
International Journal of Database Theory and Application

Vol.10, No.5 (2017), pp.33-46

http://dx.doi.org/10.14257/ijdta.2017.10.5.04

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2017 SERSC

A Topology-concerned Spatial Vector Data Model for Column-

oriented Databases

Kun Zheng1, Mei-Po Kwan2, Falin Fang3*, Junjun Yin4, Danpeng Gu5 and

Yanli Fu6

1,3,5 China university of geoscience (wuhan)
2University of Illinois at Urbana-Champaign

4University of Illinois at Urbana-Champaign Author Affiliation(s)
6Jinan Research Institute of Geotechnical Investigation & Surveying

1Michael_Power@Sina.com; 2mpk654@gmail.com; 3cugwhlin2014@126.com;
4jyn@illinois.edu; 5gdp12315@163.com; 6fuyli6@126.com

Abstract

In today’s “Big Data” era, the volume of spatial data grows rapidly. Addressing the

challenges in efficient spatial Big Data storage and management becomes urgent.

However, conventional row-based spatial databases have many limitations, such a slow

data I/O efficiency, low data retrieval performance, poor scalability, and high

maintenance costs. These conventional spatial databases are no longer suitable for

today’s spatial Big Data. On the other hand, column-oriented databases have several

superior features, such as high reliability, scalability and fault tolerance. More

importantly, they have better I/O efficiency for query processing. This paper presents a

topology-concerned spatial vector data model for column-oriented databases and

designed the physical storage model, which is a unified model for storing and managing

information of geometry, attribute and topology of spatial objects. For the storage

characteristics of column-oriented databases, the model designed a new Rowkey

encoding schema with the Z-order filling curve approach. This encoding schema of

Rowkey considering spatial proximity optimizes the organizational structure of spatial

data models. It means nearby spatial objects are also closer to each other in the physical

storage, which can further improve the efficiency of spatial data storage and enable

spatial query capability in column-oriented databases. Three experiments were conducted

including data storing, range query and K-NN query to analyze the efficiency and spatial

query capability of the data model. The results of the experiments show that the data

model has good scalability and efficiency on the vector data storage and spatial query. It

is suitable for large-scale spatial vector data storage and management in column-

oriented databases.

Keywords: Spatial Vector Data Model, Column-oriented Database, Topology, Spatial

Proximity

1. Motivation and Introduction

Recent advances in geospatial data acquisition technology have led to dramatic

increase in large-volume, multi-scale and complex spatial datasets [1]. To efficiently deal

with massive spatial datasets, it requires innovative spatial database management system

(SDBMS) to support scalable data handling, such as data storage with flexible data

schema and efficient database querying. Traditional file systems, in particular, SDBMS

extended from relational databases, are becoming inadequate for efficient massive data

storage and processing, where relational databases with a rigidly defined, schema-based

approach make it difficult to quickly incorporate new types of data, and to achieve

dynamic scalability while maintaining the performance users demand [2]. In this regard,

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

34 Copyright ⓒ 2017 SERSC

non-relational (also known as NoSQL) databases are becoming the mainstream database

technology for Big Data research and applications [3]. The state-of-the-art NoSQL

databases in the market employ distributed technology to enhance efficient mass storage

and database querying, where multiple instances of NoSQL databases work together

across a network. There are several kinds of NoSQL databases according to the difference

of data model, for example key-value database, column-oriented database and so on. In

contrast to another NoSQL databases, Column-oriented database organize the ‘value’ with

multiple columns. In addition, Column-oriented database provided a pattern named

“column family” for improving the efficiency of data query by storing some columns

often needed to access together in the same storage area [3, 18].

However the spatial data models developed based on relational databases are not

suitable for NoSQL environment, many current research efforts focus on extending the

data models in NoSQL database to support efficient spatial vector data storage and

management, such as MD-HBase [4], HBaseSpatial [5],Dart [6].

All of them only store the geometry and properties but not the topology relation

information, where the topology relationships are managed separately from the physical

data storage, by using the spatial indexes, such as R-tree, KD-tree, Quad-tree, etc. [4, 7-

9]. Then when new data are inserted into the database, the spatial indexes should be

updated accordingly, which can be accumulated as a large computation overhead

especially considering the massive number of spatial objects in dealing with spatial Big

Data. Furthermore they do not consider the spatial proximity of spatial objects when

storing data across different computing nodes in a network, where spatially distant objects

can be stored in the same node or spatially close objects are stored in different nodes.

