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Abstract 

The design of distributed database systems has prompted many research problems. 

Among others, the issue of interdependency and interaction associated with data 

fragmentation, data allocation, and distributed query optimization still remains 

unanswered. These problems have been proven to be NP-complete or NP-hard, so most 

previous studies have addressed these problems in isolation by making simplified 

assumptions. However, these problems are interdependent and hence solving them 

independently results in inefficient solution overall. In this research, we develop an 

integrated distributed database design solution for three problems: partitioning data sets, 

allocating partitioned data sets among the sites of a network, and allocating operations 

as a problem of distributed query optimization. We use a transaction-based approach, 

wherein most important transactions are considered in determining the effective design of 

distributed database, and consider two types of transactions: OLTP (on-line transaction 

processing) and DSS (decision support system), for reflecting various distributed 

database design objectives such as total time minimization, response time minimization, 

and minimization of a combination of both. We employ genetic algorithms as searching 

methods for the best distributed database design solution. The integrated design solutions 

are determined by analyzing interactions between the problems in four stages: 1) between 

vertical fragmentation and operation allocation, 2) between vertical fragmentation and 

data allocation, 3) between data allocation and operation allocation, and 4) integration 

of all three problems, with the objectives of cost minimization and load balancing. Our 

integrated approach resulted in a cost effective distributed database design compared to 

the designs considering the problems in isolation.  
 

Keywords: Distributed database, Data fragmentation, Operation (subquery) allocation, 

Data allocation, Total time, Response time, Load balancing, Genetic algorithm 

 

1. Introduction 

The design of a distributed database system has presented to researchers and system 

designers many challenges, some of which are related to managerial design problems, 

including decisions on data fragmentation and data allocation, and some of which are 

related to technical design problems, including query optimization, concurrency control, 

failure recovery, and integrity and security [3-4, 8-9, 15]. Many models and solution 

techniques have been proposed to solve these managerial and technical problems. In most 

previous studies, however, various aspects of these problems have been evaluated in 

isolation even though these problems are interdependent. Among various 

interdependencies associated with components of a distributed database system, the data 

distribution problem, concerning data fragmentation, data allocation, and operation 

allocation, is the one being typically evaluated separately even though the 

interdependencies among these problems are well recognized. In fact, the individual 

problems had been shown to be NP-hard or NP-complete [6]. Thus, in an effort to reduce 

the computational complexity and ensure tractability, these individual problems are 
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treated in isolation by making simplified assumptions on overall distributed database 

system functions.  

In this research, we propose a new integrated solution approach to the design of 

distributed database system that integrates the following three design decisions: data 

fragmentation, data allocation, and operation allocation in coordination with data 

replication while these design decisions are satisfying the physical and managerial 

requirements [15]. The physical requirements might be the capacity constraints of system 

resources such as CPUs, I/Os, and communication channels. The managerial requirements 

might be data availability, system reliability, average transaction response time, and 

systems security. The problems mentioned are classified into combinatorial optimization 

problems, and these problems are shown to be NP-hard or NP-complete. In order to solve 

these problems, we use a genetic algorithm as an alternative heuristic approach [1], [2], 

[10], [11], and [12]. 

This paper is organized as follows. In Section 2, we present the integrated design 

method for distributed databases. Section 3 has discussion of cost models for genetic 

algorithms, including vertical fragmentation, query and update processing model and 

analytical cost models for total time, response time and load balancing. Section 4 has 

illustration of our integrated solution method, and the result obtained by genetic 

algorithms. Section 5 has conclusions.  

 

2. Integrated Design Method 

Figure 1 show an integrated design method used in this research. The details of each 

step are presented in the sections below. 

 

Analysis of the

Global transactions
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Query Optimization

Generation of a

Transaction Profile

on Each Global Relation

Global Schema

Selection of

a Global Relation

Vertical

Fragmentation

Data

Allocation

Operation
Allocation

Revised

Query Execution

Schedule

(Cost Minimization
and/ Load Balancing)  

Figure 1. Integrated Design Method 

2.1. Vertical Fragmentation 

The rationale of vertical fragmentation is to combine attributes frequently used 

together. One group of attributes may be mainly used in one local site, and another group 
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in another local site. Obviously, partitioning the relation into fragments and locating one 

fragment at the local site and the other at the other site will tremendously decrease 

network traffic.  

As shown in Figure 1, a global schema is assumed to be developed already, and hence 

we have a set of relations. The global schema only describes the logical relationships 

between data and do not reflect the way the data are processed. To determine which 

attributes of a relation should be grouped together, we have to analyze all transactions in 

which this relation is used. Two approaches are commonly used to determine which 

transactions to consider in the design process: either all transactions or a dominant subset 

[2]. In this research, we will take the dominant subset approach. A dominant subset is 

commonly selected on such criteria as high frequency of execution, high volume of data 

accessed, response time constraints, and explicit priority. Once the dominant transactions 

are selected, we need to generate a transaction profile. A transaction profile is a matrix 

which has attributes as columns and transactions as rows with the access frequency of the 

transactions. The transaction profile for each relation considered in turn can be generated 

based on the query execution schedule. In order to find a query execution schedule for 

each query transaction, we use a centralized query optimization technique as if all 

relations are placed in one local site since at this stage of design process, we do not know 

how the fragments are allocated to sites. Transaction profiles generated in this step will be 

used as inputs to vertical fragmentation design. 

In our vertical fragmentation algorithm, the local transaction processing cost will be 

determined by selecting the minimum cost access path for a given particular partitioning 

scheme. After relations are partitioned into fragments, these fragments become the unit of 

allocation for the next step. 

 

2.2. Data Allocation 

Once the unit of allocation is determined at the previous step, the allocation of 

fragments to local sites is the next design process. The "goodness" of a particular 

allocation scheme will be measured based on the total operating cost of all dominant 

transactions (see the section below). In order to determine each query transaction cost, the 

query execution schedule will be revised based on the partitioning scheme for each 

relation determined in the previous step. The revised query execution schedule will be 

used as an input to the operation allocation step. In other words, for each query 

transaction, the processing cost can be calculated based on the allocation scheme selected, 

which in turn is based on the query execution schedule. The sum of all transaction 

processing costs is the measure of the "goodness" of a particular data allocation.  

As the genetic algorithm generates many possible data allocation schemes, the total 

transaction processing cost will be calculated for each allocation scheme. Each allocation 

scheme will then be compared with each other, and the optimal data allocation scheme 

will be selected accordingly.  

 

2.3. Operation Allocation 

 

2.3.1. Cost Minimization 

As mentioned in the above section, the revised query execution schedule and data 

allocation will be fixed in order to find an operation allocation scheme. In order to 

evaluate the "goodness" of a particular operation allocation scheme, the total operation 

(subquery) execution cost should be measured. The operation execution cost will be 

calculated in terms of time units, which refer to using resources such as CPUs, I/Os and 

communication channels. In this research, operation execution cost is measured with 

respect to either total execution time (total time) or response time based on the 

characteristics of each transaction. OLTP (on-line transaction processing) types of 
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transaction will be measured by the total time whereas DSSs (decision support systems) 

type transactions will be measured by response time. The total time is calculated by 

summing all operation execution times, i.e., both local processing times and data 

transmission times. The response time is the elapsed time from the initiation to the 

completion of the query, including transmitting the query results back to the site where 

the query has originated. 

