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Abstract 

Now days in the field of service oriented technologies cloud computing plays an 

important role. The main aim of cloud computing is to make people compute and store the 

resources easily and efficiently. Recent focus is deal with data expressing and searching. 

To improve the performance in the cloud requires the optimization of data processing 

time.  Our study gives a comprehensive survey on numerous models and approaches used 

for query optimization to minimize execution time and to improve resource utilization. We 

have reviewed various research work done on query optimization for conventional SQL 

and MapReduce platforms. 
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1. Introduction 

In service oriented computing cloud computing is an extremely successful paradigm 

[1,6]. Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a 

Service (SaaS) are the most popular services of cloud computing. Extension of this 

concept is Database as a Service (DBaaS) or Storage as a Service [9]. Cloud computing 

enhances sharing computing power and storage for number of database applications.” The 

propagation seen in the number of applications which influenced various cloud platforms 

resulting in tremendous increase in the scale of the data generated as well as consumed by 

such applications “[2]. How to organize and manage those huge amount of data so as to 

get the useful information for the users has been the new theme in the research area of 

cloud computing.” Cloud data modeling is the foundation of cloud computing application 

and the searching algorithm upon it is the key issue of cloud computing application” [22]. 

How to get the data timely, accurately and reliably; plays an important role in the success 

of the cloud data model [12]. 

In cloud computing platforms, resources should be acquired and released automatically 

and quickly at runtime to guarantee the SLA (Service Level Agreements) between 

customer and cloud service provider [11]. With clusters of virtual machines cloud 

computing enables users rent large amount of resources for short duration in order to run 

complex queries efficiently on large scale data [7]. The rent duration can be decreased 

more with the help of better query optimization technique [8]. Hence there is a need of 

investigating efficient query optimization techniques so as to reduce query evaluation 

time and response time. It will also enhance better utilization of computing resources in 

cloud.  

“Query optimization leads to resource rent time optimization in cloud environment”. 

Query optimization techniques in centralized as well as in distributed platform are 

extensively researched in the corner of conventional SQL and MapReduce technique. In 

our work we have navigated this area of research and analyzed different techniques of 
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query optimization. In remainder of the paper Section II describes the concepts of 

conventional SQL and MapReduce platforms. Section III represents our analysis of 

various techniques for query optimization after reviewing various research papers. 

Finally, our concluding remarks are given in Section IV. 

 

2. Overview of Traditional SQL and MapReduce 

RDBMS is a relational Database Management System in which data is stored in the 

form of tables. Every table has columns and rows The Structured Query Language (SQL) 

issued to retrieve necessary information from the stored data. Column entries can refer for 

another table so as to create relationships among them. The tables and relationships can be 

manipulated using join operation of SQL as shown in Figure 1. 

 

 

Figure 1. Query Processing Using Traditional SQL [42] 

For large scale data it becomes cumbersome to manage it using traditional database 

systems. Now days Hadoop has become a solution to this problem. The applications 

which need high performance can be supported by Hadoop as it is scalable. Hadoop 

framework uses Distributed File Systems (DFS) for storing data. MapReduce is a new 

data processing technique which was proposed by Google. It is used to handle large scale 

data analysis jobs. It operates on the top of Distributed File systems (DFS). Data in DFS 

is partitioned into equal size chunks which facilitates parallel data processing.  

As shown in Figure 2, in MapReduce parallel programs are split into two phases map 

and reduce. In map phase each mapper loads a data chunk from DFS and transforms it 

into a list of key-value pairs. The key value pairs are stored into n local files where n is no 

of reducers. In reduce phase files from different mappers are combined together for the 

values with same keys, a user defined processing function is applied by the reducer and 

new key-value pair is generated as the result. Finally, results are written back DFS. “The 

main challenge of query processing based on MapReduce is how to process join.” [21].  

The implementation of traditional query optimization strategies in cloud platforms can 

have a poor performance, because they cannot predict future availability and release of 

resources [15]. MapReduce platforms that are used in cloud databases suffer from 

processing cost for join-intensive queries. Compare with MapReduce, SQL query has 

stronger expression ability such as join [19]. 
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Figure 2. Query Processing Using MapReduce [43] 

3. Navigation of Query Optimization Techniques 

Either use centralized or distributed platforms with traditional SQL or MapReduce 

technique query optimization is obligatory to enhance high performance in large scale 

data systems. Query optimization is carried out in two phases in first phase search space is 

generated and in second phase an optimal plan from the search space is selected [8]. 