Subsequently, it can potentially lead to inefficient I/O when performing spatial query

processing, as the targets should be accessed and retrieved from multiple computing

nodes.

Based on the above consideration, this paper proposes a topology-concerned spatial

vector data model for column-oriented Databases. In particular, we designed and

implemented a spatial vector data model by establishing a topological vector data model

and integrating it with the physical storage structure of the column-oriented database.

Also it designs a Rowkey encoding scheme with modified SFC (Space Filling Curve) to

enable the capability of building topology relationships on large spatial vector data in

column-oriented database and performing spatial query, such as range query and k-NN

query. Following, Section 2 introduces the topology-concerned spatial data model by

exploring the topological relationships and the topology-concerned logical data model.

Section 3 focuses on the development of the spatial vector data model in column-oriented

databases and the design of Rowkey encoding. Section 4 presents the experimental

implementation for evaluating the data model using HBase. Finally, Section 5 concludes

and summarizes this research.

2. Topology-concerned Spatial Vector Data Model

Compared to raster data, vector data has more complex data structures and contains

spatial topological relations. A geospatial object contains not only information of its

geometric elements, such as location and shape, but also the topological relationships

among the geometric elements, such as edges with nodes, and lines with surfaces [10-12].

2.1. The Approach of Topological Relations

Spatial relationships are the fundamentals of GIS. They play an important role in

spatial analysis and GIS applications [13].Topological relations are one of the most

important elements in spatial relationships. It is the key for understanding how geospatial

objects are organized in databases and it helps optimize data analysis, processing, and

query.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 35

9-Intersection Model (9-I Model) is the most commonly used topology model. Many

researchers study and extend the topological relations depicted by the 9-I Model [14, 15].

However, the 9-I Model relies on a large complementary logical set to calculate all the

topological relations of every spatial object, which can potentially generate a large

amount of redundant data. Therefore, it is not suitable for direct use in spatial data

models. On the other hand, border relationship between spatial objects are easier to

express, in particular, the core topological relationships such as adjacent, intersection and

contains that can be used to derive other types of topological relationships [10, 11, 16].

To illustrate the border relationships of two given spatial objects M and N, where B[M]

and B[N] are the boundaries of M and N respectively, and I[M], I[N] represent the interior

of M and N, the topological model can be expressed as the matrix M-1.

[M] B[N] [] []

[] [] [] []

B B M I N

I M B N I M I N

 
 
  (M-1)

Each element in the matrix is valued either “0” or “1”. The boundary and the interior of

a point is itself; the boundary of a line is the two nodes at both ends of the line segment,

while the interior is the portion between these two nodes; the boundary of a polygon is the

collection of ordered edges and the interior is the area enclosed by the edges. From the M-

1 matrix, there are 16 relationships among different combinations of spatial objects. To be

specific, the collection of spatial relationships include equal, contain, touch, adjacent,

intersection and disjoint relations between points, lines and polygons.

2.2. Topology-concerned Logical Data Model

Based on the simple feature specifications of OGC (Open GIS Consortium), the

topology-concerned logical data model consists of three components: Geometry,

Property, and Topological relationships [17], which are illustrated in Figure 1.

Feature

Topological

relationshipsPropertyGeometry

Figure 1. The Diagram of Topology-Concerned Data Model

In 2-dimensional space, the geometric shape of a spatial object can be described as a

point, line, or polygon. To express the topological relationships accurately, the geometry

of the topology-concerned data model not only consists of the Point, Line, and Polygon

elements, but also includes the Node and Edge elements. As it is shown in Figure 2, the

point class describes the shape of 0-D objects; Line describes the shape of 1-D objects;

Polygon describes the shape of 2-D objects.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

36 Copyright ⓒ 2017 SERSC

Polygon Line

Edge

Point

Entity

Node

Figure 2. The Logical Geometrical Structure of the Topology-Concerned
Data Model

A Point is represented by a single pair of coordinates, e.g., (x, y), and an Edge is the

line segment consisting of a series of ordered points. Each edge has two nodes where the

node is the end point of the edge and it can be the end point of one or more edges. A Line

consists of a series of ordered points, or a series connected edges. A Polygon is bounded

by edges, where there is no self-intersection for each edge and an edge can be shared by

two polygons. The topological relationships can be described with the following

formulation.