The total cost of all transaction executions in terms of total time, response time, or the 

combination of both is actually the measure of the "goodness" for a particular data 

allocation scheme. 

 

2.3.2. Load Balancing 

In this research, we do not explicitly consider load balancing as another objective of 

operation allocation. We instead consider total cost minimization as the primary objective 

and load balancing as the secondary objective. In order to accomplish this, we first solve 

the operation allocation problem whose objective is total cost minimization, then the CPU 

and I/O loads at each site are calculated according to operation allocation schemes; that is, 

operation allocation for load balancing is not determined by any measure of load 

balancing itself, but by cost minimization (note that in order to measure the degree of load 

balancing among network sites, we define the unbalanced factor as the sum of the 

absolute deviation of sites loads from the average network load).  

Like operation allocation mentioned in the previous section, the interaction between 

load balancing and data allocation will be also considered in this research [5], [7], and 

[14]. 

 

3. Development of Cost Models for Genetic Algorithms 
 

3.1. Cost Model for Vertical Fragmentation 

This section presents the cost model to the vertical fragmentation problem in 

conjunction with access path selection to be used for a binary vertical fragmentation 

genetic algorithm. We assume that the vertical fragmentation is designed for each single 

relation independently from other relations in the database, so the fragmentation is strict 

in the sense that attributes in the partitioned fragments are not allowed to overlap. At the 

first iteration of the genetic algorithm, two distinct (binary) fragments are produced, and 

then the same algorithm is applied recursively to further partition the fragment produced 

at the previous iteration until no improved fragmentation is possible. 

The objective of vertical fragmentation is to minimize the total transaction execution 

cost (total cost) by partitioning a relation into two or more fragments. We define the total 

cost of a binary fragmentation scheme as the sum of disk accesses incurred by each 

transaction. To calculate the total cost for the given binary fragmentation scheme, the 

number of disk accesses incurred by each transaction should be determined first. And to 

determine the number of disk accesses of each transaction, the access path for each 

transaction should be identified for the given binary fragmentation scheme. The access 

path selection is done by evaluating the costs (the number of disk accesses) estimated for 

all available access paths and selecting the one with minimum cost. In this paper, we 

consider three representative access paths, i.e., sequential scan, clustered index scan, and 

unclustered index scan, as used in [2], [8], [11], and [13]. 

Attributes of a relation are classified into three categories: clustering (primary key), 

unclustering (secondary key), and non-key. We assume that a relation (hence, fragments) 

is stored as an ordered set of contiguous tuples (records) based on the primary key. It is 

also assumed that the selection of the unclustering attributes to be inverted is determined 

exogenously prior to the determination of vertical fragmentation. The restrict attribute is 

the one being appeared in the selection formula (or predicate) of an SQL statement. The 
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scan attribute is the one being used to actually scan the relation. If there is one restrict 

attribute, it is the same as the scan attribute, but if there are multiple restrict attributes, 

then the scan attribute is selected from those restrict attributes (see the next section for 

details as to how to select the scan attribute). The selectivity of each restrict (or scan) 

attribute is defined as the ratio of the number of tuples satisfying its selection predicate 

and the total number of tuples of the relation. We assume that the selection formula 

consists of only conjunctive predicates since any disjunctive predicates can be converted 

into conjunctive ones before processing a transaction. 

In summary, it is assumed that a selected set of important transactions against a relation 

is defined a priori, and that the following information about a transaction is available: 

(1) The frequency of the transaction per unit time, 

(2) The subset of the attributes accessed by the transaction, and 

(3) The selectivity of each restrict attribute. 

After a relation is partitioned, each fragment will have a record for each tuple of the 

original relation, and tuples are assumed to be of fixed length. The tuples in different 

fragments can be identified by replicating the primary key in all fragments or by using 

tuple identifiers (TIDs), i.e., system controlled identifiers for each tuple of the original 

relation, which are replicated into every fragment. In this paper, we assume that a tuple is 

identified by a tuple identifier which has two components: page number and offset so that 

any tuple can be accessed directly based on TID. 

The number of disk accesses of a transaction is equal to the number of disk accesses 

per run multiplied by its execution frequency. As mentioned, the number of disk accesses 

per run of a transaction depends on the access path it uses to scan the relation. For an 

index scan, the average number of disk accesses incurred by a transaction depends on the 

average fraction of tuples that satisfied the predicate of the indexed attribute. If the 

indexed attribute is the clustering attribute, it is called a cluster index scan. Otherwise, it 

is an unclustered index scan. A sequential scan retrieves all pages of a relation. Since 

retrieving is sequential, several pages of the relation can be prefetched by a single disk 

access. 

Once the relation is partitioned into two fragments, the fragment containing the scan 

attribute of a transaction is referred to as the primary fragment for that transaction, 

otherwise it is called the secondary fragment. For a given transaction, the primary 

fragment being scanned may or may not contain all of the required attributes. The number 

of disk accesses is therefore expressed as a sum of two components:  

(1) The number of disk accesses required to retrieve tuples from the primary fragment, 

and 

(2) The number of disk accesses required to retrieve the remainder of the original 

tuples from the secondary fragment 

Primary Fragment Access Cost 

Let T1  be the number of disk accesses required to scan the primary fragment and 

attribute AS  be the scan attribute of a transaction, and so it will be used as the basis of 

scanning the relation. 

For a clustered index scan, a clustering attribute ( A1) is used as the scan attribute ( AS  ), 

and we assume that the clustering index page is resided in main memory all the time. 

Then the number of disk accesses can be estimated as 

T C1  = S C L PA R

P

1   

where  
SA1 is the selectivity of the selection predicate on the scan attribute A1, 
CR is the cardinality of the relation R, 
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P    is the page block size (4k bytes), and 

LP
 is the tuple size of the primary fragment in bytes, including the tuple identifier 

( LID). 

For an unclustered index, 

TU1  = M M K( )1 1 -  (1 -  )  + 
S NA IS    

M  = C L PR

P

 

K  = 
S CA RS

 
 

where 

M  is the page size of the primary fragment, including the tuple identifier ( LID), 

K  is the number of tuples satisfying the selection predicate on the scan attribute AS ,  
SAS  is the selectivity of the selection predicate on the scan attribute AS , and 
N I  is the number of pages in the scan index. 

Note that for the unclustered index scan, we adopt the formula proposed in [2], which 

is a good approximation when K CR <<   and M CR <<  , but if K  is large, the 

sequential scan will be selected instead of the unclustered index scan. When there are 

more than one restrict attributes in the primary fragment, the scan attribute ( AS ) for the 

unclustered index scan is the one that has the minimum selectivity among those restrict 

attributes indexed already other than the clustering attribute. Thus, the selectivity (
SAS ) in 

above equations is that of the scan attribute selected. Since we assume that the selection 

formula consists of conjunctive predicates, all tuples satisfying the selection predicate can 

be identified by scanning a fragment using the indexed attribute having the minimum 

selectivity. Note, however, that the actual number of tuples satisfying the conjunctive 

predicate will be based on the overall selectivity of multiple restrict attributes. 

