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Abstract 

Mapping customer requirements to product configurations are difficult due to the 

uncertainty and ambiguity of customers’ expression. The Naïve Bayes Classifier (NBC) is 

suitable to quantify the expression of customers, and to map their requirements to 

configurations with good performance. However, the prerequisite of manually 

independent of product attributes for NBC require preprocess. Dimensionality reduction 

methods are effective for simplifying the data complexity while separating the 

correlations between data Against the background, this paper conducts a comparative 

study of 7 dimensionality reduction methods as preprocess procedure for integrating with 

NBC to map customer requirements to product configurations. Two realistic design cases 

are illustrated for the comparison, and the outcomes are measured by the accuracy and 

F-measure. The results of this study imply several findings that the loss of information has 

great impact on all methods, and linear methods are more sensitive to the loss of 

information, and several nonlinear methods are more capable in handling the loss of 

information than other methods, and local linear methods are suggested compared with 

global nonlinear methods. 

 

Keywords: Customer Requirement; Product Configuration; Naïve Bayes Classifier; 

Dimensionality Reduction 

 

1. Introduction 

Many researches have been conducted to elicit and understand customer needs depend 

on customers’ explicit specifications on product [1]. It requires customers to have domain 

knowledge about product to map their requirements to design parameters. However, 

customers may find the process stressful and unpleasant due to the lack of expertise [2]. 

As a probabilistic classifier, Naïve Bayes Classifier (NBC) is suitable to quantify the 

natural uncertainty and ambiguity of customer requirements [3]. NBC is based on the 

strong assumption that the attributes are independent with each other [4]. 

Meanwhile, on one hand, customers are becoming more and more knowledgeable and 

fastidious on product [5]. It demands product to satisfy customers with providing 

divergent and various attributes. On other hand, more areas are considered in product 

design process, e.g., engineering, business and art [6]. It expands the extensions of 

attributes for measuring product. These two reasons result in complexity and high 

dimensionality of product attributes data. High dimensional data contains intertwined 

relationships and dependencies between attributes that may cause NBC inefficient and 

fallible, eventually results in the curse of dimensionality [7]. 

Dimensionality reduction is an extremely useful way to avoid the curse of 

dimensionality by extracting independent and principle variables while retaining the 
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original variation of original data [8]. The post low-dimensional representations after 

reducing dimensionality are typically independent that suitable for NBC input. Though 

many available reduction methods have been proposed and applied, several questions are 

still urgent to be discussed, for instance, (a) which method should be combined with NBC 

for mapping customer requirements to product configurations; (b) Are nonlinear methods 

performs better in real design works? 

In this study, we conduct a comparative study to analyze the differentiation of 7 

popular dimensionality methods integrating with NBC for mapping customer 

requirements to product configurations based on 2 realistic product design cases. The 

differences are compared on the basis of 2 measures. This study would like to make 

contributes to the research of practical application and theoretical development of 

dimensionality reduction methods in product design issues. 

The rest of the paper is organized as follows. The next section introduces the NBC and 

dimensionality reduction methods. In the section of methodology, the cases and data are 

given out, along with the analysis steps and the performance measures. The results section 

shows the results and discussions of analysis, and this paper summarizes the contributions 

in the conclusion section. 

 

2. Related Works 
 

2.1 Naïve Bayes Classifier 

NBC is a simple and efficient probabilistic method based on Bayes rules, which is 

suitable to handle uncertain information. Also, the fast convergence speed makes the 

small training cases practicable in the design issues, e.g., mapping customer 

requirements to configuration plans [1]. 

