminal: CLASS_BODY

 Nonterminal: METHOD_DCL

 Nonterminal: METHOD_HEAD

 Nonterminal: PUBLIC

 Nonterminal: STATIC

 Nonterminal: METHOD_ITEM

 Terminal: main

 Nonterminal: PARAM_DCL_LIST

 Nonterminal: PARAM_DCL

 Nonterminal: DCL_SPEC

 Nonterminal: ARRAY_TYPE

 Nonterminal: SIMPLE_NAME

 Terminal: String

 Nonterminal: SIMPLE_VAR

 Terminal: args

 Nonterminal: METHOD_BODY

 Nonterminal: BLOCK (start : 46 end : 52)

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

36 Copyright ⓒ 2017 SERSC

color.append("White");

}
ColorPoint(double x, double y, String newColor)

{
super(x, y);

color.append(newColor);

}
public StringBuffer getColor()

{
return color;

}

public String toString()
{

return getColor() + super.toString();
}

}

public class javaClassTest

{

public static void main(String[] args)
{

ColorPoint a = new ColorPoint(2.1, 4.1, "Black");

ColorPoint b = new ColorPoint();

System.out.println("ColorPoint a: " + a);
System.out.println("ColorPoint b: " + b);

}

}

 Nonterminal: LOCAL_VAR_DCL

 Nonterminal: DCL_SPEC

 Nonterminal: CLASS_INTERFACE_TYPE

 Nonterminal: SIMPLE_NAME

 Terminal: ColorPoint

 Nonterminal: VAR_ITEM

 Nonterminal: SIMPLE_VAR

 Terminal: a

...

Example 3. AST Generation for the Java Source Code

Since the basic object information of each language has the same meaning, the AST of

each object-oriented language can be expressed by extending the specific nodes having

different differences in the language in the proposed AST structure.

Next, to investigate the source code complexity of the symbol generation structure, the

cyclomatic complexity is calculated for the symbol table generation structure and the

analysis structure for obtaining symbol information using SourceMonitor which is a

complexity calculation tool. McCabe suggested cyclomatic complexity. If the complexity

exceeds a certain value, it is difficult to manage the code. Therefore, it is recommended to

keep the complexity below 10, and Microsoft's MSDN recommends keeping the

complexity below 25. Table 1 shows the bad fix probability according to the cyclomatic

complexity[3]. The bad fix probability represents the odds of introducing an error while

maintaining code.

Table 1. Bad Fix Probability According to the Cyclomatic Complexity

Cyclomatic Complexity Bad Fix Probability

1 ~ 10 5%

20 - 30 20% - 40%

50-100 40%

> 100 60%

Next, Figure 12 shows the result of analyzing the source code complexity of the

existing symbol generation structure and the proposed symbol generation structure. The

existing symbol generation structure has a complexity of 27.5 on average, another error of

20-40%, and a probability of error of 60% in routines with a maximum of 405

complexity. The average complexity of the proposed symbol generation structure is 1.94,

and the error probability is less than 5%. The maximum complexity is 6, so that the

probability of error occurrence is also less than 5% for the most complex routines. The

generated code has a block depth of up to 9 and a mean block depth of 4.77, whereas the

proposed symbol generation structure has a maximum block depth of 4 and an average

block depth of 1.53. So, it can be seen that the routine is simplified. As a result of

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 37

analysis, it is confirmed that the complexity and the block depth of the proposed

generation structure are greatly improved compared with the existing generation structure.

Figure 12. Source Code Complexity Analysis Result of Existing Symbol
Generation Structure and Proposed Symbol Generation Structure

Figure 13 shows the results of the cyclomatic complexity analysis of the intermediate

language generator module that generates the intermediate language by referring to the

existing symbol table and the improved symbol table. As a result of investigation of the

complexity of the routine for generating the intermediate language by referring to the

symbol table, the intermediate language generation structure using the existing symbol

table has a complexity of 11.5 on average and another error of 20-40%. Also, the routine

with the maximum complexity has a value of 361 and has a probability of occurrence of

error of 60%. In contrast, the intermediate language generation structure using the

proposed symbol table exhibits an average complexity of 1.67, the probability of error

occurrence is less than 5%, and the routine with the maximum complexity has a

complexity of 33, which shows 90% improvement compared to the existing structure.

Figure 13. Source Code Complexity Analysis Result of the Intermediate
Language Generation Structure using the Existing Symbol Table and the

Proposed Symbol Table

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

38 Copyright ⓒ 2017 SERSC

The generated code has a block depth of up to 9 and a mean block depth of 2.55, while

the proposed structure has a maximum block depth of 5 and an average block depth of

1.73. It can be seen that the routine for generating the intermediate language is simplified

by referring to the symbols. As a result of the analysis, it is confirmed that the complexity

and the block depth of the intermediate language generation structure using the proposed

symbol table are greatly improved when using the existing symbol table. As a result of the

analysis, it can be seen that the average and maximum complexity are improved when the

existing symbol table and the proposed symbol table are used in both the symbol

generation structure and the intermediate language generation structure.

5. Conclusions

Since a conventional symbol table can’t represent symbols in one table, symbol

attributes are divided and stored in a plurality of tables. A module referring to a symbol

table refers to each of a plurality of tables, collects attributes, and had to complete symbol

information again. In addition, in the case of an abstract syntax tree used to express the

characteristics of a language and to generate symbols, since the language features are

expressed through simple nodes, the abstract syntax tree has to be newly designed to add

linguistic features even if the basic object-oriented language is the same, and new symbol

generation routines and symbol table reference routines for the languages have to be

added. Such an abstract syntax tree structure and a symbol expression scheme increase the

complexity of a routine for generating symbols and a routine for referring to symbols.