For a sequential scan, 

T S1  =   ) C L P BR

P (   

where B  is the prefetch blocking factor 

In sum, if the scan attribute of the primary fragment is the clustering attribute, then 

 T Min T TC S1 1 1 =  {  , } 
else if the scan attribute is the unclustering attribute, but the clustering attribute is one 

of the restrict attributes, then 

 T Min T T TC U S1 1 1 1  {   , , } 
else if the scan attribute is the unclustering attribute, but the clustering attribute is not 

the restrict attribute, then 

 T Min T TU S1 1 1 =  {  , } 
Secondary Fragment Access Cost 

Let T2  be the number of disk accesses required to scan the secondary fragment. And 

assume that there are g restrict attributes, i. e., attributes appeared in the selection formula. 

Let A1, A2,..., 
Ag  be the g restrict attributes. Define SAi  be the selectivity of the selection 

predicate on attributes Ai . Assuming the attribute values are uncorrelated or independent, 

the overall selectivity of the multiple restrict attributes is the product of the individual 

selectivity of each restrict attribute. Then the number of tuples selected from the primary 

fragment can be expressed as 

S P
 = 

S SA Aii

g

S
 

=2  

The product term, SAi , takes the value SAi  if Ai  is in the same (primary) fragment as 
AS  (scan attribute). Otherwise, it is equal to 1.  
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If attributes not in the primary fragment are required, additional disk accesses are 

needed to retrieve tuples in the secondary fragment. We can consider three cases 

depending on what kind of access path is used to scan the primary fragment: 

For a sequential scan, the secondary fragment can be accessed either by a sequential 

scan or through tuple identifier. If S
P

 is small, the tuple identifiers can be used to retrieve 

the remaining tuples in the secondary fragment intuitively. Otherwise, a sequential scan 

can be used instead. Using a tuple identifier on the secondary fragment, the number of 

disk accesses can be estimated as 

T I2  = M M K( )1 1 -  (1 -  )  

M  = C L PR

S

 

K  = S CP

R  

where  

LS
 is the tuple size of the secondary fragment in bytes, including the tuple identifier. 

If a sequential scan is used for the secondary fragment, then 

T S2  = C L P BR

S  )(  

The number of disk accesses for the secondary fragment can then be expressed as 
T2  = Min T TI S { , }2 2  

If an unclustered index scan is used to access the primary fragment, the secondary 

fragment can be accessed using either tuple identifiers or sequential scan, depending upon 

which incurs fewer disk accesses so that 
T2  = Min T TI S { , }2 2  

If a clustered index scan is used for the primary fragment, the secondary fragment can 

be either accessed through tuple identifiers identified using the clustered index in the 

primary fragment or sequential scan, depending upon which incurs fewer disk accesses. If 

tuple identifiers are used to access the secondary fragment, it would be similar to a 

clustered index scan on the primary fragment, so that 

T C2  =  S C L PP

R

S

         

Thus for case of a clustered index scan on the primary fragment, the disk accesses to 

the secondary fragment can be estimated as 
T2  = Min T TC S { , }2 2  

Note that when there are multiple restricted attributes in the selection formula, it is 

possible that these attributes are split into both fragments. If it is happened, it is possible 

to process two fragments in two different ways depending on which fragment is accessed 

first (or which one becomes the primary fragment), and as a result, the number of disk 

accesses will be also different. Thus, in this case, the number of disk accesses required by 

two access methods is compared, then choose the minimum one as the access method to 

process two fragments. 

 

3.2. Cost Models for Operation Allocation 

 

3.2.1. Total Time Model 

The total time for each query is the sum of local processing times and communication 

times for all subqueries.  Total Time = 
(LP +  COM )j

k
 j

k

j
, where j

k
LP  represent the 

local processing time of the subquery j (a node in the query tree in Figure 2) of a query k. 

j
k

COM  represents the communication time of transmitting the input relation(s) to the site 

at which the subquery j of a query k is being executed. 
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3.2.1.1. Local processing time ( j
k

LP )  

The local processing time of a subquery depends on an operation type, the size of the 

input relation(s), the CPU speed and the I/O speed of the site selected. We assume that 

CPU processing is proportional to the amount of data accessed and that I/O time is 

proportional to the number of blocks read or written.  

(A) For a selection or projection on a relation, the local processing time for the subquery j 

of the query k is defined as:    

j
k

LP  = 
Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
                               (1) 

where 
Bij

k

  is the number of blocks of relation i accessed by subquery j of query k, 
IOt  is the I/O time of site t in msec for transferring 4k byte page into main memory, 
CPUt  is the CPU time of site t in msec per 4k byte page for selection and/or 

projection. 

(B) We also assume that the intermediate result of each unary or join operation is 

transmitted directly to the next join site and stored at the next join site before the 

execution of the next join operation. As such, the local processing time for the join j of the 

query k is defined as: 

j
k

LP  =  
Y  IO   Z Bjt

k

t mi ijp[m]

k

mt ijp[m]

k  +                               (2a) 

Y  (IO   Z B  CPU   Z Bjt

k

t t ij

k

i ij

k

t ij

k

i ij

k   )
                           (2b) 

where m  represents the selectivity of the two previous operations (m = 1 or 2),  

where the selectivity is the ratio of output relation size and input relation size, and 

Bijp[m]

k

 is the size of an input (intermediate) relation where p[m] represents two 

previous operations of the join operation j (m is 1 for the left and 2 for the right 

operation). 

Note that m  can represent selection, projection or join selectivity. (2a) represents the 

I/O time to store the intermediate results of the previous operations to the site of the 

current join operation. (2b) represents the I/O and CPU processing times for the current 

join operation. Note that we convert 
Bijp[m]

k

 (the size of intermediate results being stored at 

the join site) to 
Bij

k

 (the size of same intermediate results being retrieved for the current 

join operation) for notational convenience so that 
Bij

k

 will be used for the next join 

operation with the join selectivity of the current join operation. 
 

3.2.1.2. Communication Time ( j
k

COM ) 

When either of the relation(s) to be joined is not produced at the site at which the join 

operation is performed, communication for join operations is needed, and is expressed as 

follows: 

j
k

COM  = 
Y  Y  C   ( Z Bjp[m]t

k

ptm jp

k

tp ijp[m]

k

i ijp[m]

k  )
 

where 
C tp  is the communication cost between site p and site t in msec per 4k byte 

page. 

Note that if a previous operation and the join operation are executed at the same site 

(t=p), then Ctp =0. Communication for sending the final result is also needed if the final 

operation is not performed at the query originating site. Since there is only one previous 
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operation for the final operation, we assume that 
Zijp[2]

k

 for all i is 0 (also 
Bijp[2]

k

 = 0). It 

should be noted that we consider communication cost to include data transmission cost. 

However, in real world, communication cost may also include time to synchronize the 

two CPUs. In this research, we ignore this synchronization time, since this is usually a 

fixed overhead cost and it is not variable like data transfer cost. 