(,) , , ,Topo A B A B R V 

 (2.1)

In this formulation, A and B can be any spatial objects; R is the topological

relationship between A and B; V is the measurement of such a topological relationship,

which can be a null value. The topological relationships in this data model are all about

the boundary and interior relations between the spatial objects, which are expressed by

using Node and Edge to store the topological information. For the topological

relationships, Node can express the touch relation between points and lines, while Edge

can express the line’s topological relationships between Line and Line. In addition, Line

and Polygon can be separated to an array of relationships between Edge and Edge, as

Polygon is essentially enclosed by Lines.

In other words, in our topology-concerned logical data model, all topological

relationships can be expressed or deduced by Node and Edge. Since V can be calculated

on-demand once the topological relationships are identified, and hence formulation (2.1)

can be simplified to the following:

(,) , ,Topo A B A B R 

 (2.2)

In terms of feature’s property, it can be described as a set of attributes, where the

values are paired with the corresponding attribute name. The formulation is shown below:

 1 1 2 2{(,),(,),...,(,)}n nProperty(F) Attr Value Attr Value Attr Value
 (2.3)

According to the designed topology-concerned logical data model, a feature can be

defined by the following abstract class.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 37

{

 { };

}

Feature

GeometryType gType Point,Line,Pologon,Node,Edge

Geometry geo

Topology Topo = {Topo(A,B),Topo(A,C),...};

Property property(F)



 (2.4)

3. Data Storage Model based on Column-oriented Databases

The data storage model in column-oriented databases can be defined as a distributed,

sparse and column-oriented mapping table. Compared to row-oriented database, column-

oriented databases have sparse storage characteristics, and therefore are more efficient for

operations like data query, insert, update, and delete in data intensive databases. An

illustration of the logical and physical table structure and storage mode in a column-

oriented database is shown as Figure 3[18].

Figure 3. A Diagram for the Logical and Physical Table Structure in Column-
Oriented Database

Column-oriented databases utilize Rowkey (row index) to organize the table into a

two-dimensional matrix. Through the Rowkey, column families (CF) and columns, we

can smoothly access the information in the corresponding cell. Moreover, multiple

versions of data in the same cell will be stored concurrently, where each data is tagged

with a timestamp when it is stored. These multiple versions of data are sorted in

descending order so that the latest version will be accessed first. In summary, each cell

now contains not only the information of column and value, but also Rowkey and

timestamp, where the table is sorted according to the dictionary order of Rowkey.

3.1. Topology-concerned Spatial Vector Data Storage Model

(1) Logical Data Storage Model

Column-oriented databases only support “string” data type, and different column

families are stored separately. All spatial objects and property information must be

organized into tables, which consist of Rowkey, column family, column qualifier and

timestamp. Data within a column family is addressed via its column qualifier, or simply,

column. Column qualifiers, defined as “<family>:<qualifier>”, do not need to be

specified in advance nor should be consistent between rows.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

38 Copyright ⓒ 2017 SERSC

For the topology-concerned data model, the vector data consist of geometry, property,

and topology. The data model should be transformed to column-oriented organization

before being directly used for the column-oriented table. Following the organization rules

of column-oriented databases, the logical storage structure of the data model is shown as

Figure 4.

Column Family:

Geometry
Column Family:

Property
Column Family:

Topology

Entity

Rowkey

Figure 4. Logical Structure of Data Storage Model

In column-oriented databases, any spatial vector object from the data storage model

can be defined by the following formulation:

}M(f)=< Rowkey,Timestamp,{Geometry;Property;Topology >
 (4.1)

Where Rowkey is the unique identifier of the spatial object in the database; Timestamp

records the time when the particular object gets updated. This model contains three

column families: Geometry, Property, and Topology, where Geometry can be defined by

formulation (4.2); geoType is any of “Point”, “Line”, “Polygon”, “Node”, or “Edge”;

Shape is an(x,y) coordinate sequence or an array of other object’s ID such as Edge, Node;

and ProCoorSys is the spatial reference information.