In order to solve this problem, this paper has designed hierarchical structure of AST

nodes by applying object orientation principle and Visitor pattern and improved the

symbol table by hierarchical structure of symbols. With the improved AST structure, the

symbol generation routine analyzes the nodes of the AST without additional conditional

statements, and collects symbol information and makes it possible to easily add additional

linguistic features into the hierarchical subclass form. The complexity of the symbol

generation routine can be reduced because the symbols are assembled into the symbol

table by the node traversal and inserted into the symbol table using the object orientation

principle. Since the improved symbol table stores symbols designed in a hierarchical

structure, symbol information can be directly obtained from the symbol reference

routines. Therefore, a module using a symbol table simplifies the process of obtaining

symbol information, and even if the information of the symbol is complicated, the

additional complexity is not needed, and the complexity becomes simpler than the

conventional one.

Acknowledgement

This Research was supported by Seokyeong University in 2015.

References

[1] S. C. Dewhurst, "Flexible symbol table structures for compiling C++," Software - Practice and Experience, vol. 17,

(1987), pp. 503-512.
[2] R. P. Cook, T. J. Leblanc, "Symbol table abstraction to implement languages with Explicit Scope Control," IEEE

Transactions on Software Engineering, vol. 9, (1983), p. 8.

[3] S. C. Dewhurst, "Flexible symbol table structures for compiling C++," Software: Practice and Experience, vol. 17, no.
(1987), pp. 503-512.

[4] M. Gallego-Carrillo, F. Gortázar-Bellas, J. Urquiza-Fuentes and J.Á. VelázquezIturbide, "SOTA: A visualization tool
for symbol tables," ACM SIGCSE Bulletin, vol. 37, (2005), p. 385

[5] J. F. Power, B. A. Malloy, "Symbol Table Construction and Name Lookup in ISO C++," 37th International

Conference on Technology of Object-Oriented Languages and Systems, TOOLS 2000, (2000), p. 57.

[6] Y. S. Son, Y. S. Lee, "The Reverse Translator for Symbol Table Verification in Objective C compiler on Smart Cross

Platform," The Asian International Journal of Life Sciences, vol. 11, (2015), p. 625.
[7] Y. S. Lee, Y. S. Son, "The Reverse Translator for Reconstruction of the Declaration Part from Symbol Tables of the

C++ Compiler," Information-an International Interdisciplinary Journal, vol. 16, (2013), p. 2319.

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

Copyright ⓒ 2017 SERSC 39

[8] Y. S. Lee, Y. S. Son, "A Study on Verification and Analysis of Symbol Tables for Development of the C++
Compiler," International Journal of Multimedia and Ubiquitous Engineering, SERSC, vol. 7, (2012), p. 175.

[9] Y. S. Lee, Y. K. Kim, H. J. Kwon, "Design and Implementation of the Decompiler for Virtual Machine Code of the

C++ Compiler in the Ubiquitous Game Platform," LNCS, vol. 4413, (2007), p. 511.
[10] H. J. Kwon, Y. K. Kim, J. K. Park, Y. S. Lee, "Design and Implementation of a Detranslator for Verification and

Analysis of Symbol Tables in an ANSI C Compiler," The 2006 International Conference on Multimedia, Information
Technology and its Applications (MITA2006), (2006), Dalian, China.

[11] Y.S. Lee, "The Virtual Machine Technology for Embedded Systems," Journal of the Korea Multimedia Society, vol.

6, (2002), p. 36.
[12] R. C. Martine, Agile Principles, Patterns, and Practices in C#, Pearson Education, (2006).

[13] E. Freeman, Elisabeth Freeman, K. Sierra, B. Bates, Head First Design Patterns, O’Reilly, (2004).
[14] L. M. Laird, M. C. Brennan, Software Measurement and Estimation: A Practical Approach, WILEY, (2006).

[15] M. H. Halstead,, Elements of Software Science, New York: Elsevier North-Holland, (1977).

[16] SourceMonitor, http://www.campwoodsw.com/sourcemonitor.html

Author

Yangsun Lee, He received the B.S. degree from the Dept. of

Computer Science, Dongguk University, Seoul, Korea, in 1985, and

M.S. and Ph.D. degrees from Dept. of Computer Engineering,

Dongguk University, Seoul, Korea in 1987 and 2003, respectively.

He was a Manager of the Computer Center, Seokyeong University

from 1996-2000, a Director of Korea Multimedia Society from 2004-

2005, a General Director of Korea Multimedia Society from 2005-

2006, a Vice President of Korea Multimedia Society in 2009, and a

Senior Vice President of Korea Multimedia Society in 2015-2016.

Also, he was a Director of Korea Information Processing Society

from 2006-2014 and a President of a Society for the Study of Game

at Korea Information Processing Society from 2006-2010. And, he

was a Director of HSST from 2014-2016. Currently, he is a Professor

of Dept. of Computer Engineering, Seokyeong University, Seoul,

Korea. His research areas include smart system solutions,

programming languages, and embedded systems.

http://www.campwoodsw.com/sourcemonitor.html

International Journal of Database Theory and Application

Vol.10, No.7 (2017)

40 Copyright ⓒ 2017 SERSC