 

3.2.2. Response Time Model 

In a partially replicated distributed database system, it is possible to decompose a query 

into subqueries that can be processed in parallel and also their intermediate relations can 

be transmitted in parallel to the required site. Two types of parallel execution are possible: 

(1) intra-operation parallelism, and (2) inter-operation parallelism [6]. A typical example 

of intra-operation parallelism is pipelining of a single join operation, by which two sites 

work in parallel; that is, the site that request remote data will begin its join processing as 

soon as the first tuple or packet of data has arrived, whereas in sequential processing, the 

site receiving data will not begin its join processing until all of the required data has 

arrived. Inter-operation parallelism refers that several subqueries in a single query can be 

executed in parallel. In this research we assume the join operation is performed using the 

sequential processing method, and we are concerned only with parallelism in a single 

query, not among multiple queries. 

Response time is calculated by taking into consideration the possibility of performing 

local processing and data transmission in parallel under the condition that the operations 

are performed at different sites as mentioned in the previous section. The response time of 

query k is: 

Response time RT
k

j   =  
COM (p[1])j

k

+ LP
k

j (p[1]) + RT
k

j (p[1])             

where RT
k

j (p[1]) is the recursive function for the response time.  

The first term 
COM (p[1])j

k

 is to calculate the communication time sending the results 

to the query originating site ( ijp[2]
k

Z  for all i is 0 and 
Bijp[2]

k

 = 0) and the LP
k

j (p[1]) refers 

to the local processing time of the final operation. For the recursive function RT
k

j (p[1]) 

(but we will use RT
k

j for convenience), we calculate the cost as follows. Four scenarios 

exist depending upon sites at which the join operation j and the two preceding operations 

p[1] and p[2] are executed. 

 

3.2.2.1. Scenario – 1: 

The join operation j and the sites two preceding operators p[1] and p[2] are executed at 

the same site; that is, 
0 CYY tp

k

jp[2]t

k

jp[1]t 
, 

0 CYY tp

k

jt

k

jp[1]t 
and 

0 CYY tp

k

jp[2]t

k

jt 
 then 

RT
k

j  can be calculated by using the equation.  

LP
k

j  + m

k

j  (p[m]LP
+ 

(p[m])RTk

j ) 

Here, LP
k

j is the local processing time for sub query j, 
(p[m])LPk

j is the local 

processing time for the preceding left (m=1) or right (m=2) operation (i.e. subsub query). 

These local processing times are calculated using the equations introduced in the previous 

section. 
(p[m])RTk

j is the (response) time when a preceding operator is available for 

local processing. 
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3.2.2.2. Scenario – 2: 

The join operation j and the two preceding operators p[1] and p[2] are performed at 

three different sites. In this case the three operators can be run in parallel. Then the 

response time of the entire group is computed as the maximum of resource consumption 

of individual operators and the usage of all the shared resources (such as communication 

times) [6]. Then 
k

jRT
is given by 

Max {  
,LPk

j                                                         (3a) 

(p[1])LPk

j + 
(p[1])RTk

j ,                                              (3b) 

(p[2])LPk

j + 
(p[2])RTk

j ,                                               (3c) 

COM (p[1])j

k

+  
COM (p[2])j

k

                                           (3d) 

where  
COM (p[1])j

k

 = 
)BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jp

k

jp[1]t 
 

COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jp

k

jp[2]t 
 

In the above, (3d) represents shared resource consumption, which is the communication 

time. (3a) is the local processing time for subquery j and (3b) and (3c) are the processing 

times for the two preceding operations of subquery j. The communication costs will be 

additive, since those are the overheads on the receiving node, as represented by (3d). 

 

3.2.2.3. Scenario – 3: 

The sites at which two preceding operations of subquery j are performed are different 

and the join subquery j uses one of these sites. There is no communication cost between 

one of the preceding operators, say p[1], and the operator j. That is, 
0 CYY tt

k

jt

k

jp[1]t 
, 

0 CYY tp

k

jt

k

jp[2]p 
and 

0 CYY tp

k

jp[2]p

k

jp[1]t 
, then 

k

jRT
 is given by: 

Max  {
k

jLP
 + 

(p[1])LPk

j +
(p[1])RTk

j ,                                        (4a) 

 
(p[2])LPk

j + 
(p[2])RTk

j ,                                                   (4b) 

COM (p[2])j

k

}                                                            (4c) 

where 
COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 
 

In the above since sub query j and the left previous operation p[1] are executed at the 

same site, the local processing times of the two sites need to be added (4a). Since right 

previous operation p[2] is executed at a different site, its local processing time (included 

in (4b)) can be executed in parallel. In addition, the communication time (4c) can be 

implemented in parallel as well. 

 

3.2.2.4. Scenario – 4:    

In secenario-4, the two preceding operations of subquery j, p[1] and p[2], are executed 

at the same site, while the  subquery j is executed at a different site. There is 
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communication time involved in shipping data from both the preceding operations p[1] 

and p[2] to the site of subquery j. That is, 
0 CYY tp

k

jt

k

jp[1]p 
, 

0 CYY tp

k

jt

k

jp[2]p 
and 

0 CYY pp

k

jp[2]p

k

jp[1]p 
. Also, there will be no parallelism between the operations p[1] and 

p[2]. Then 
k

jRT
 is given by 

Max  {
k

jLP
,                                                              (5a) 

(p[1])LPk

j + 
(p[2])LPk

j + 
(p[1])RTk

j +
(p[2])RTk

j ,                       (5b) 

COM (p[2])j

k

 + 
COM (p[2])j

k

}                                       (5c) 

where 
(p[1])COMk

j  = 
)BZ( CYY k

ijp[1]i

k

ijp[1]tp

k

jt

k

jp[1]p 
 

COM (p[2])j

k

 = 
)BZ( CYY k

ijp[2]i

k

ijp[2]tp

k

jt

k

jp[2]p 
 

In the above, since subquery j is executed at a different site than the preceding 

operators, its local processing of subquery j (5a) can be done in parallel to the 

communication time (5c) and the processing times of p[1] and p[2] . Since the preceding 

operators are executed at the same site, their local processing times are additive (5b). 

Also, the communication costs will be additive, since those are the overheads on the 

receiving node. Above equations hold whether previous operations are joins, selections, 

or projections, or other relational algebra operators.  

The stopping condition of the recursive function RT is as follows. We define: if p[m] in 

ijp[m]
k

Z  is equal to zero in the response time recursive function, where zero for p[m] means 

that the previous operation for this operation j (subquery) is original relation. In scenarios 

2 and 3, parallelism between the preceding operations p[1] and p[2] is implied. It is 

assumed there is no clash in data access between the two preceding operations, i.e., 

i

k

ij

k

ij   0  (p[2]) Z* (p[1])Z 
, otherwise local processing times can be additive in the 

worst case. 

 

3.2.3. Query Tree and Update Tree Model for Update Transaction 

A query tree is illustrated in the query part in Figure 3. A node is called a leaf node (F1 

and F2) if it has no incoming arcs; that is, it represents the relations in the database. A 

node is called an operation node (nodes 1, 2 and 3) if it has incoming and outgoing arcs. 

The operation nodes represent the relational operations. The operation nodes such as 1 

and 2 represent a unary operation such as selection, projection or a combination of both, 

and the operation node such as 3 represents a binary operation such as join or union. 

Sometimes a binary operation is performed on an input relation directly without any unary 

operation(s), and in this case the unary operation node connected to the corresponding 

input relation is called a dummy operation node. An operation node without any outgoing 

arcs is called a result node (node 4). An arc represents the transmission of a (intermediate) 

relation into the operations, such as f3, f4 and f5.  

