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Abstract 

In today’s “Big Data” era, the volume of spatial data grows rapidly. Addressing the 

challenges in efficient spatial Big Data storage and management becomes urgent. 

However, conventional row-based spatial databases have many limitations, such a slow 

data I/O efficiency, low data retrieval performance, poor scalability, and high 

maintenance costs. These conventional spatial databases are no longer suitable for 

today’s spatial Big Data. On the other hand, column-oriented databases have several 

superior features, such as high reliability, scalability and fault tolerance. More 

importantly, they have better I/O efficiency for query processing. This paper presents a 

topology-concerned spatial vector data model for column-oriented databases and 

designed the physical storage model, which is a unified model for storing and managing 

information of geometry, attribute and topology of spatial objects. For the storage 

characteristics of column-oriented databases, the model designed a new Rowkey 

encoding schema with the Z-order filling curve approach. This encoding schema of 

Rowkey considering spatial proximity optimizes the organizational structure of spatial 

data models. It means nearby spatial objects are also closer to each other in the physical 

storage, which can further improve the efficiency of spatial data storage and enable 

spatial query capability in column-oriented databases. Three experiments were conducted 

including data storing, range query and K-NN query to analyze the efficiency and spatial 

query capability of the data model. The results of the experiments show that the data 

model has good scalability and efficiency on the vector data storage and spatial query. It 

is suitable for large-scale spatial vector data storage and management in column-

oriented databases. 

 

Keywords: Spatial Vector Data Model, Column-oriented Database, Topology, Spatial 

Proximity 

 

1. Motivation and Introduction 

Recent advances in geospatial data acquisition technology have led to dramatic 

increase in large-volume, multi-scale and complex spatial datasets [1]. To efficiently deal 

with massive spatial datasets, it requires innovative spatial database management system 

(SDBMS) to support scalable data handling, such as data storage with flexible data 

schema and efficient database querying. Traditional file systems, in particular, SDBMS 

extended from relational databases, are becoming inadequate for efficient massive data 

storage and processing, where relational databases with a rigidly defined, schema-based 

approach make it difficult to quickly incorporate new types of data, and to achieve 

dynamic scalability while maintaining the performance users demand [2]. In this regard, 
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non-relational (also known as NoSQL) databases are becoming the mainstream database 

technology for Big Data research and applications [3]. The state-of-the-art NoSQL 

databases in the market employ distributed technology to enhance efficient mass storage 

and database querying, where multiple instances of NoSQL databases work together 

across a network. There are several kinds of NoSQL databases according to the difference 

of data model, for example key-value database, column-oriented database and so on. In 

contrast to another NoSQL databases, Column-oriented database organize the ‘value’ with 

multiple columns. In addition, Column-oriented database provided a pattern named 

“column family” for improving the efficiency of data query by storing some columns 

often needed to access together in the same storage area [3, 18]. 

However the spatial data models developed based on relational databases are not 

suitable for NoSQL environment, many current research efforts focus on extending the 

data models in NoSQL database to support efficient spatial vector data storage and 

management, such as MD-HBase [4], HBaseSpatial [5],Dart [6]. 

All of them only store the geometry and properties but not the topology relation 

information, where the topology relationships are managed separately from the physical 

data storage, by using the spatial indexes, such as R-tree, KD-tree, Quad-tree, etc. [4, 7-

9]. Then when new data are inserted into the database, the spatial indexes should be 

updated accordingly, which can be accumulated as a large computation overhead 

especially considering the massive number of spatial objects in dealing with spatial Big 

Data. Furthermore they do not consider the spatial proximity of spatial objects when 

storing data across different computing nodes in a network, where spatially distant objects 

can be stored in the same node or spatially close objects are stored in different nodes. 

Subsequently, it can potentially lead to inefficient I/O when performing spatial query 

processing, as the targets should be accessed and retrieved from multiple computing 

nodes.  

Based on the above consideration, this paper proposes a topology-concerned spatial 

vector data model for column-oriented Databases. In particular, we designed and 

implemented a spatial vector data model by establishing a topological vector data model 

and integrating it with the physical storage structure of the column-oriented database. 

Also it designs a Rowkey encoding scheme with modified SFC (Space Filling Curve) to 

enable the capability of building topology relationships on large spatial vector data in 

column-oriented database and performing spatial query, such as range query and k-NN 

query. Following, Section 2 introduces the topology-concerned spatial data model by 

exploring the topological relationships and the topology-concerned logical data model. 