Let the set 1 2,  ,  ,  pR R R denotes customer requirements on a product attributes, 

where kR denotes a requirement. To map customer requirements to the optimal 

configuration plan,     1 2 1 2| ,  ,  ,  max | ,  ,  ,  p pP U R R R P X R R R   is needed, 

whereU denotes a configuration plan, X denotes a product attributes. Assumed all 

product attributes are conditionally independent, then based on Bayes rules, 

 1 2| ,  ,  ,  pP X R R R can be calculated as: 
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  (1) 

This study estimates the probabilities of  P X and  |kP R X by applying 

maximum likelihood estimation (MLE) in the learning stage for NBC, as:  

    , and |
i k i

i k i

i ii

x R x
P X x P R X x

x x


   


  (2) 

where ix denotes the number of product configuration ix , and k iR x is the 

number of cases of the choosing of ix . The learning stage can be applied by using 

existing customer requirements and selected configuration plans.  

The NBC is trained to select the configuration plan with highest probability, as:  



International Journal of Database Theory and Application 

Vol.10, No.5 (2017) 

 

 

Copyright ⓒ 2017 SERSC      49 

 

    
 

    

1 2 1 2

1 2

1

| ,  ,  ,  max | ,  ,  ,  

arg  max | ,  ,  ,  

arg  max |

p p

p

p

kk

X

X

P U R R R P X R R R

P X R R R

P X P R X


  

 

 





 

  (3) 

This study takes 7 prevalent dimensionality reduction methods to conduct the 

comparative research. These methods can be divided into linear methods, such as: 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and 

nonlinear methods, such as: Kernel Principle Component Analysis (KPCA), Multi-

Dimensional Scaling (MDS), Isomap, Local Linear Embedding (LLE), and Laplacian 

Eigenmaps (LE). The basic introduction and implementation steps are shown in the 

following sections. 

 

2.2. Principle Component Analysis (PCA) 

PCA is a traditional and the most popular linear method to reduce data dimensionality, 

while retaining most of the variation in the data set [9]. PCA performs competitively 

when compared with other methods on real world tasks [10]. PCA is summarized in the 

following steps. 

Step 1: Calculate the covariance matrix C of the data set T

1 2( ,  ,  ,  )nX X X X : 

   
T

1

1

1

n

i i

i

X X X X
n 

  

C   (4) 

Step 2: Solve the eigenvector problem: 

 Cv v   (5) 

Step 3: Find the linear mapping matrix Μ , of which columns are formed by 

eigenvectors that corresponding to the largest eigenvalues. 

Step 4: Let Y denote the low dimensional data set, and iy point to the high dimensional 

data ix , as: 

 Y XM   (6) 

Thus the out-of-sample extensions of PCA is straightforward as: 

 
new newy x M   (7) 

 

2.3. Independent Component Analysis (ICA) 

ICA is supposed to find underlying factors or components from multivariate statistical 

data, and looks for components that are both statistically independent, and non-Gaussian 

[11]. Previous studies consider ICA as an effective linear feature extraction method for 

improving the classification performance [12]. ICA is summarized in the following steps. 

Step 1: Let m elements from the random vector T

1 2( ,  ,  ,  )mX X X X are mixtures of 

m independent elements of random vector T

1 2( ,  ,  ,  )mS S S S , and let A represents an 

mixing matrix, as: 

 X AS   (8) 

Step 2: Suppose an un-mixing matrix W (i.e. the inverse of A), which will give low 

dimensional vector Y, the best possible approximation of S, as: 

  Y WX S   (9) 

Step 3: According to the Lagrange conditions, the optima of  TE G W X（ ）under the 

constraint  
2T 2 1E G  W X W（ ） are obtained at points where the gradient of the 

Lagrangian is zero: 
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  T( ) 0F E g   X W X W   (10) 

where g is the derivative of the function G. 

Step 4: Evaluating the gradient: 

   T TF
E g 


 


XX W X I

W
  (11) 

where TI AA , A is the transformation of A by whitening and is orthogonal. 