() []Geometry f geoType,ProcoorSys,Shape

 (4.2)

{ " }geoType "Point","Line","Polygon","Edge ,"Node"
 (4.3)

Property column family can be described by <Field, Value>, and Topology column

family can be define as formulation (4.4)

,Topology(f) TopoR Rowkey 
 (4.4)

Within the topology-concerned spatial vector data model, the boundary TopoR

(topological relations) of Point, Line and Polygon types has been converted to the

relations between Node and Edge. For Node type, the topology information is its touched

Edge, which is recorded as , EdgeTouch Rowkey  ; the topology information of Edge

consists of two types: the first is the relationship between Edge and Node record by

, NodeTouch Rowkey  ; the second is the adjacent relation including Line with Line, Line

with Polygon, and Polygon with Polygon, recorded by , LineAdjacent Rowkey  or

, EdgeAdjacent Rowkey  The interior topological relations of Point, Line and Polygon

types can be recorded by ,Contains RowkeyArray  ,where RowkeyArray is the array of

Rowkey values of the contained spatial objects. So TopoR is valued one of the set

{" ", ," "}Touch Adjacent Contain
 .

Based on the above analysis for the logical structure of the data storage model in

column-oriented databases, the logical view of the model is illustrated in Table. 1:

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 39

Table 1. Logical View of Storage Data Model

Rowkey Timestamp

Column Family:

Geometry

Column Family:

Attribute

Column Family:

Topology

Info Value Info Value Info Value

ID1

T1 Shape （x,y） Atrrib:1 Value1

T2 ProCoorSys SR1 Atrrib:2 Value2

T3 Type
Point

Node

ID2

T1 Shape （x,y） Atrrib:1 Value3

T2 ProCoorSys SR1 Atrrib:2 Value4

T3 Type
Point

Node

ID3

T1 ProCoorSys SR1 Atrrib:1 Value5

T2 Type
Line

Edge
Atrrib:2 Value6

T3 Shape （x,y） Adjacent
ID4,

ID5,…

T4 Touch
ID1,

ID2,…

ID4

T1 ProCoorSys SR1 Atrrib:1 Value7

T2 Type Polygon Atrrib:2 Value8

T3 Shape ID3,… Contain
…

…

ID5

T1 ProCoorSys SR1 Atrrib:1 Value9

T2 Type Polygon Atrrib:2 Value10

T3 Shape ID3,… Contain
…

…

Note that every spatial object has three column families in addition to the Rowkey and

the timestamp. In this table view, all data is ordered and identified by the Rowkey.

Rowkey is always treated as a “byte” array. The Rowkey maps a list of column families,

where each column family consists of a list of column qualifiers with corresponding

timestamp and value. In other words, those rows with the same Rowkey belong to the

same spatial object. The default version number of a spatial object is the timestamp. To

access a specific version of spatial object, if the timestamp is not specified, the latest one

will get returned; if a timestamp is not recorded when the data was written, the current

timestamp of the system is used.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

40 Copyright ⓒ 2017 SERSC

(2) Physical Data Storage Model

In column-oriented database, the physical storage of logical tables is organized by the

column family only. One column family can be stored in many files, but each file can

only store one column family data, where empty columns are not stored to improve

efficiency. Table 2 provides the overall view of the physical storage for our data model.

Table 2. Overall View for the Physical View of Column Family

Rowkey Timestamp
Column Family

info value

ID
T1 <family>:<qualifier1> value1

T2 <family>:<qualifier2> value2

Based on the above illustrations, the spatial objects can be defined as below:

In addition, every table is initialed with a Region and can be further separated into

several Regions, where each Region is recognized as a storage node. When the data

volume increases and reaches a threshold value, the table will be split into two Regions

automatically by the distributed storage model and new Region will be stored in another

physical storage node. Naturally, when the table keeps growing, it will be divided into

multiple Regions.

3.2. Design of Rowkey Encoding

Rowkey is a unique identifier for spatial objects in column-oriented databases. All

rows are sorted lexicographically based on the Rowkeys. In terms of physical storage, a

well-designed Rowkey encoding will make significant difference for efficient database

query. For example, a poorly designed Rowkey encoding approach that uses ill-suited

schema is usually a common source of hotspotting. Hotspotting occurs when a large

amount of client traffic is directed at one node, or at only a few nodes of a cluster.

Hotspotting overwhelms the node that is responsible for hosting that particular region and

causes performance degradation and potentially leads to region unavailability. It can also

have adverse effects on other regions hosted by the same region server as the host is

unable to serve the requested load. It is important to design data access patterns so that a

cluster is fully and evenly utilized [18, 19].

