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Abstract 

Substantial research has addressed that frequent I/O required for scalability and fault-

tolerance sacrifices efficiency of MapReduce. Regarding this, our previous work dis-

cussed a method to reduce I/O cost when processing OLAP queries with MapReduce. The 

method can be implemented simply by providing an SQL-to-MapReduce translator on top 

of the MapReduce framework and needs not modify the underlying framework. In this pa-

per, we present techniques to translate SQL queries into corresponding MapReduce pro-

grams which support the method discussed in our previous work for I/O cost reduction. 
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1. Introduction 

MapReduce (MR) has emerged as a popular model for parallel processing of large da-

tasets using commodity machines. By virtue of its simplicity, scalability and fault-

tolerance, many enterprises have adopted it for their business analytics applications [1, 2]. 

By virtue of its simplicity and scalability, many enterprises such as Facebook, IBM, 

Walmart, Yahoo, and Microsoft were engaged to develop MapReduce-based solutions on 

massive amount of log data for their business analytics applications [3]. The number of 

enterprises adopting MapReduce for online analytical processing (OLAP) is growing 

nowadays. 

On the other hand, substantial research has addressed that frequent I/O required to sup-

port scalability and fault-tolerance sacrifices efficiency of MapReduce [4, 5]. Regarding 

this, Pavlo et al. [6] showed that Hadoop, the most popular open-source implementation 

of MapReduce, is 2 to 50 times slower than parallel database systems except in the case of 

data loading. Anderson and Tucek [7] noted that Hadoop achieves very low efficiency per 

node, less than 5MBytes per second processing rate. Kang et al. [8] showed that I/O cost 

accounts for about 80% of the total processing cost when OLAP queries are executed un-

der the MR framework. 

To address this issue, our previous work [9] suggested a method to reduce I/O cost 

when processing OLAP queries with MapReduce. In the method, during the execution of 

a map or a reduce task, only attributes necessary to perform the task are transmitted to 

corresponding worker nodes. In general, a map task is used for filtering or preprocessing 

input records, while a reduce task is used to compute aggregation over the records select-

ed from the map task. From this, only attributes participating in the record selection and 

shuffling are transferred to mapper nodes in the proposed method. Similarly, only attrib-

utes over which aggregation is computed are transferred to reducers.  

In this paper, we present how to implement the method on top of the MapReduce 

framework. The method can be implemented by providing an SQL-to-MR translator and 

needs not modify the underlying framework. In what follows, we first describe our previ-

ous work to reduce I/O cost in the MapReduce framework (Section 2) and discuss how 

the method can be extended to deal with join and multi-query processing (Section 3). We 
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then discuss several rules to translate given SQL queries into their corresponding MapRe-

duce programs in our method (Section 4). The paper is concluded with a brief mention of 

future work (Section 5). 

 

2. Preliminaries 

To perform an MR job, an input file is first loaded in the distributed file system (DFS) 

and is partitioned into multiple data segments, called input splits. A master node picks 

idle nodes and assigns each one a map or a reduce task. The following two steps are then 

performed. 

 Map phase: Each input split is transferred to a mapper. Each mapper performs fil-

tering or preprocessing input records (key-value pairs). A mapper's outputs (also, 

in the form of key-value pairs) are written into its own local disk for checkpointing. 

 Reduce phase: After all mappers finish their jobs, reducers pull the mappers' out-

puts through the network, and merges them according to their keys. The record 

grouping is called shuffling in MapReduce. For each key, an aggregate result is 

produced. 

As discussed above, frequent checkpointing is performed to increase fault-tolerance of 

long-time analysis, and at the same time, many partitioned data blocks move along dis-

tributed nodes [10, 11] in the MapReduce framework. Such frequent local and network 

I/Os sacrifice efficiency of MapReduce [12]. Regarding this, our previous work [9] sug-

gested a method to reduce I/O cost when processing OLAP queries with MapReduce. The 

basic idea is to transmit only attributes necessary to perform a map or a reduce task to 

corresponding worker nodes. For example, consider the following SQL query where the 

schema of records consists of four attributes, (A, B, C, D). 

Q1.    SELECT A, AVG(C), MAX(D) 

FROM R 

WHERE B = “…” 

GROUP-BY A 

In MapReduce, a map task is generally used for filtering or preprocessing input rec-

ords, while a reduce task is used to compute aggregation over the records selected from 

the map task. From this, in the example of Q1, the three attributes (A, C, D) will be used 

in reducers for aggregate computation, while the attribute B will be used in mappers for 

record selection. Note that A is also necessary for the map task because all records select-

ed from mappers must be grouped according to their aggregate key values before being 

transmitted to reducers in MapReduce. The key A is called a shuffling key in MapReduce. 