Step 5: A reasonable approximation is: 

           T T T T TE g E E g E g   XX W X XX W X W X I   (12) 

Thus W is obtained as: 

      T TgE E g       
   

W W X W X W W X   (13) 

Simplify Eq. (13) by multiplying both sides of the previous equation 

by   TE g  W X . This gives, after straightforward algebraic simplification: 

      T TE g E g W X W X W X W   (14) 

And the out-of-sample extensions of ICA is straightforward as: 

 
new newy x W   (15) 

 

2.4. Kernel principle Component Analysis (KPCA) 

KPCA is a nonlinear approach to generate PCA in the high dimensional data using 

kernel function [10]. KPCA does not involve any nonlinear optimization problem, making 

it simple as standard PCA [13]. Recently, KCPA has been successfully applied in many 

areas [14]. KPCA is summarized in the following steps. 

Step 1: Suppose a kernel matrix G produced by high dimensional data points ix , and 

the entries are defined as: 

 ( , )ij i jg x x   (16) 

where   is the kernel function and is based on the Gauss kernel function as: 

 

2

2
( , ) exp

2

i j

i j

x x
x x



 
  
 
 

  (17) 

where 2 is the variance and a parameter of the Gauss kernel function. 

Step 2: Modify the entries to center G by: 

 
2

1 1 1
ij ij il jl lm

l l lm

g g g g g
N N N

        (18) 

Step 3: Solve the eigenvector problem: 

 Gv v   (19) 

where the columns of v is formed by the principal eigenvectors kv corresponding to the 

largest eigenvalues k . 

Step 4: The low dimensional data representations iy of the high dimensional data 

points ix is given as: 

 
1

ik ik

k

y v


   (20) 

where ikv is the thi element of the thk principal eigenvector kv .Then the out-of-sample 

extensions of KPCA is straightforward as: 



International Journal of Database Theory and Application 

Vol.10, No.5 (2017) 

 

 

Copyright ⓒ 2017 SERSC      51 

  
1

1
,

N
new C new

k ik i

ik

y v x x
 

    (21) 

where C is the centered kernel function given by: 
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  (22) 

 

2.5. Multidimensional Scaling (MDS) 

MDS is a nonlinear dimensionality reduction method with retaining similarity and 

distance between data points [10]. MDS has two types, Metric MDS and Non-metric 

MDS. This study takes the Metric MDS as the selected type of MDS. MDS is summarized 

in the following steps. 

Step 1: Let  ,i jd X X is the Euclidean distance of data points iX and jX , which are 

from data set T

1 2( , , , )NX X X X in D dimensional space, then: 

    
2

2
1

,
D

i j i j ki kj

k

d X X X X x x


      (23) 

Step 2: Set up squared proximity matrix: 

   
222 T T, 2 2T

i j i i j j
N N

d X X X X X X


        
  

D B1 X X 1B   (24) 

where  
T

2 2 2

1 2 NX X XB ， ，， . 

Step 3: Let 
1

N
 J I 11 , the 0J1 , T J J , and  iX  JX ,

1

1
N

i

i

X
N




  , apply 

double centering: 

 
T T2 2    JDJ JB1 J JX XJ J1BTJ X X   (25) 

Step 4: Suppose T / 2  H X X JDJ , and apply Eigen decomposition as T H V V . 

Let 1 2, , , N

NV V V R  are the eigenvectors corresponding to the 

eigenvalues 1 2 0N      , thus the low dimensional data set representation Y of 

high dimensional data X is given by: 

  1 2 1 2( , , , ) , , ,d ddiag V V V  Y   (26) 

 

2.6. Isomap 

Isomap is a nonlinear dimensionality reduction method, and can be viewed as a kernel 

matrix [10]. It is based on replacing the Euclidean distance by an approximation of the 

geodesic distance on the manifold. Isomap has been applied in many areas [15]. Isomap is 

summarized in the following steps. 

Step 1: Suppose every data point ix is connected with its k nearest neighbors, ix comes 

from the high dimensional dataset X in a neighborhood graph P. 

Step 2: Compute the shortest path ( , )i jT x x of ix and jx by applying Dijkstra’s or Floyd’s 

shortest-path algorithm, which forms a good estimate of geodesic distance. 

Step 3: Set up the pairwise geodesic distance matrix T by computing all the geodesic 

distances of data points in X. 