Although the design of Rowkey encoding has been proposed in many mature

frameworks and data models, column-oriented databases mainly use monotonically

increased Rowkeys (i.e., using a timestamp or a sequence). For time series data, Rowkey

is usually designed as
[_][_]metric type event timestamp

 , which contradicts previous

studies in which timestamp is not used as a key[18]. Nevertheless, all these Rowkey

encoding methods do not deal with spatial data. In other words, these methods do not

consider the spatial characteristics of the spatial vector datasets, where some spatial

objects are (geographically) closer to others and some are farther away from others. In

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 41

this paper, the design and implementation of the Rowkey encoding for our spatial vector

data model in column-oriented databases considers the following two conditions:

(1)Column-oriented databases do not directly support spatial vector data, and database

query relies solely on the Rowkey. Usually, a Rowkey is only a unique ID sequence,

which does not have any spatial information. In addition, conventional Rowkeys do not

have spatial indexing capability. To support efficient spatial database query, a complex

spatial index structure must be built.

(2) By simply using the ID sequence or time stamp as the Rowkey, all spatial objects

would be separately stored in various storage nodes according to the order of the

sequence. In case of dealing with large volume of data, this will reduce the performance

of spatial query and increase the cost for database maintenance.

Therefore, our solution for the design of the Rowkey encoding tries to avoid these two

problems: (1) Convert the Rowkey encoding from 2 dimensions to1 dimension, and (2)

Consider the spatial proximity of spatial objects and integrate it into the encoding

algorithm. In this case, we chose the space filling curves (SFCs) method, which has been

extensively used as a mapping schema from the n-D space into the 1-D space. Its act like

a thread that pass through every cell element in D-dimension space so that every cell is

visited exactly once [20, 21].More importantly, in term of space, the index encoded by the

SFC method tends to order objects with smaller spatial proximity closely in the sequence.

With these characteristics of space-filling curves, the encoding of Rowkey can

combine the conventional Rowkey pattern with SFCs. So, we designed a new Rowkey

schema as following formulation (4.5):

() (.) ()Rowkey f Geocode f geometry FID f 

 (4.5)

The
(.)Geocode f geometry

is the encoding function of space-filling curves, which

can be shown as following formulation (4.6):

1 2(.) () () ()mGeocode f geometry ZG P ZG P ZG P   

 (4.6)

Where the parameters are the spatial object’s geometry coordinates and the
()mZG P

 is

the encoding of space-filling curves in each layer. The function
()FID f

 generates unique

sequential IDs in the database. Encoding by the space-filling curves approach, the

Rowkey of various spatial objects in same spatial partition has the same prefix code.

Coupled with a unique sequence ID number as a suffix, not only avoid the duplication of

Rowkey, but also overcome the shortcomings of Rowkey which encode only by unique

sequence ID. Using formulation (4.5), the data which are nearby together can also be

aggregately stored. This encoding makes data storage take space proximity into account.

Furthermore, Rowkey have the basic characteristics of spatial index, which makes it

possible for making spatial query directly in Database.

Because of holding the characteristic of easy calculation, Z-order curve approach will

be used in the progress of Rowkey encoding with consideration of high efficiency

requirements in the vector spatial Big Data storage and query process,

Definition 4.1:

In a d-dimensional space, given 1 1(,...,) , [,](1....)d i d i iiP P D D D D L U i d       the

number of partitions in each dimension are 2 ()m m N and the Z-order curve value of P

is 1() (,...,)m dZG P zg zg , where
/ (() / 2)m

i i i izg p U L    .From the Definition 4.1, the can

be represented by using length of m binary bit long string.

Definition 4.2:

Grid of Z-order curve is defined as the d-dimensional grid of Zcurve of order min

the
(1)k k m 

 times to split the space [0,1]d dR  into hyper cubes, which can be

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

42 Copyright ⓒ 2017 SERSC

determined by the two endpoints of the diagonal 1(,...,)dS s s and 1(,...,)dT t t , and it is

denoted as: () ,ZGrid k S T  ,with side length () 2 k

i ir t s    .In the 2D space, Zcurve of

order m split the edge length square into
22 (1)k k m  equal-sized grids, where the length

of each grid is 2 kr  . Any spatial objects in the same grid have the same Z-order curve

code.