As a result, attributes (A, B) are used for the map task in this example. 

In the proposed method, attributes (C, D) are not transferred to mappers because those 

attributes are not used in the map task. This is different from the original MR approach, 

where all input data is transferred to mappers. On the other hand, mappers' outputs may 

not have all information necessary to perform a reduce task in our approach. This is be-

cause mappers do not receive a complete data set. Subsequently, reducers should read 

their inputs from the DFS, not from mappers. At the same time, they must know which 

records are selected from mappers. To notify reducers as to the selected records, a list of 

selected record IDs is used for communication between mappers and reducers in this ap-

proach. 

Figure 1 compares data flows in the original MR approach and the proposed method 

for Q1. Compared with the original approach, the proposed method requires an additional 

process to generate and transmit the list of selected record IDs. Regarding this, our previ-

ous work provided experimental results showing that its overhead is not significant, com-

pared with the benefit from reduction of data transmission in the map phase. 
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(a) Data flow in the original MR framework
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Figure 1. Data Flows in the Original MR Framework and Our Previous Meth-
od 

Note that our previous work sketched a basic idea for I/O reduction and only consid-

ered the case of simple aggregate query processing. No discussion was made about how 

the method can be applied to join or multi-query processing. In the next section, we dis-

cuss a method to extend the idea to multi-query processing with the join. 

 

3. Join and Multi-Query Processing 

To support join queries, the repartition join [3] is adopted in the proposed method, 

which is the most popular join strategy in MapReduce. In this join, a join key is used as a 

shuffling key, so records with a same join key value can be delivered and grouped in a 

same reducer. Join outputs can then be generated by conducting a cross product over the 

records transmitted from mappers. Due to its simplicity, many existing data warehouse 

solutions such as Pig [13] and Hive [14, 15] adopted it to handle multi-way join queries in 

their systems. 

Repartition join is classified into a reduce-side join [3, 16], where join takes place in 

the reduce task. When using it, a dedicated reduce () is required to perform the join. If a 

GROUP-BY clause is defined together in the join query, another reduce() is necessary to 

deal with it. In this case, two MR jobs are required to process the join aggregate query. In 

general, each stateful operator such as join or group-by aggregate are mapped to a re-

duce(), and the number of MR jobs to process a join aggregate query becomes equal to the 

number of stateful operators in the query. 

To illustrate the process, consider the following query to join two relational tables, 

R1(A, B, C, D, E) and R2(E, F), over the common attribute E. In the query, aggregates are 

then computed over the join results. 

Q2.    SELECT A, AVG(C), MAX(D), MAX(F) 

FROM R1, R2 

WHERE R1.E = R2.E AND B = “…” 

GROUP-BY A 

To perform Q2, two MR jobs are necessary: one for join and the other for aggregates. 

In the first job, a map task is used for record selection, so attribute B of R1 is necessary in 

this job. Attribute E is also necessary because records selected from mappers must be 

grouped for each join key value before being transmitted to reducers. Subsequently, (B, 

E) and (E) should be projected from R1 and R2, respectively, and then transferred to 

mappers.  

After mappers finish their job, IDs of selected records are transferred to reducers. 

Based on the ID information, reducers fetch the actual records selected from mappers. In 

this process, all attributes necessary to perform aggregates in the second job are required 

to be fetched. In the example of Q2, (A, C, D) and (F) are necessary for the aggregations, 
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so those attributes are transferred to reducers from the DFS. Over the fetched records, a 

cross-product is performed to generate join records. The results are stored in a temporary 

relation, T, consisting of four attributes (A, C, D, F). 

The second job to compute aggregates can be performed as discussed in Section 2. In 

this case, there is no record selection in the map task because it is already performed in 

the first job. Thus, only attribute A is transferred to mappers for later GROUP-BY aggre-

gation. The remaining reduce task is the same as discussed in our previous work.  

 

 

Figure 2. Data Flows in the Original and the Proposed Method for Q2  

Figure 2 compares the data flows in the original and the proposed methods for Q2. In 

the original MR approach (Figure 2 (a)), all attributes necessary to perform the successive 

MR tasks are relayed to each next step. For instance, after mappers complete their record 

selection, attribute B is excluded from the record transmission to reducers. Similarly, after 

finishing the join, E is excluded from both R1 and R2 because it is not necessary for fur-

ther processing. Join results are stored in the temporary relation, T(A, C, D, F), which are 

inputted for aggregation in the second MR job. Aggregations are finally performed over 

the join results and are stored in another relation, U, where fi denotes a result of the i-th 

aggregation defined in the SELECT clause. 