There is a site set associated with each node in the query tree. The members of the site 

set for a leaf node are those sites that hold a copy of that relation. The site set for an 

operation node contains those sites that can perform the operation. In general, selection 

and projection operations requiring relations should be executed at only those sites that 

hold a copy of relations referenced so that there is no transmission of a relation required at 

the site of the operations, but join operations can be executed at any site. 
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An update transaction may be viewed as a two-part action, wherein the first part 

corresponds to a query transaction, followed by the second part which updates the value 

of a set of relations, as shown in Figure 3. The simplified SQL statement for the update 

query tree Figure 3 may be as follows: 

 
UPDATE F3, F4 Alias F 

SET          F.z = F.z * 1.1 

WHERE  F.k IN (SELECT   k  

                             FROM     F1, F2 

                             WHERE  F1.x = F2.y) 

 

3

1 2

f 3

f 5

f 4

F1 F2

4

F2F1

F3 F4
Update

Query

Part

Part

L1 L2

 

Figure 3. Query Tree for Update Transaction 

In the second part of an update transaction, the update values (L1 and L2, which are the 

same as the intermediate relation f5 resulting from the final operation 3 in Figure 3) 

resulting from the first part must be sent from the update initiation site (site for operation 

4 in Figure 3) to all sites that have a copy of the relation being updated, and then the 

relation must be updated at each site (for example, two copies of F3 and three copies of 

F4 in Figure 3), which incurs CPU and I/O costs at each site. In Figure 3, two relations 1 

and 2 are referenced by the query part of update transaction, and then both relations are 

updated according to the update value resulting from the query part.  

 

3.2.3.1. Cost Models for Update Transaction 

As mentioned in the previous section, the total cost for executing all query (either 

OLTP or decision-support) and update transactions against a particular data allocation 

scheme will determine the goodness of its data allocation scheme, and it is represented as 

follows: 

Total Cost = 
F(k, t)Q(k,t) +  F(u, t)U(u, t)

tk tu   

Where F(k,t) and F(u,t) are the frequencies of query k originating at site t and update u 

originating at site t per unit time, and Q(k,t) and U(u,t) are the cost of query k and update 

u transactions originating at site t. Our objective is to minimize this total cost. 

We now define the update transaction cost model. Before describing the cost model, 

we first introduce one more variable iU , specifying relations updated by the update 

transaction. iU  is 1 if relation i is updated by the update transaction; otherwise, it is 0. 

The update transaction cost is defined as follows: 

U(u,t) = Q(u,t) + 

C U X Ltp i it iipt 
 +                                             (1) 
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(IO  U X B  +  CPU  U X B )t i it i

u

tit i it i

u

i   +                       (2) 

IO  U X Ltt i it ii                                                    (3) 

Where, Bi

u

 is the number of blocks of relation i updated by update u, 
L i  is the update value in number of blocks for the relation i, which is the same as the 

final result from the query part Q(u,t), 
IOt  is the I/O cost coefficient (speed) of site t in msec per page (4k bytes), 

CPUt  is the CPU cost coefficient (processing speed) of site t in msec per page (4k bytes), 
C tp  is the communication cost coefficient (channel speed) between site t and site p in 

msec per page (4k bytes), 
Xit  represents data allocation; relation i is stored at site t. 

Note that calculation of query execution time for the query part Q(u,t) of the update 

transaction is exactly the same as that of the total time model (see below for details). The 

reason for using the total time model for Q(u,t) is that the update transactions typically 

occurred in the DEBIT/CREDIT type of transactions in the banking industry, which in 

general require high throughput. Therefore, the calculation of Q(u,t) is the same as Q(k,t) 

of total time introduced in Chapter V. In the formula, (1) represents the communication 

cost for sending the update values (Li) from the update initiation site to all sites that have 

the copy of the relation being updated; (2) represents I/O cost for reading the required 

relation into main memory and CPU cost for processing the update; and (3) represents the 

update cost for writing the updated values back to disk. Calculation of Q(u,t) is as 

follows: 

Q(u,t) = 
(LP +  COM )j

k
 j

k

j
                                            (1) 

j
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tp ijp[m]
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i ijp[m]
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where, j
k

LP  represents the local processing time of the subquery j of a query k. 

j
k

COM  represents the communication time of transmitting the input relation(s) to the 

site at which the subquery j of a query k is being executed. 

Bij

k

  is the number of blocks of relation i accessed by subquery j of query k. 

Bijp[m]

k

 is the size of an input (intermediate) relation where p[m] represents two 

previous operations of the join operation j: m is 1 for the left previous operation, and 2 for 

the right previous operation. 
m  represents selectivity of the two previous operation (m = 1 or 2), and selectivity 

refers to the ratio of relation size reduction after an operation. 

j t
k

Y  represents operation allocation and is 1 if subquery j of query k is done at site t; 

otherwise, it is 0.  

jp[m]t
k

Y  is 1 if the left (m = 1) or right (m = 2) previous operation for join operation j of 

query k is done at site t; otherwise, it is 0. 
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ij
k

Z  is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k. 

ijp[m]
k

Z  is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m 

= 2) previous operation for join operation j of query k; otherwise, it is 0. 

(1) represents the total query execution time for the query part Q(u,t) of the update 

transaction and is the sum of all local processing times and communication times. (2) 

represents the local processing time for the subquery j of the query k when the subqueries 

are unary operations such as the selection or projection operation. (3a) represents the I/O 

time in storing the intermediate results of previous operations to the site of the current join 

operation before the execution of the join. (3b) represents the I/O and CPU processing 

times for the current join operation. (4) represents the communication time for join 

operations when either of the (intermediate) relation(s) to be joined is not produced at the 

site at which the join operation is performed. (4) is also used for the communication time 

for sending the final result if the final operation is not performed at the query originating 

site. Since there is only one previous operation for the final operation, we assume that 

Zijp[2]

k

 for all i is 0 (also 
Bijp[2]

k

 = 0). 

 

3.2.4. Cost Model for Load Balancing 

We define the unbalanced factor (UBF) as the sum of the absolute deviation of site 

workloads from the average network load. The objective function for load balancing is 

then defined to minimize UBF. Minimization of UBF gives a load distribution that has 

approximately balanced the network load. Note that if the network load among sites is 

balanced totally (all site have the same workload), the absolute deviation becomes zero. 

The objective function is defined as follows. 