Numerous approaches are discovered by the researchers which are flavored with one or 

more following query optimization techniques. 

 Elimination of Redundant Evaluation 

 Continuous or Iterative processing 

 Catching Intermediate Queries or Results 

 Materialization 

 Pipelining 

Some of these techniques work on reducing communication cost, some focus on 

reducing execution time of the query and some focus on utilization of system resources 

properly in cloud environment.  

 

3.1. Elimination of Redundant Evaluation 

Complex queries consist of common sub-expressions. If they are evaluated only once it 

will reduce evaluation time of queries. An IGNITE system is developed by Lee R et al. 

[14] based on start-fetch wrapper with request window mechanism. It only sends the 

common sub-queries to the same data source so that redundant answers among the sub-

queries can be eliminated. It detects for data sharing chances across concurrent distributed 

queries thereby reduces communication overhead but increases system throughput. 

Source wrappers in which multiple queries consist of common sub-queries are wrapped 

together, are decoupled by IGNITE and the execution engine sends sub-queries to the 

same source which enhance data sharing among sub-queries. Chen G et al. [5] also 

presented the research work based on IGNITE system; however it reduces the 

communication traffic which is increased in IGNITE by reconstructing original sub-
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queries to alternative sub-queries. This system uses data integration system based on an 

operator-centric data flow execution model. Here µengine corresponds to every operator. 

By routing data through µengines queries are evaluated. As all these µengines work in 

parallel thereby taking advantage of parallelism. All similar query plans are allocated to 

the same group of µengines, sub-queries of different queries are placed together for 

processing in order to share data across the sub-queries. µengine processes the sub-queries 

after they are reconstructed with Merge-Partition algorithm. This reconstruction 

eliminates data redundancy. “It may not eliminate all redundant answers but never 

introduces unnecessary data as like in IGNITE. This method takes advantage of parallel 

sub-query processing whereas IGNITE cannot” [5]. Here new queries are evaluated by 

decreasing communication overhead. Dokeroglu et al., [7] has built and used efficient sets 

of query execution plans. The system is based on evaluation of common tasks only once. 

Garofalakis et al., [25] has proposed the resource usage models in which parallel query 

processing systems perform multiple queries scheduling to reduce the response time of 

queries. Decomposition of a query into parallel subtasks and rearrangement of the 

execution plan maximizes the reuse of cached data [26]. Query is divided into sub-queries 

that can be executed in parallel on many processors and reuse of already computed sub-

query results improves the processing speed of new queries [27].  

Alternative plans are not generated in above works. Dokeroglu et al. [24] has proposed 

a system in which alternative query plans are generated. Robust heuristic algorithms e.g. 

branch-and-bound algorithms, hill climbing, genetic hill-climbing algorithms etc are used 

to search optimal query execution plans and maximize benefits. After the extensive 

experiment authors analyzed that Branch & Bound algorithm produces exact solutions but 

cannot optimize problems with large search space complexity. Hybrid Genetic Hill 

Climbing algorithm is observed to find best results in all environments. Genetic 

Algorithm produces good results but slightly worse than the solution of Hybrid Genetic 

Hill Climbing algorithm for problem sets with complex search space. Hill Climbing 

Algorithm is good and fast for small problems. Genetic Algorithm is evaluated to be the 

best among others. The system is based on RDBMS. Authors in their future work are 

going to implement the system for MapReduce based cloud environments using Hadoop 

and Hive. Traditional distributed query engine processes a set of queries with best query 

plan. It executes that query plan by using cached results at different sites. On the other 

hand non optimal query plans may result in a smaller total execution time, if common sub 

expressions are evaluated only once. Giannikis et al. [28] developed a database 

architecture which is incorporated with batching queries and sharing computation across 

concurrent queries in a shared disk, shared L3 cache, multi-core and multiprocessor 

machine. In MRShare the different queries having common work to perform are grouped 

and treated as single job. That single job is executed once to optimize I/O [44]. [45] 

Proposed a technique in which different sharable jobs are rescheduled in order to access a 

set of files simultaneously. Aim accomplished by the system is to maximize the rate of 

processing. Authors proposed scheduling policies in which non-sharable scans are 

schedule after the sharable I/O work with future tasks. Silva et al. presents a cost based 

optimization of complex queries which shares common sub expressions. In this system 

local query plan is optimized that causes optimization of global plan. Using Incoop 

MapReduce jobs are executed in incremental manner. It observes changes to input and 

automatically change in the output is reflected [46]. 