Step 4: Let 2G T , and ijg as the entries. Double center G by modifying ijg as: 
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2

1 1 1 1

2
ij ij il jl lm

l l lm

g g g g g
N N N

 
     

 
     (27) 

Step 5: Solve the eigenvector problem as in Eq. (19). Then select m principal 

eigenvectors   1kv k m  corresponding to the m largest eigenvalues
k  1 k m  , 

kv forms the columns of matrix V. 

Step 6: The low dimensional data representations
iy of the high dimensional data 

points ix is given as: 

 ik k iky v   (28) 

where
ikv is the thi element of the thk principal eigenvector

kv . Then the out-of-sample 

extensions of Isomap is straightforward as: 

  
1

1
,

N
new C new

k ik i

ik

y v x x
 

    (29) 

where C is the centered kernel function given by: 
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, , ,

2

1 1
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l
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x x x x x x
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x x x x
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


  



  





 

T T

T T

  (30) 

 

2.7. Local linear Embedding (LLE) 

LLE develops a graph representation of data points like Isomap as a nonlinear 

dimensionality reduction method. In contrast to Isomap, LLE attempts to preserve local 

properties of data, thus it is less sensitive to short-circuiting than Isomap [10]. Many 

researches have emphasized the efficiency of LEE in reducing data dimensionality [16]. 

LLE is summarized in the following steps. 

Step 1: Find the k nearest neighbors for data point ix to construct a local neighborhood. 

Step 2: Set up a sparse matrix W of local predictive weights ijw , minimizing   W to 

best reconstruct data point from its nearest neighbors as: 

 

2

1 1

N N

i ij j

i j

x w x
 

 W（ ）=   (31) 

subject to 0ijw  . 

Step 3: Suppose matrix T( ) ( )  G I W Ι W , where I is the identity matrix. Then solve 

the eigenvector problem as in Eq. (19). Select m principal 

eigenvectors   1kv k m  corresponding to the m smallest nonzero 

eigenvalues k  1 k m  , kv forms the columns of matrix V. 

Step 4: The low dimensional data representations iy of the high dimensional data 

points ix is given as: 

 ik iky v   (32) 

where ikv is the thi element of the thk principal eigenvector kv . Then the out-of-sample 

extensions of LLE is straightforward as: 

  
1

1
,

N
new new

k ik i

ik

y v w x x
 

    (33) 
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2.8. Laplacian Eigenmaps (LE) 

LE is similar to LLE as a nonlinear local dimensionality reduction method that 

attempts to attain low dimensional data by retaining local properties of the manifold. LE 

uses weighted manner to computer the distances between a data point and its nearest 

neighbors in low dimensional representation [10]. Many researches have focused on the 

improvement and application of LE recently [17]. LE is summarized in the following 

steps. 

Step 1: Construct a neighborhood graph P in which every data point ix is connected to 

its k nearest neighbors. 

Step 2: For all points ix and jx in graph P that are connected by an edge, the weight of 

the edge is computed using the Gauss kernel function as Eq. (17), leading to a sparse 

adjacency matrix W. 

Step 3: Set up the degree diagonal matrix R of W, the entries of R are row sum of W. 

Then, set up the graph Laplacian L, as  L R W . Solve the eigenvector problem as: 

 Lv Rv   (34) 

Then, select m principal eigenvectors   1kv k m  corresponding to the m smallest 

nonzero eigenvalues
k  1 k m  , 

kv forms the columns of matrix V. 

Step 5: The low dimensional data representations
iy of the high dimensional data 

points ix is given as Eq. (32). Then the out-of-sample extensions of LE is straightforward 

as: 

  
1

1
,

N
new new

k ik i

ik

y v x x
 

    (35) 

where is a normalized kernel function as given by: 

  
( , )1

,
1 1

( , ) ( , )

new
new i

i

new

i l ml m

x x
x x

N
x x x x

N N




 



 

  (36) 

where is the Gauss kernel function as given by in Eq. (17). 