Definition 4.3:

The minimum grid of spatial object G is defined as the smallest grid containing all of

the points of the object, which is denoted as ()Mingrid G .According to the definitions

above, the Z-order curve encoding algorithm is as below:

Given a spatial data object G, the highest order of Z-order curve is m. First, from the

first (1) order of Z-order curve to m, we calculate the highest order k for ()Mingrid G , and

convert G to Z-order curve value ()ZG G in binary bits for each layer. Finally the value of

Z-order curve will be jointed. For Point objects, we calculate its coordinates directly,

while for other spatial objects, the center point or the minimum bounding box (MBR)of

the geometry will be used. Finally, ()ZG G is converted to the corresponding encoding.

Below is the pseudo-code for 2D Z- curve of m-order encoding algorithm:
Algorithm 4.1: Encoding of 2D Z-order curve

Input: spatial object G, Highest order m

Output: Encoding of G

0 Initial order k to 1

1 for k < m do

2 if (().ZGrid k r <G.Range | every vertex in G not in same zg):

3 goto 5

4 end for

5 for order =1 to k do

6 /*convert xy coordinate value into 2 dimension array*/

7 zg[order][2]= 2(. int/ (() / 2))order

i iG CenterPo U L  

8 for i=1 to order do

9 for j=1 to 2 do

10
2(1) 1() () 2 i j

i iZG P ZG P     * zg[i][j]

11 end for

12 end for

13 Zcode:=
22 i

 *Zcode +
()iZG P

14 end for

4. Experimental Implementation

For this study, the distributed computing environment is established on 13 PCs. Each

PC installs a VMware software (version 8.0.4) with a total of 13 virtual Linux operating

systems (Ubuntu 14.04.2 LTS) to accommodate Apache Hadoop(version2.5.2) and

HBase(version1.0.1.1), where the parallel compute framework is Yarn. The system

consists of 2 Master nodes (one is active node, another is backup node), 8Slave nodes

(Region Server, Data node) and 3 Zookeeper nodes (Zoo1, Zoo2, Zoo3).

As there is no vector data model in HBase, no existing software or tools are available

for storing the spatial vector data in a column-oriented database. Therefore, a special

toolkit is developed that stores the spatial vector dataset in HBase, based on the Yarn

framework. In order to analysis the designed data model, three experiments on data

storing, range query and k-NN query were be conducted.

Firstly, for comparing the change in efficiency of data storing, different size data were

imported with two different Rowkey encoding. One is designed Z-curve Rowkey

encoding, and another is undesigned Rowkey which use sequence number from 1 to n.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 43

Four data sets with different volumes were selected, from 42,096 to more than 10 million

road lines which maximum size is over 21.6GB.The result is shown in Table 3 and

illustrated in Figure 5-1 and Figure 5-2. Seeing from the experiment result, the designed

Rowkey has the same performance level with sequence number Rowkey, and the time

consumed is increased slowly even with the volume of data increasing.

Table 3. Time Consumed of Data Storing

Numbers designed Rowkey undesigned Rowkey

42096 42.65s 37.80s

655197 278.89s 260.65s

3348576 840.23s 798.34s

10045728 2143.87s 2058.92s

37.8

260.65

798.34

2058.92

42.65

278.89

840.23

2143.87

0

500

1000

1500

2000

2500

42096 655197 3348576 10045728

se
co
n
d

Numbers

undesigned rowkey

designed rowkey

37.8

260.65

798.34

2058.92

42.65

278.89

840.23

2143.87

0

500

1000

1500

2000

2500

42096 655197 3348576 10045728

se
co
n
d

Numbers

undesigned rowkey

designed rowkey

Figure 5-(1, 2). Time Consumed Of Data Storing

For the performance of spatial query in HBase, spatial range query and K-NN query

experiments are conducted with two different Rowkey. In the processes of range query,

time consumed were recorded with the different query range, and whole spatial objects

data were get from HBase. The recorders shown in Table 4 are time cost of the

undersigned Rowkey data and designed Rowkey data. Two query methods results are

illustrated in Figure 6-1 and Figure 6-2. From Figure 6-1 and Figure 6-2, it shows that the

model with designed Rowkey has more highly efficiency than undersigned one. It’s clear

that efficiency of the spatial query did not drop down even the range expanded. And the

cost of time for spatial query increased more slowly than the volume of query results. It

proves that the designed data model not only can make HBase support range query, but

also speed up the ratio of spatial query in HBase.