On the other hand, in the proposed method (Figure 2 (b)), only attributes necessary to 

perform each map or reduce task are transmitted to corresponding worker nodes. As dis-

cussed above, only (B, E) are transferred to mappers in the first job which are required to 

perform the record selection and the next join. After mappers complete their job, the se-

lected record IDs are transmitted to reducers. Using the IDs, reducers fetch the actual se-

lected records from the DFS. Distinguished from the original MR approach, attribute E is 

excluded from the fetched records. This is because a cross-product to generate join out-

puts can be performed based on the record IDs, and attribute E is not necessary in this 

case. The processing of the second job is also performed in the similar fashion. 
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Now, let us discuss translation of the query Q2. The query is translated into two MR 

jobs. The first is to join input records from R1 and R2, while the second is to perform ag-

gregates over the records outputted from the first job. Since MapReduce is designed for 

processing a single input, map() of the first job should be written to deal with records re-

ceived from both R1 and R2. The following pseudo code shows map() for the join part of 

Q2. 

Function map(rowID, record) 

If source = “R1”, 

Parse record into attributes (B, E) 

If B = “…”, output(E, “R1::” + rowID) 

End If  

If source = “R2”, 

Parse record into attributes (E) 

output(E, “R2::” + rowID) 

End If  

Above, the processing of records is determined based on the source information. If a 

record is from R2, it is simply outputted to a reducer because no selection condition is 

defined over attributes of the table. In this case, rowID is outputted with attribute E as a 

key for join. Before sending out the value, a tag “R2::” is added to it, where ``::'' is a de-

limiter to separate the table name from the tagged ID. The tag insertion is necessary be-

cause reducers also need to distinguish records from a single input channel. On the other 

hand, if the record is from R1, record selection is performed as specified in the WHERE 

clause of Q2. If the condition is satisfied, the record is outputted to a reducer. In this case, 

the attribute E is outputted as a key for join, and rowID with tag “R1::” is outputted as a 

value. 

Using the tag name attached on the record IDs, reducers can identify the source table of 

selected records, and can group the records according to their tag name. After grouping is 

finished, a cross product is performed to generate join outputs. The following shows re-

duce() generated from Q2. 

Function reduce(key, taggedRowIDs) 

listIDR1 := null, listIDR2 := null 

For each id in taggedRowIDs, 

    Separate id into (tag, rowID) 

    If tag = “R1”, add rowID to listIDR1 

    If tag = “R2”, add rowID to listIDR2 

End If  

listRecR1 := fetchRecords(“R1”, “A, C, D, E”, listIDR1) 

listRecR2 := fetchRecords(“R2”, “F”, listIDR2) 

Output(“T”, crossProd(listRecR1, listRecR2)) 

Above, listIDR1 and listIDR2 are the lists to store the record IDs of R1 and R2, respec-

tively. The input parameter taggedRowIDs are the list of tagged record IDs. For each 

tagged ID, reduce() separates a record ID from its tag denoting the source table. Based on 

the tag name, the extracted record ID is assigned to one of listIDR1 and listIDR2. After all 

record IDs are grouped according to their tag information, actual records corresponding 

the record IDs are fetched from the DFS. In this process, the following three kinds of at-

tributes are extracted, which are necessary to perform the join and the group-by aggrega-

tion: 

 Join key attribute of each table 

 GROUP-BY attribute necessary to group join outputs for aggregation in the next 

MR job 

 Attributes appearing in aggregate function in the SELECT clause 

In this example, (A, C, D, E) are extracted from R1, while (F) is extracted from R2. Af-

ter the projected records are fetched from the DFS, a cross product is performed over the 
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records, and the results are stored in the DFS. The schema of the temporary relation to 

store the join records is (A, C, D, E, F) in this case. 

Now, let us discuss the second MR program generated to compute the group-by aggre-

gation from the join results. The map() and reduce() of the second MR program can be 

described as follows. Its mechanism was discussed in our previous paper [9], so we omit 

its discussion. 

Function map(rowID, record) 

Parse record into attributes (A) 

output(A, rowID) 

Function reduce(key, rowIDs) 

listRec := fetchRecords(“T”, “*”, rowIDs) 

Output(key, count(listRec)) 

The above approach can easily be extended to multi-query processing. For example, a 

multi-query can be processed by connecting a series of MR jobs, each of which is gener-

ated from a unit query constituting the multi-query. 