Minimize UBF = 
LI  -  LI  +  LC  -  LCt avt t avt    

subject to 

LI  =  
1

N
 LIav tt

 

LC  =  
1

N
 LCav tt

 

where LI t  and LC t  represent the I/O and CPU workloads (I/O and CPU times), 

respectively, at the site t; LIav and LCav  represent the average I/O and CPU workloads 

(I/O and CPU times), respectively, in the entire database; N represents the number of 

sites. We now define LI t  and LC t as follows: 

(1) For a selection or projection, 

LI t  = 
F(k, t) Y  IO  Z  Bjt

k

jk t ij

k

i ij

k 
 

LC t = 
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i ij

k 
 

(2) For a join, 

LI t  = 
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jk t ij
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i ij
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Where, F(k, t)  represents the frequency of query k originating at site t, j t
k

Y  represents 

operation allocation, and is 1 if subquery j of  query k is done at site t, otherwise it is 0, 

ij
k

Z  is 1 if input (or intermediate) relation(s) i is referenced by subquery j of query k, 
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ijp[m]
k

Z  is 1 if input (intermediate) relation i is referenced by the left (m = 1) or right (m 

= 2) previous operation for join operation j of query k, otherwise it is 0, IOt  is the I/O 

cost coefficient (speed) of site t in msec per page (4k bytes), CPUt  is the CPU cost 

coefficient (processing speed) of site t in msec per page (4k bytes), 
Bij

k

 is the number of 

blocks of relation i accessed by subquery j of query k, 
Bijp[m]

k

 is the size of an input 

(intermediate) relation where p[m] represents two previous operations of the join 

operation j: m is 1 for the left previous operation, and 2 for the right previous operation, 

and m  represents the selectivity of the two previous operation (m = 1 or 2), and the 

selectivity refers to the ratio of relation size reduction. 

(3) For the update part of an update transaction, 

LI t  = 
F(u,t) IO  U X B  t i itiu i + 

F(u,t) IO  U X L  t i itiu i  

LC t = 
F(u, t) CPU  U X B  t i itiu i  

Where, F(u,t)  represents the frequency of update originating at site t, Xit  represents 

data allocation; relation i is stored at site t, Bi

u

 is the number of blocks of relation i 

updated by update u, and L i  is the update value in number of blocks for the relation i, 

which is the same as the final result from the query part of an update transaction. 

Note that the query part of an update transaction is the same as (1) and (2) above. 

 

4. Experiments with Integrated Design Method 

Interdependency between the problems has been revealed as we describe the design 

solution for each problem. Figure 1 shows how these problems are interrelated with each 

other. Our design is based on fragments instead of relations. Thus, we need to address one 

more issue related to fragmentation. At the vertical fragmentation step, we do not know 

how the fragments are allocated to sites, which in turn means that we cannot estimate  
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Figure 4. Integrated Design Strategy 

Additional join or data transmission costs when transactions require two or more 

fragments or when the transaction originating site is different from the site where the 

required fragments are stored. In order to resolve this problem, when a transaction 

accesses both fragments at each iteration of binary partitioning, the additional cost 

required for a given partitioning scheme is roughly estimated by adding the penalty cost. 

However, once the data allocation scheme is determined in accordance with cost 

minimization operation allocation and load balancing, data transmission cost or additional 

join cost, instead of the penalty cost, can be calculated for a given partitioning scheme, 

hence the overall transaction execution cost based on fragments. 
Based on the description above, three criteria we use for integrated design method are 

that (1) two overall distributed database design schemes, one based on global relations 

and another based on fragments, will be compared; (2) if overall transaction execution 

cost based on fragments is less than that based on global relations, the overall design 

procedure will be terminated; and (3) if (2) is not true, then another fragmentation scheme 

needs to be determined, and the procedure goes back to step (1) above. 

Figure 4 shows the revised view of the integrated design steps in Figure 1. As shown in 

Figure 4, our design strategy is as follows: 

(1) Once the dominant query (OLTP and DSS types) and update transactions are 

selected, the global relations are allocated to the network sites using the genetic 

algorithms. Let us assume that the total transaction execution cost is Total (R), which is 

the combination of total times and response times. 

(2) For each global relation, the vertical fragmentation genetic algorithm is applied to 

produce binary fragments first; then it is applied to further partition each fragment until 

no further fragmentation is indicated based on the transaction profile of each global 

relation. 
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The query and update trees are revised according to the fragmentation scheme. Two 

alternative methods have been suggested for revision [9]:  

1. replication of the key attributes at each fragment (Method 1), and 

2. use of tuple identifiers (TIDs), which are system-assigned unique values to the tuples 

of a relation (Method 2).  

We employ these two methods and compare their results. In case of Method 1, two 

cases can occur when query and update trees are revised. First, some operations 

(subqueries) will access only one fragment, not the whole relation, which results in not 

only reduced local processing cost but also reduced data transmission cost. Second, some 

unary operations, however, will need to access two fragments due to binary 

fragmentation; as a result, an unary operation must be revised and become a join 

operation. In this case, the local processing cost will be increased and unnecessary data 

transmission costs will be incurred if the fragments participating in the join operation are 

allocated to different sites. 

In case of Method 2, when an unary operation needs to access two fragments, it 

performs its local operation on the first fragment first, then the necessary tuple identifiers 

are obtained from the first fragment. The tuples in the second fragment are then obtained 

by using these tuple identifiers. If the site at which the second fragment is stored is 

different from that of the first fragment, the costs are calculated as follows: 

1. the cost of sending TIDs to the site of the second fragment, 

2. the costs of I/O and CPU processing on the second fragments based on TIDs, and 

3. the cost of sending the tuples selected from the second fragment to the site of the 

first fragment. 

Note that if the first fragment and the second fragment are stored at the same site, then 

the costs 1 and 3 are not incurred. 

(4) Based on the revised query and update trees, the fragments are allocated to the 

network sites, and let us assume that the total transaction execution cost is Total (F). 

(5) If Total (F) is less than Total (R), then we stop the design steps since the total cost 

is reduced because of vertical fragmentation. 

(6) If Total (F) is more than Total (R), then the allocation based on the fragments is 

worse than that of global relations. In this case, we need to find another fragmentation 

scheme and compare the result again. Note that since the vertical fragmentation genetic 

algorithm produces many alternatives in its population pool, we may choose the second 

best fragmentation scheme from the pool for one of the global relations, then repeat the 

steps (3) to (5). If after several attempts all vertical fragmentation schemes fail to reduce 

the total cost to less than that of using the global relations, we may conclude that it is 

better not to use vertical fragments for this particular database, probably due to the query 

and update transaction patterns. But it is likely that since our vertical fragmentation 

scheme produces the best possible fragmentation, which not only reduces the local 

processing cost but also minimizes accessing binary fragments-reducing join operations, 

its total cost will be reduced to less than that of using the global relations, even though not 

guaranteed. 

In the following sections, we illustrate these steps based on one fictitious database. 

 

4.1. Global Database Specification 

In order to illustrate the integrated design method, we will use one fictitious distributed 

database system which consists of five database sites. A global database schema is 

assumed to be developed and consists of seven relations. The size of each relation is as 

follows: relation1 is 4850, 2 is 3500, 3 is 2500, 4 is 3000, 5 is 3750, 6 is 1500, and 7 is 



International Journal of Database Theory and Application 

Vol.10, No.6 (2017) 

 

 

30   Copyright ⓒ 2017 SERSC 

508. The size of a relation is measured in data page blocks and the size of data page is 

assumed to be 4k bytes. The design problem at hand is that these relations will be 

fragmented and allocated among five sites according to the user transaction pattern.  

We assume that the dominant transactions are selected already, and the set of dominant 

query and update transactions to be executed by the proposed database system are 

summarized in Table 1. Tables 1 also describes the relations required by each transaction, 

the frequency, and the transaction originating site. A "1" in the tables indicates a 

particular relation needed by a transaction. We assume that query trees (query execution 

order) for each of the query transactions is derived through a global (or local) query 

optimizer. We also assume that queries 1-10 are left deep query tree types for the total 

cost minimization while queries 11-18 are the bushy query tree types for the response 

time minimization. The cost coefficients assumed in this research are as shown in Table 2. 