Table 4. Time Consumed of Spatial Query

Range Number undersigned Rowkey dersigned Rowkey
(-201,-11; 4.3,133.6) 84 68.15s 2.13s

(-201,-11; 450,382) 3493 74.58s 5.45s

(-201,-11; 758,544) 19524 76.12s 15.38s

(-201,-11; 2362.7,1776.9) 294118 87.38s 32.69s

68.15
74.58 76.12

87.38

2.13
5.45

15.38

32.69

0

10

20

30

40

50

60

70

80

90

100

84 3493 19524 294118

se
co
n
d
s

numbers

undesigned
Rowkey

disigned rowkey

68.15
74.58 76.12

87.38

2.13
5.45

15.38

32.69

0

10

20

30

40

50

60

70

80

90

100

84 3493 19524 294118

se
co
n
d
s

numbers

undesigned
Rowkey

disigned
rowkey

Figure 6-(1, 2). Time Consumed of Spatial Range Query

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

44 Copyright ⓒ 2017 SERSC

In the process of k-NN query, more than 4 million points were stored in HBase with

different Rowkey encoding. In process of k-NN query, the cost of time for K-NN were

recorded with different Rowkey encoding and shown in Table 5, Figure 7-1 and Figure 7-

2. From Table 5, Figure 7-1 and Figure 7-2, it presents that designed Rowkey can

accelerate query speed for k-NN. Form all of the analysis of experiments, it cleared that

designed data model has good ability on the storage and spatial query in the column-

oriented databases.

Table 5. Time Consumed of K-NN Query

The value of K undersigned Rowkey dersigned Rowkey
5000 87.05s 43.52s

10000 96.64s 44.97s

15000 99.08s 46.41s

20000 108.53s 47.75s

87050
96648 99083

108530

43526 44972 46417 47752

0

20000

40000

60000

80000

100000

120000

5000 10000 15000 20000

ti
m
e
:m

il
li
se
co
n
d

k-neighbor

undesigned rowkey designed rowkey

87050
96648 99083

108530

43526 44972 46417 47752

0

20000

40000

60000

80000

100000

120000

5000 10000 15000 20000

ti
m
e:
m
il
li
se
co
n
d

k-neighbor

undesigned rowkey designed rowkey

Figure 7-(1, 2). K-NN Query Performance

5. Conclusions

This paper presents a topology-concerned geospatial vector data storage model for

column-oriented databases. The development of the data model is motivated by the urgent

and enormous need to transform the storage and management of vector Big Data from

RDBS to cloud storage. This transformation is primarily driven by rapidly growing spatial

data in many fields to solve vector Big Data problems in GIS and spatial analysis. The

results of this study show the following: (1) the study establishes a topology-concerned

geospatial vector data storage model for column-oriented databases. This data model

helps to achieve unified data management for handling geometry information, attribute

information and topological information at the same time. (2) The efficiency of the spatial

vector data storage model is optimized by utilizing the Z-order curve encoding with

consideration of both the characteristics of Rowkey and the proximity of spatial data. (3)

With the realized spatial proximity enabled Rowkey, the column-oriented database has a

basic spatial indexing capability, and can directly support spatial queries. (4)This study

leads important directions for future research on applications of vector Big Data

management.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

Copyright ⓒ 2017 SERSC 45

Acknowledgements

The authors would like to thank the National Key Research Program Plan of China

(No. 2016YFB0502603), the Natural Science 437 Foundation of Hubei Province of China

(No. ZRY2015001543) and Fundamental Research Founds for National University, China

University of Geosciences (Wuhan) (1610491B20).

References

[1] Wright, D.J. and S. Wang, The emergence of spatial cyberinfrastructure. Proceedings of the National

Academy of Sciences of the United States of America, 2011. 108(14): p. 5488-5491.

[2] Han, J., Survey on NoSQL database. in International Conference on Pervasive Computing and

Applications. 2011.

[3] Chandra, D.G., BASE analysis of NoSQL database. Future Generation Computer Systems, 2015. 52(C):

p. 13-21.

[4] Nishimura, S., MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware

Services. in IEEE International Conference on Mobile Data Management. 2011.

[5] Zhang, N., HBaseSpatial: A Scalable Spatial Data Storage Based on HBase. in IEEE International

Conference on Trust, Security and Privacy in Computing and Communications. 2014.