 

3. Methodology 
 

3.1. Cases and Data 

This study illustrates the comparative research with 2 simplified design cases. Case 1 is 

based on a design project for analyzing relationships between customer requirements and 

product configurations of mouse device, which is supported by a computer peripheral 

products company. There are 25 kinds of mouse devices provided by company that 

determined by 17 attributes which are selected by designers and marketers. Those 

attributes include price, net weight, dpi, color, working mode, etc. 13809 instances are 

confirmed the validation based on transaction data from May, 2015 to September, 2015 in 

an E-business transaction platform. Thus customer requirements on each attribute are 

determined by their choices on specific products. 

Case 2 is a new product development (NPD) project for air conditioner that supported 

by a home appliance company. At first step, 460 customers are invited to raise their 

requirements on air conditions, and express their evaluations on the products. Then, show 

them with 12 conceptual products, and let them select the one that satisfy their 

requirements at best. Totally, 154 different attributes are determined based on customer 

evaluation criteria. At last, their selection on products and the corresponding requirements 

on attributes are processed for the purpose to map customer requirements to product 

configurations. 
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Table 1.  Basic Data of the Two Cases 

Case Number of 

instances 

Number of 

attributes 

Number of 

classes 

Product 

Case 1 13809 17 25 Mouse device 

Case 2 460 154 12 Air conditioner 

 

3.2. Analysis 

This study applies 10-fold cross-validation to conduct the comparison. For each case, 

nine tenths of the data are selected randomly as the training data, and the rest one tenth 

are acted as the testing role. All the combinations of dimensionality reduction methods 

and NBC are processed for ten times. 

Case 1 chose randomly 12428 instances for training, and 1381 instances for testing in 

each round. Case 2 chose randomly 414 instances for training, and 46 instances for testing 

in each round. 

 

3.3. Measures 

This study applies 2 criteria to conduct measurements, they are accuracy and F-

measure. These criteria are applied to measure the outcomes of the combination analysis 

of reduction methods and NBC. 

NBC makes the idealized assumption that all attributes are conditionally independent 

given the class. Thus, the relationships of data after dimensionality reducing influence the 

performance of NBC in a manner. Let  denotes the overall accuracy of all 

classes, m denote the number of class, iTC denotes the number of classifications that 

correctly assigned to class i , iFC denotes the number of classifications that not belong to 

class i , then, the overall accuracy rate is given by: 

 
 

1

1

m

ii

m

i ii

TC

TC FC
 









  (37) 

Accuracy omits the false negative rate when measures the performance of classifier [1]. 

F-measure is applied in this study to overcome the issue. However, F-measure is 

originally defined for binary classification case [18]. This study adopts macro-average F-

measure proposed by [19] for multiple classification cases. F-measure ranges from 0 to 1, 

with higher value means better classification quality. 

Let i denotes the recall rate of class i , iFI denotes number of individuals which are not 

assigned to class i while they actually belong to. Then, the recall rate is given by: 

 i
i

i i

TC

TC FI
 


  (38) 

Suppose i is the accuracy of classification for class i , then the macro-average F-

measure macroF  is calculated as: 

 
1

2m i i

i
i i

macroF
m

 

 

 
 

 



  (39) 

 

4. Results 

Table 2 and Table 3 display the average values of accuracy and F-measure for each 

scenario of combination of NBC with dimensionality reduction methods. In the Figure 1, 

we display the performance of PCA+NBC and LLE+NBC in every round for the two 
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cases, due to PCA and LLE performance better than other linear method and other 

nonlinear methods respectively. The findings are summarized in the following. 