Table 1. Retrieval and Update Transactions on Global Relations 

-------------------------------------------------------------------                   -------------------------------------------------- 

Retrieval (Query) Transactions                                                                          Update Transactions 

-------------------------------------------------------------------                   -------------------------------------------------- 

Relation   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                    Query Part                Update Part 

-------------------------------------------------------------------                   --------------------------------------------------- 

1                        1 1       1 1 1   1          1   1   1   1   1   1                     Relation  1  2  3  4  5               1  2  3  4  5  

2              1     1          1 1 1 1   1    1    1   1   1        1   1                     --------------------------------------------------- 

3              1 1        1 1 1 1 1 1   1    1              1   1   1   1                     1              1  1  1  1  1                   1 

4                 1  1 1 1 1 1 1 1 1   1    1    1             1   1   1                     2              1                                               1 

5                 1     1    1       1                  1    1       1   1   1                     3                  1                            1 

6                              1 1 1 1             1   1   1   1   1   1   1                     4                      1                                1   

7              1 1      1    1       1 1  1               1   1   1   1   1                     5                          1                                1 

-----------------------------------------------------------------                      6                       1       1                              1  

Frequency   10 10 7 7 5 5 5 5 2 2  2  2  2  2  1  1  1  1                        7                  1       1                   1 

Query Site    4   3  4 1 3 2 2 4 5 1  4  2  4  2  3  5  1  3                       -------------------------------------------------- 

-----------------------------------------------------------------                       Frequency: 3  2  2  1  1 

                                                                                  Site:            4  1  2  3  5 

                                                                                                            --------------------------------------------------- 

Table 2. Cost Coefficients for I/O, CPU, and Communication 

  Site 

 Site 1 2 3 4 5 

Communication 1 0  1.2 1.0 0.8 1.2 

Speed 2 1.2 0 1.0 1.2 1.0 

 3 1.0 1.0 0 1.2 1.2 

 4 0.8 1.2 1.2 0 1.0 

 5 1.2 1.0 1.2 1.0 0 

I/O Speed 2.5 2.0 2.5 2.0 2.2 

CPU Speed 0.1 0.1 0.1 0.1 0.1 

 

4.2. Vertical Fragmentation 

The genetic algorithm is applied to produce binary fragments first, and then applied to 

further partition each of them until no further fragmentation is indicated. The transaction 

profile for each relation is assumed to be generated and will be used as the input to the 

vertical fragmentation genetic algorithm. Each transaction profile is used to determine 

whether the fragmentation of a relation results in the reduction of the total transaction 

execution cost. When applying the vertical fragmentation genetic algorithm, five relations 

(relation 2, 3, 4, 5, and 6) do not produce any good fragment, and so each relation itself 

will be used as the unit of allocation, and so the vertical fragmentation is applied to the 

relations 1 and 7 only. 
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The transaction profiles for relations 1 and 7 are described in Table 3 and Table 4, 

respectively. In Table 5 it is assumed that each "Tx" represents the particular set of 

queries or updates which have the same attribute access pattern. Each transaction 

represents the following queries: 

Tx 1: Query  9, 10 

Tx 2: Query  15, 16, 17 

Tx 3: Query  14, Update 5 

Tx 4: Query  13, 18, Update 4 

Tx 5: Update 1 

Tx 6: Query  4, 5, 8, 11 

Table 3. Transaction Profile for Relation 1 

------------------------------------------------------------------------------------- 

Attributes 

------------------------------------------------------------------------------------- 

               1   2   3   4   5   6   7   8   9  10  11 12 13 14 15 16 17 18 19 20 

------------------------------------------------------------------------------------- 

Tx 1       1   0   0   1   0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0 

Tx 2       1   1   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

Tx 3       0   0   0   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   0 

Tx 4       0   0   0   0   0   0   1   0   0   0   1   1   1   1   1   0   0   0   0   0 

Tx 5       1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1 

Tx 6       0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1 

------------------------------------------------------------------------------------ 

Length:  8   8   8   8   4   8   8  12  20 22  4   8   6   5  3  30 12  8   6   6 

------------------------------------------------------------------------------------ 

Restrict Attribute:  1      1      8     7      1      15 

Selectivity           : .001 .001 .001 .001 .001 .001 

Frequency           :  4      3      3      4      3      23 

------------------------------------------------------------------------------------- 

Table 4. Transaction Profile for Relation 7 

------------------------------------------------------------------------------------ 

Attributes 

          ----------------------------------------------------------------------------- 

               1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 20 

------------------------------------------------------------------------------------- 

Tx 1       1   1   1   1   1   1   1   1   1   0   0   0   0   0   0   0   0   0   0   0 

Tx 2       0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   1   1   1 

Tx 4       0   1   0   0   0   0   0   0   1   0   0   1   1   1   0   0   0   0   0   0 

Tx 6       0   0   1   0   0   0   1   0   0   1   1   0   0   0   0   0   1   1   0   0 

Tx 9       0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   1   1 

Tx 10     0   1   0   0   1   0   0   0   0   0   1   0   0   1   0   0   0   0   1   0 

Tx 11     1   0   0   0   0   0   0   0   1   0   0   0   0   0   0   1   0   1   0   0 

Tx 14     1   0   0   0   0   0   0   1   0   1   1   0   0   0   0   0   0   0   0   0 

Tx 15     0   0   0   1   0   0   1   0   0   1   0   0   0   1   0   0   0   0   1   1 

Tx 16     0   0   1   0   0   0   1   0   0   1   1   0   0   0   0   0   1   0   0   0 

Tx 17     0   0   0   0   0   0   0   1   0   0   1   0   0   0   1   1   1   1   0   0 

Tx 18     1   1   1   0   1   1   0   0   1   0   0   1   1   0   0   0   0   0   0   0 

Up 1      1   0   0   1   1   1   0   1   0   0   0   0   0   0   0   0   0   0   0   0 

Up 4      0   1   0   0   0   0   0   0   0   0   0   1   1   1   1   1   0   1   0   1 

Up 5      1   0   0   0   1   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0 

------------------------------------------------------------------------------------- 

Length:  8   8   8   8   4   8   8   8   4   4   4   8   6   5  30 30  12  8  16 16 

------------------------------------------------------------------------------------- 

Restrict Attr.: 3 15  2  3  15  2  1  1  4  3  8  1  1  2  1 

Selectivity:     .005 .005 .005 .005 .0015 .0015 .0015 .0015 

.001 .001 .001 .001 .001 .0005 .0005 

Frequency:     10 10  7  5  2   2   2   2   1   1   1   1   4   1   1 

------------------------------------------------------------------------------------- 
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The cardinality of relation 1 is 100,000 and that of relation 7 is 10,000. It is assumed 

that the length of tuple identifier is 4 bytes and the size of index page for unclustered 

index scan is 10. For all relations, it is assumed that attribute 1 is taken to be the 

clustering attribute, and indexes are available on all restrict attributes. The number of 

scans per run for all transactions is assumed to be 1. 