[6] Zhang, H., Dart: A Geographic Information System on Hadoop. in IEEE International Conference on

Cloud Computing. 2015.

[7] Cary, A., Leveraging Cloud Computing in Geodatabase Management. in IEEE International Conference

on Granular Computing, Grc 2010, San Jose, California, Usa, 14-16 August. 2010.

[8] Zhong, Y., A novel method to manage very large raster data on distributed key-value storage system.

2011.

[9] Hsu, Y.T., Key Formulation Schemes for Spatial Index in Cloud Data Managements. in IEEE

International Conference on Mobile Data Management. 2012.

[10] Anselin, L. and A. Getis, Spatial statistical analysis and geographic information systems. The Annals of

Regional Science, 1992. 26(1): p. 19-33.

[11] Bhaskaran, S., Introduction to Geographic Information System. 2015. 544-546.

[12] Kwan, M.P., A combinatorial data model for representing topological relations among 3D geographical

features in micro‐spatial environments. International Journal of Geographical Information Science, 2005.

19(10): p. 1039-1056.

[13] PAPADIAS, D. and Y. THEODORIDIS, Spatial relations, minimum bounding rectangles, and spatial

data structures. International Journal of Geographical Information Science, 1997. 11(2): p. 111-138.

[14] Papadias, D.,Topological Relations in the World of Minimum Bounding Rectangles: a Study with R-

trees. Acm Sigmod Record, 1995. 24(2): p. 92-103.

[15] Laurini, R., A conceptual framework for geographic knowledge engineering. 2014: Academic Press, Inc.

2-19.

[16] Pouliot, J.,Reasoning about geological space: Coupling 3D GeoModels and topological queries as an aid

to spatial data selection. Computers & Geosciences, 2008. 34(5): p. 529-541.

[17] Zheng, K. and Y. Fu, Research on Vector Spatial Data Storage Schema Based on Hadoop Platform.

International Journal of Database Theory & Application, 2013. 6(5): p. 85-94.

[18] George, L., HBase The Definitive Guide. 2011: O'Reilly Media.

[19] Patel, A.B., M. Birla and U. Nair. Addressing big data problem using Hadoop and Map Reduce. in

Nirma University International Conference on Engineering. 2013.

[20] Mokbel, M.F., Aref, W.G. & Kamel, I. GeoInformatica (2003) 7: 179. doi:10.1023/A:1025196714293.

[21] Couch, P.J., B.D. Daniel and T.H. Mcnicholl, Computing Space-Filling Curves. Theory of Computing

Systems, 2012. 50(2): p. 370-386.

Authors

Kun Zheng, received his Ph.D from China University of

geoscience. He is currently an associate professor with the Faculty of

Information Engineering, China University of Geosciences, Wuhan,

China. His current research interests involve Spatio-Temporal data

Visual Analytics, Storage and management of spatial big data.

International Journal of Database Theory and Application

Vol.10, No.5 (2017)

46 Copyright ⓒ 2017 SERSC

Mei-Po Kwan, received her Ph.D from University of California,

Santa Barbara. She is the editor, Annals of the Association of

American Geographers, the president, International Association of

Chinese Professionals in Geographic Information Sciences and so on.

Her research addresses health, social, transportation, economic, and

environmental issues in urban areas through the application of

innovative geographic information system (GIS) methods.

Falin Fang, received the B.E. degree from China University of

Geosciences. He is currently master degree candidate with Faculty of

Information Engineering, China University of Geosciences, Wuhan,

China. His current research interest is the storage and management of

spatial data and parallel processing for massive spatial data

Junjun Yin, obtained his PhD of Spatial Information Science

from Dublin Institute of Technology, Ireland. He is currently a

postdoctoral research associate at the CyberGIS Center. His main

research interests focus on spatial analytics for large scale geopstial

datasets, Location Based Services and human mobility patterns

within the context of Urban Informatics.

Danpeng Gu, received the B.E. degree from China University of

Geosciences. He is currently master degree candidate with Faculty of

Information Engineering, China University of Geosciences, Wuhan,

China. His current research interest is Spatio-Temporal data Visual

Analytics and parallel processing for massive spatial data

Yanli Fu, received the Master degree from China University of

Geosciences. She currently works at JiNan Geotechnical

Investigation and Surverying Institute, JiNan, China. Her current

research interest is the storage of spatial data and management of

geographic information.