 

3.2. Continuous or Iterative Processing 

Continuous query optimization method is different from traditional one, which focuses 

on collection and propagation of data statistics before query execution. Bruno N et al. [4] 

has proposed a technique that continuously monitors query execution, collect actual 

runtime statistics and adapts execution plans as the query executes. The query optimizer is 

triggered whenever new runtime statistics become available. If a better plan is found, the 
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proposed technique intelligently adapt the current execution plan with minimal changes. 

Optimization techniques are based on accurate data statistics to select the best execution 

plan. But it becomes difficult to compute a better quality statistics on intermediate 

computation results. To deal with this problem Cole and Grafe [29, 32] proposed 

generating multiple plans at compile time. Among these plans one is selected to execute, 

when unknown quantities are discovered at run time using decision tree mechanism. 

Decision for how many plans are to be generated and stored at compile time is difficult. 

Progressing query optimization (POP) detects cardinality estimation errors in mid 

execution. It compares the estimated cardinality values against the actual run time counts. 

If inconsistencies occur, the re-optimization of current plan is triggered.  POP is designed 

for traditional centralized database systems [30, 33]. DB2L Earning optimizer waits until 

a query plan finishes execution. Then it compares actual row counts to the optimizers’ 

estimates. Misestimates are used to learn and adjust the statics to improve the quality of 

optimizations in future queries [34]. These ideas are extended by Bruno N et al. The 

stubby systems [31] propose a cost based optimizer for MapReduce systems. It collects 

job statistics while job is running and uses it to optimize similar jobs later on. All these 

approaches focus on to improve future query executions using feedback, but not 

addressed improving query performance in mid execution which is addressed in the 

system proposed by Bruno N et al., [4] in a distributed environment. Rankloud computes 

run time statistics that is used to derive the lowest score for top-k results [48]. Starfish 

system consists of two components, Profiler and What-if Engine. Profiler collects 

statistics about the size of data processed, usage of resources, time to execute each job. 

Using these parameter values What-if calculates benefits [52]. RoPE also collects 

statistics from running jobs and utilizes it for re-optimizing future execution of the same 

job [53]. 

 

3.3. Catching Intermediate Queries or Results 

Many researchers also worked on query optimization by caching intermediate results in 

one sliding window [17]. Related work is presented by Safaeei A et al. [18] that optimize 

overlapping queries with common sub-expressions using multiple sliding windows. 

Executing and caching the shared sub-queries at the sites with the lowest communication 

cost and shipping the output to the sites that need them as input are important factors that 

improve the total execution time [24]. EARL supports for processing part of input data 

instead of entire data by using early results for the analytical queries in MapReduce. By 

uniform sampling and working iteratively EARL computes larger samples until desired 

accuracy reached [47]. BlinkDB retrieves approximate results based on samples which are 

computed earlier. Accuracy of the result depends upon the quality of samples. It is 

designed for interactive query processing on large volumes of data [55]. Shark is the 

system that uses a shared memory concept where inter query data cached in memory. It is 

accessed directly from memory instead of accessing from disk. It reduces I/O and if 

accompanied with Hive then increases its performance [54].  

However, instead of maintaining intermediate results of overlapped queries, Theeten B 

et al. [20] proposed the CHive method for query optimization based on evaluating 

continuous queries in distributed clouds. Continuous query is a query that is repeatedly re-

evaluated as new data comes in. It operates on data stream rather than previously stored 

database table. Yahoo developed a system NOVA which is incorporated with incremental 

processing of continuously arriving data. NOVA works on the top of the Pig and Hadoop 

[50]. CBP (Continuous Bulk Processing) is a system that is batch query processing. Here 

state is maintained during batch processing and work done previously is reused. It reduces 

data flow in the system [56]. REX is parallel query processing system in which 

incremental changes in state are used instead of using the state which is produced by 

earlier iteration whereas CBP uses state which is produced earlier. It increases efficiency 

of iterative processing [51]. DBaaS can provide a service to cloud users that willing to 
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receive results with weaker quality in exchange of lower cost. This feature can be 

provided through the use of new runtime partial result optimizer by modifying the 

execution of pipelines and operators to manage the balance between cost and quality [13]. 