Table 2.  Results of All Scenarios in Case 1 with Average Values 

Measurement PCA 

+NBC 

ICA 

+NBC 

KPCA 

+NBC 

MDS 

+NBC 

Isomap 

+NBC 

LLE 

+NBC 

LE 

+NBC 

Accuracy (%) 86.89 84.90 60.83 60.17 69.98 76.39 74.08 

F-measure (%) 89.12 85.44 61.35 60.83 68.74 77.27 75.21 

Table 3.  Results of All Scenarios in Case 2 with Average Values 

Measurement PCA 

+NBC 

ICA 

+NBC 

KPCA 

+NBC 

MDS 

+NBC 

Isomap 

+NBC 

LLE 

+NBC 

LE 

+NBC 

Accuracy (%) 71.52 64.70 59.17 57.35 65.52 73.69 71.83 

F-measure (%) 63.26 60.28 52.59 51.52 62.81 67.17 65.42 

 

Firstly, all the reduction methods perform poorly in the case with relatively small 

samples and large attributes. The reason can be explained that dimension in such cases 

needed to be reduced to a very low dimension, which may result in loss of more 

information [12, 20]. Moreover, linear methods suffer more decrease of performance from 

case 1 to case 2, which indicates that linear methods are more sensitive to the loss of 

information. 

Secondly, linear methods (PCA and ICA) perform better than the rest five nonlinear 

methods when combined with NBC in case 1, where dataset is relatively rich for each 

class. Some research also agrees that nonlinear dimensionality reduction methods perform 

poorly in realistic cases with various natural datasets [21]. However, in case 2, where 

there is larger amount of attributes and less sample in each class, two nonlinear methods, 

LLE and LE outperform other methods, including linear methods, in addition, Isomap 

performs better than ICA in this case. Reasons are various: (a) The two nonlinear 

methods, KPCA and MDS are incapable of modelling complex nonlinear manifolds [10]. 

(b) Though Isomap, LLE and LE are susceptible to the curse of dimensionality, over-

fitting and the presence of outliers [10], they are based on construction of neighborhood 

graphs, and good in attaining information from local data distribution.  

Thirdly, both in case 1 and case 2, the local linear methods (LLE and LE) with NBC 

outperform than global nonlinear method (Isomap). The reason is that the pairwise 

geodesic distances can be heavily influenced when Isomap suffers from short-circuiting 

referring to erroneous connections in neighborhood graph [22], while, LLE and LE just 

retain local properties of dataset, which makes them less sensitive to short-circuiting. 

Thus, Isomap is poorly performance for mapping high dimensional data to low 

dimensional data space than LLE and LE. 

 



International Journal of Database Theory and Application 

Vol.10, No.5 (2017) 

 

 

56   Copyright ⓒ 2017 SERSC 

 

Figure 1. Performance of PCA and LLE with NBC in Each Round in Two 
Cases; (a) PCA+NBC in Case 1; (b) LLE+NBC in Case 1; (c) PCA+NBC in 

Case 2; (d) LLE+NBC in Case 2. 

 

5. Conclusion 

This paper presents a comparative study for evaluating 7 preprocessing dimensionality 

reduction methods, namely PCA, ICA, KPCA, MDS, Isomap, LLE and LE, for 

integrating with NBC to map customer requirements to product configurations. The 

comparison includes 2 realistic design cases and 2 performance measures. 

At first, this study demonstrates how to use NBC to map customers’ uncertain 

requirements to product configurations. In the next, 7 popular dimensionality reduction 

methods were introduced. Then these 7 methods are integrated as preprocess procedures 

for NBC to map customer requirements to product configurations in 2 design projects. 

The performances of integrative combinations are measured by the accuracy and F-

measure. The results in this study show that the loss of information has great impact on 

the performance of dimensionality reduction methods, and linear methods are more 

sensitive to the loss of information. Also, the results indicate that several nonlinear 

methods, e.g., Isomap, LLE and LE, are good in handling the loss of information than 

other four methods. Moreover, local linear methods are suggested compared with global 

nonlinear methods. 
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Mapping customer requirements to product configuration is never an easy task in 

product design. The task is tougher in the issues of complex product design, for the much 

larger amount of attributes and much less amount of valid samples. In such cases, the 

performance of different dimensionality reduction method for integrating with NBC to 

solve the mapping task should be revisited to check. 
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