 

4. SQL-to-MapReduce Translation 

To translate SQL queries into MR programs, the one-operation-to-one-job approach 

[17] is adopted in our implementation. In this approach, a plan tree generated from a giv-

en query consists of several relational operators including selection, projection, join, and 

aggregation operators. Each operator in the tree is then replaced by a pre-implemented 

MR program. To simplify discussion, we classify an SQL query into four types according 

to the existence of join or group-by/order-by aggregate operators in the query, which is 

shown in Table 1. 

Table 1. SQL-To-MapReduce Translation Rules for Each Query Type  

Join  

No Yes

No

Type.1

map() : [selection]

reduce() : [simple aggregation]

Type.2

map() : [selection]

reduce() : group-by/order-by aggregation

Yes

Type.3

map() : [selection]

reduce() : [simple aggregation],

join

Type.4

Job1 map() : [selection]

reduce() : join

Job 2 map() :  –

reduce() : group-by/order-by aggr.

Group-by

/ order-by

 
 

Type-1 queries are the simplest form where there is no join or group-by aggregate in 

the queries. A type-1 query is translated into a single MR job. In this case, map() is writ-

ten to perform the record selection specified in the query, and reduce() is to perform sim-

ple aggregations (defined without a GROUP-BY clause) over all the records selected 

from mappers. 

Type-2 queries are queries where only group-by or order-by aggregations are involved. 

If more than one group-by or order-by aggregations are included in the query, each of 

them is translated into an individual MR job. For this type of query, map() is written to 

perform the record selection, as in the type-1 queries, and output the selected records ac-

cording to their group-by or order-by attribute values. Reduce() is then written to perform 

a given group-by or order-by aggregation.  
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Type-3 queries are join queries without any group-by or order-by aggregation. This 

type of query can also be translated into a single MR job. For this query, map() is written 

to perform record selection and output the records based on their join key values, while 

reduce() is to perform a cross-product over the records to produce join results. In the re-

duce task, simple aggregation can be performed over the join outputs. 

Type-4 queries include joins and group-by aggregations together. A type-4 query is 

translated into two MR jobs. The first job is similar to that of type-3 queries, where map() 

performs record selection and reduce() executes join. The second job is similar to that of 

type-2 queries, where reduce() computes aggregations over the records generated from 

the previous stage. In the second job, record selection does not occur in the map phase 

because it is already done in the first job. 

In the above discussion, record selection is optionally performed in map(); it is per-

formed only when the corresponding condition is specified in the query. To denote the 

optional execution, the square brackets are used in Table 1. Below, we do not discuss the 

ORDER-BY clause. To deal with it, another reduce() is necessary to sort records in type-

2 and type-4 queries. But its addition to the MR jobs discussed above is straight-forward. 

In what follows, we present translation rules for type-1 and type-2 queries, and then de-

scribe rules for type-4 queries. Rules for type-3 queries can be derived from those of type-

4 queries, from which their discussion is omitted. 

 

4.1. Type-1 and Type-2 Queries 

Let <table> denote a relational table where records are drawn from, <aggr-keys> be a 

list of group-by attributes, <aggr-funcs> be a list of aggregate functions over attributes of 

the <table>, and <sel-conds> denote a list of record selection conditions. Then, the query 

we consider can be represented as follows. 

Q1.    SELECT <aggr-keys> <aggr-funcs> 

FROM <table> 

WHERE <sel-conds> 

GROUP-BY <aggr-keys> 

Given Q1, map() can be generated as follows. Below, getStr() is a function to generate 

a composite string for attribute values in <aggr-keys>, such that getStr(K) = “k1, k2, ..., kn” 

where K = <aggr-keys> = { ki } (1  i  n, n = |K|). This function is necessary when 

<aggr-keys> has more than one attributes. Note that in our previously proposed method 

(Figure 1), only IDs of selected records are outputted with their key values to the reduce 

phase.  

Function map(rowID, record) 

Parse record into attributes in <aggr-keys > and <sel-conds> 

If <sel-conds> is satisfied, 

    Output(getStr(<aggr-keys >), rowID) 

End If 

The following shows reduce() generated from Q1. In our method, records selected 

from the map phase must be fetched from the DFS using the given record ID list (i.e., 

rowIDs). The function fetchRecords() is used for this purpose. Below, A denotes the set of 

attributes defined in <aggr-funcs>, such that <aggr-funcs> = { fi(i) }(1  i  n, n = |A|) 

where fi is an aggregate function over attribute i.  