 

3.4. Materialization 

Materialized views can be used to improve the query processing time for aggregation 

query over large relations [10]. Success of materialization technique depends upon 

efficient view matching algorithm. Goldstein and Larson [10] devised a technique which 

is used for matching materialized view derived from Select-Project-Join queries.  

WATCHMAN [23] and DynaMat [35] systems integrated with the policies those protect 

the cache from storing large and unpromising tables so as to increase the hit ratio of its 

content. In architecture presented by Ivanova et al. [36] physical operations are matched 

with the entries in the cache during runtime which eliminates the need for changes to the 

query optimizer. ReStore [37] reuses the results of MapReduce jobs which are described 

in analytical query languages like Pig [38]. The output results of MapReduce jobs are 

maintained to recognize reuse chances by future jobs. Jonathan proposed an algorithm for 

determining whether part or all of a query can be computed from materialized views [31]. 

History aware query optimizer [16] is based on archiving intermediate results. It is 

capable of matching views which are the byproducts of previously executed queries. It 

uses those views for generating alternative execution plans and improves the query 

execution time. Prior evaluation of batch workloads in Cache-on-Demand [39] and MQT 

technique [40] determine elements to be cached for maximizing re-usage. In Cache 

investment framework [41] continuous analysis of historical information enables to 

identify relations which could be useful for evaluation of future queries.  

 

3.5. Pipelining 

In cloud environment using MapReduce, overall data processing cost for join-intensive 

workloads increases. Anyanwu K et al. [3] has introduced Nested Triple Group Data 

Model and Algebra (NTGA) that minimizes overall processing cost by reducing the 

number of MapReduce cycles. Hive, MapReduce based system incurs the cost of saving 

intermediate results. Task is divided into multiple jobs. One job reads the result of the 

previous job to continue processing. AQUA (Automatic Query Analyzer) designed for 

MapReduce reduces generation of too many intermediate results so as to decrease storage 

and network cost. It adopts 2-phase optimizer - phase 1 form groups of join operators for 

reducing total number of MapReduce jobs in order to evaluate the query. Phase 2 joins 

intermediate results of group to generate final query results [21]. MapReduce online is the 

system that uses pipelining of intermediate data from map tasks to reduce tasks instead of 

using materialization [49]. 

Following table shows the classification of approaches which we have studied in our 

survey according to their incorporated optimization techniques. 
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Table 1. Classification of Query Optimization Approaches 

Approach Materializa

tion 

Pipelining Elimination 

of 

redundant 

evaluation 

Continuous 

/Iterative 

processing 

Caching 

intermediate 

queries/ 

results 

[3]      

[4]      

[5]      

[7]      

[10]      

[13]      

[14]      

[16]      

[17]      

[18]      

[20]      

[21]      

[23]      

[24]      

[25]      

[26]      

[27]      

[28]      

[29]      

[30]      

[31]      

[32]      

[33]      

[34]      

[35]      

[36]      

[37]      

[38]      

[39]      

[40]      

[41]      

[44]      

[45]      

[46]      

[47]      

[48]      

[49]      

[50]      

[51]      

[52]      

[53]      

[54]      

[55]      

[56]      
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3. Conclusion and Future Work 

In the presented survey, we have navigated the various approaches in centralized as 

well as distributed platform of query optimization based on conventional SQL and 

MapReduce technique. In cloud computing platforms, there should be an autonomic 

solution to acquire and release resources at runtime to provide fail-safe service to the 

customer. However, traditional query optimization strategies cannot forecast future 

availability and release of resources; hence it may suffer from poor performance as 

compare to MapReduce strategy. MapReduce may results in more processing cost 

regarding to join intensive queries. There is a future need for developing efficient 

techniques to bridge the gap between SQL query and MapReduce in cloud environment 

by strengthening the query optimization ability of SQL or join intensive ability of 

MapReduce. 
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