The genetic algorithm is then applied to each fragment, and fragment 1 is further 

partitioned into two fragments as follows: 

Fragment 1-1: 1, 2, 3, 4, 5, 6, 8, 9, 10 

Fragment 1-2: 7, 11, 12, 13, 14 

Any further fragmentation gives no cost reduction, and so three-way fragmentation is 

the best solution in this case. As a result of applying vertical fragmentation to relation 1, 

each query accesses different fragment(s), and after renumbering the fragments 1-1, 1-2, 

and 2 as 1, 2, and 3 respectively, it is summarized as follows: 

- Query 9, 10: Fragments 1 and 2 

- Query 14, 15, 16, 17, Update 5: Fragment 1 

- Query 13, 18, Update 4: Fragments 2 and 3 

- Update 1: Fragments 1 and 3 

- Query 4, 5, 8, 11, Update 1: Fragment 3 

The application of genetic algorithm to relation 7 results in two fragments as follows: 

Fragment 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18 

Fragment 2: 15, 16, 19, 20 

As a result of applying vertical fragmentation on relation 7, each query accesses 

different fragment(s) and is summarized as follows: 

- Query 1, 4, 6, 11, 14, 16, 18, Update 2, 5: Fragment 1 

- Query 9: Fragment 2 

- Query 2, 10, 15, 17, Update 4: Fragments 1 and 2 

We assume that the approximate size of three fragments from relation 1 is 2450, 775, 

and 1625, respectively and that of two fragments from relation 7 is 278 and 230, 

respectively. 

 

4.3. Data Allocation with Operation Allocation and Load Balancing 

The allocation of fragments is achieved through an iterative procedure between 

operation allocation and data allocation with or without load balancing. Since we have 

determined the unit of allocation in the previous phase, we revise the query and update 

transactions in terms of fragments, and the query execution order for each query is also 

revised in terms of fragments. Table 5 describes the fragments required by each 

transaction, the frequency, and the transaction origination site. 

 

4.3.1. Allocation of Global Relations 

As a result of the genetic algorithm, data allocation for the global relations is obtained 

as follows: relation 1 is allocated to site 3, relation 2 is allocated to site 1, relation 3 is 

allocated to site 5, relation 4 is allocated to site 4, relation 5 is allocated to site 2, relation 

6 is allocated to site 2 and 4, and relation 7 is allocated to site 4. The total query and 

update execution cost is 1,782,185 time units, and the unbalanced factor is 1,255,780. 

 

4.3.2. Allocation of Fragments 

By using Method 1, data allocation for the fragments is obtained as follows: fragment 1 

is allocated to site 1 and 5, fragment 2 is allocated to site 3, fragment 3 is allocated to site 

4, fragment 4 is allocated to site 2, fragment 5 is allocated to site 1 and 4, fragment 6 is 

allocated to site 5, fragment 7 is allocated to site 4, fragment 8 is allocated to site 3, 

fragment 9 is allocated to site 5, and fragment 10 is allocated to site 1. The total query and 
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update execution cost is 1,249,792 time units, and the unbalanced factor is 1,038,636. 

Using Method 2 results in data allocation as follows: fragment 1 is allocated to site 2 and 

Table 5. Query and Update Transactions on Fragments 

-------------------------------------------------------------------------         ---------------------------------------------- 

Retrieval (Query) Transactions                                                                           Update transactions 

-------------------------------------------------------------------------         ---------------------------------------------- 

Fragment  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18                           Query Part    Update Part 

-------------------------------------------------------------------------         ---------------------------------------------- 

1                                               1  1                  1   1   1   1                 Fragment   1 2 3 4 5       1 2 3 4 5 

2                                               1  1              1                       1          ----------------------------------------------                           

3                           1  1          1            1        1                       1            1                1    1    1          1 

4              1      1               1  1  1  1    1   1       1   1         1   1            2                         1             1 

5              1  1           1  1  1  1      1         1            1   1    1   1            3                 1 1   1 

6                  1  1   1  1  1  1  1  1  1    1   1   1            1         1            4                 1                   1          1 

7                      1       1      1                          1   1       1    1   1            5                      1 

8                                   1  1  1  1             1   1   1   1  1    1                 6                         1                 1 

9             1  1                                 1                       1        1   1            7                           1                  1    

10           1  1        1      1           1  1   1              1  1  1    1                 8                       1    1                   1 

-------------------------------------------------------------------------           9                           1 1 

Frequency:  10 10 7 7 5 5 5 5 2 2  2  2  2  2  1  1  1  1                       10                  1     1 1 

Query Site:   4   3  4 1 3 2 2 4 5 1  4  2  4  2  3  5  1  3                      ----------------------------------------------- 

-------------------------------------------------------------------------           Frequency: 3 2 2 1 1 

                                                                                                            Site:            4 1 2 3 5 

                                                                                                           ------------------------------------------------ 

 

5, fragment 2 is allocated to site 1and 3, fragment 3 is allocated to site 4, fragment 4 is 

2allocated to site 2, fragment 5 is allocated to site 1 and 4, fragment 6 is allocated to site 5, 

fragment 7 is allocated to site 1, fragment 8 is allocated to site 4, fragment 9 is allocated 

to site 1 and 5, and fragment 10 is allocated to site 2. The total cost is 1,070,299, and its 

unbalanced factor is 818,752. As a result, the total cost of data allocation with vertical 

fragmentation has been reduced by 532,393 for Method 1 and 711,886 for Method 2, 

respectively. Note that the execution times for some queries are increased as the results of 

vertical fragmentation. However, overall total cost is reduced, and so the design steps are 

stopped. 

 

5. Conclusions 

Several interrelated issues are involved in the design of distributed database systems. 

The complexity of the individual problems, as well as the interdependencies among the 

problems, makes the entire design process computationally intractable. In this paper, we 

have proposed a new solution method for partitioning relations, allocating partitioned 

fragments among the sites of a network, and allocating database operations for distributed 

query optimization. We have proposed as a solution methodology the genetic algorithm 

and successfully demonstrated its usefulness for providing an efficient search method for 

the problems addressed in this paper. 

We have developed an integrated cost models which differ from previous studies in 

that we drop the assumption that the query transaction accesses only one relation (or 

fragment) independently of the other relations (or fragments). In our cost models, a query 

transaction is modeled by a query tree which represents a set of subqueries together with 

their precedence relationship. In addition, the query transactions are classified into two 

groups: (1) OLTP (on-line transaction processing) and (2) DSS (decision support system) 

types. For OLTP types of query transaction, the left deep query tree is employed since it 

provides the better query execution order in terms of minimizing the total time. For DSS 

types of query transactions, the bushy query tree is employed since it provides the better 

query execution order in terms of minimizing the response time. This research is one of a 

few studies which use as the objective function a linear combination of total time and 
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response time. Furthermore, we integrate load balancing and total cost (linear 

combination of total and response time) minimization into operation allocation and data 

allocation. Especially, the integration of load balancing to data allocation may be the first 

attempt, to the best of our knowledge. 

In summary, this paper essentially introduced some new approaches to solve 

computationally complex problems encountered in the design of distributed database 

systems. Such techniques are in great demand as computer and communication 

technologies are advanced in faster speed. 
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