Function reduce(key, rowIDs) 

recs := fetchRecords(<table>, getStr(A), rowIDs) 

For each aggregation fi (i) in <aggr-funcs>, 

    val := calculate fi (i) over recs  

    Output(key, val) 

End If 
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Note that in our method, only aggregate attributes defined in the SELECT clause of a 

given query are included in the fetched records. In the example of Figure 1, only C and D 

are fetched from the attributes for aggregation. For this projection, the function getStr(A) 

is used to denote which attributes must be projected from the fetched records. After the 

projected records are obtained, actual computation is performed for each aggregation fi(i). 

The computed value is outputted with a given key as a final output. 

 

4.2. Type-4 Queries 

Let <tables> denote a list of relational tables and <join-conds> denote a list of join 

conditions. Other parameters such as <aggr-keys>, <aggr-funcs>, and <sel-conds> are the 

same as in the previous subsection. Then, the join aggregate query we consider can be 

represented as follows. 

Q2.    SELECT <aggr-keys> <aggr-funcs> 

FROM <tables> 

WHERE <sel-conds> <join-conds> 

GROUP-BY <aggr-keys> 

Let us discuss the first MR program to deal with the join part of Q2. Since map() and 

reduce() are designed to receive records from a single input channel, they need to be writ-

ten to deal with records inputted from multiple source tables. To enable this, the following 

information must be available for each table Ti before the generation of map() and re-

duce(). 

 tnamei: name of the i-th table Ti in <tables> 

 join-keyi: join attribute of Ti appearing in <join-conds> 

 sel-attrsi: list of attributes in Ti appearing in <sel-conds> 

 sel-condsi: list of selection conditions defined over <sel-attrsi> 

The above parameters can be identified during the parsing of an SQL query, where 

their identification process is omitted due to the lack of space. Based on the parameters, 

map() can be generated as follows. Below, source denotes the name of a source table of a 

given record. 

Function map(rowID, record) 

If source = <tname1>, 

Parse record into attributes { <join-key1> ∪ <sel-attrs1> } 

If <sel-conds1> is satisfied, 

        Output(<join-key1>, <tname1> + “::” + rowID) 

    End If 

End If  

If source = <tname2>, 

    … 

Above, each record can be processed differently according to its source table name. 

Suppose that the record selection condition is defined over attributes of table T1 and the 

current input record is drawn from T1. Then, we parse the record and check whether it 

satisfies the given selection condition, i.e., <sel-conds1>. If so, it is outputted to the reduce 

phase. In this case, the output key becomes a join key attribute because the next step per-

forms the repartition join as discussed above. Before sending out the record ID, the table 

name <tname1> is added with a delimiter string “::” in front of the ID. The record tagging 

is necessary because reducers also receive input records from a single input channel, so 

they also need to identify the table name of each input record. 

Using the tag name attached on each record ID, reducers group record IDs having the 

same table name. After the grouping is finished, a cross-product is performed to generate 

join outputs. The following shows reduce() generated from Q2. To simplify discussion, 

we discuss the case of binary join. The method presented below can easily be extended to 

the case of multi-way join. 
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Function reduce(key, taggedRowIDs) 

listID1 := null, listID2 := null 

For each id in taggedRowIDs, 

    Separate id into (tag, rowID) 

    If tag = <tname1>, add rowID to listID1 

    If tag = <tname2>, add rowID to listID2 

End If  

listRec1 := fetchRecords(<tname1>, getStr(A1), listID1) 

listRec2 := fetchRecords(<tname2>, getStr(A2), listID2) 

Output(“_joinRes”, crossProd(listRec1, listRec2)) 

Above, the parameter taggedRowIDs denote the list of tagged record IDs. For each ID 

in the list, reduce() first separates the record ID and its table name. According to the table 

name, record IDs are grouped into the temporary list, called listIDi. After the ID lists are 

obtained, reduce() fetches the selected records from the DFS using the lists. For this pur-

pose, fetchRecords() is also used where Ai is a union of attributes used for join and aggre-

gates in table Ti. Over the fetched records, a cross-product is performed to produce join 

results. 

The map() and reduce() of the second MR program are similar to those discussed in the 

previous. The only difference lies in that map() needs not consider the record selection in 

this case.  

 

5. Conclusion 

In this paper, we presented SQL-to-MR translation techniques for efficient OLAP que-

ry processing with MapReduce. The MapReduce programs generated from our translator 

are organized to support the method proposed to reduce I/O cost where the idea was dis-

cussed in our previous work. To implement translation, the one-operation-to-one-job ap-

proach was adopted and repartition join was used to deal with join queries. From this, the 

number of the generated MR jobs becomes equal to the number of join and group-

by/order-by aggregations defined in a given query. The translation rules presented in this 

paper are designed to support the method suggested in our previous paper for I/O cost 

reduction, but they also can be applied to build a common SQL-to-MR compiler. 
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