Section 3 focuses on the development of the spatial vector data model in column-oriented 

databases and the design of Rowkey encoding. Section 4 presents the experimental 

implementation for evaluating the data model using HBase. Finally, Section 5 concludes 

and summarizes this research. 

 

2. Topology-concerned Spatial Vector Data Model 

Compared to raster data, vector data has more complex data structures and contains 

spatial topological relations. A geospatial object contains not only information of its 

geometric elements, such as location and shape, but also the topological relationships 

among the geometric elements, such as edges with nodes, and lines with surfaces [10-12].  

 

2.1. The Approach of Topological Relations 

Spatial relationships are the fundamentals of GIS. They play an important role in 

spatial analysis and GIS applications [13].Topological relations are one of the most 

important elements in spatial relationships. It is the key for understanding how geospatial 

objects are organized in databases and it helps optimize data analysis, processing, and 

query. 
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9-Intersection Model (9-I Model) is the most commonly used topology model. Many 

researchers study and extend the topological relations depicted by the 9-I Model [14, 15]. 

However, the 9-I Model relies on a large complementary logical set to calculate all the 

topological relations of every spatial object, which can potentially generate a large 

amount of redundant data. Therefore, it is not suitable for direct use in spatial data 

models. On the other hand, border relationship between spatial objects are easier to 

express, in particular, the core topological relationships such as adjacent, intersection and 

contains that can be used to derive other types of topological relationships [10, 11, 16]. 

To illustrate the border relationships of two given spatial objects M and N, where B[M] 

and B[N] are the boundaries of M and N respectively, and I[M], I[N] represent the interior 

of M and N, the topological model can be expressed as the matrix M-1. 

[M] B[N] [ ] [ ]

[ ] [ ] [ ] [ ]

B B M I N

I M B N I M I N

 
 
   (M-1) 

Each element in the matrix is valued either “0” or “1”. The boundary and the interior of 

a point is itself; the boundary of a line is the two nodes at both ends of the line segment, 

while the interior is the portion between these two nodes; the boundary of a polygon is the 

collection of ordered edges and the interior is the area enclosed by the edges. From the M-

1 matrix, there are 16 relationships among different combinations of spatial objects. To be 

specific, the collection of spatial relationships include equal, contain, touch, adjacent, 

intersection and disjoint relations between points, lines and polygons.  

 

2.2. Topology-concerned Logical Data Model 

Based on the simple feature specifications of OGC (Open GIS Consortium), the 

topology-concerned logical data model consists of three components: Geometry, 

Property, and Topological relationships [17], which are illustrated in Figure 1. 

 

Feature

Topological 

relationshipsPropertyGeometry

 

Figure 1. The Diagram of Topology-Concerned Data Model 

In 2-dimensional space, the geometric shape of a spatial object can be described as a 

point, line, or polygon. To express the topological relationships accurately, the geometry 

of the topology-concerned data model not only consists of the Point, Line, and Polygon 

elements, but also includes the Node and Edge elements. As it is shown in Figure 2, the 

point class describes the shape of 0-D objects; Line describes the shape of 1-D objects; 

Polygon describes the shape of 2-D objects. 
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Figure 2. The Logical Geometrical Structure of the Topology-Concerned 
Data Model 

A Point is represented by a single pair of coordinates, e.g., (x, y), and an Edge is the 

line segment consisting of a series of ordered points. Each edge has two nodes where the 

node is the end point of the edge and it can be the end point of one or more edges. A Line 

consists of a series of ordered points, or a series connected edges. A Polygon is bounded 

by edges, where there is no self-intersection for each edge and an edge can be shared by 

two polygons. The topological relationships can be described with the following 

formulation. 

 
( , ) , , ,Topo A B A B R V 

 (2.1) 

In this formulation, A and B can be any spatial objects; R is the topological 

relationship between A and B; V is the measurement of such a topological relationship, 

which can be a null value. The topological relationships in this data model are all about 

the boundary and interior relations between the spatial objects, which are expressed by 

using Node and Edge to store the topological information. For the topological 

relationships, Node can express the touch relation between points and lines, while Edge 

can express the line’s topological relationships between Line and Line. In addition, Line 

and Polygon can be separated to an array of relationships between Edge and Edge, as 

Polygon is essentially enclosed by Lines.  

In other words, in our topology-concerned logical data model, all topological 

relationships can be expressed or deduced by Node and Edge. Since V can be calculated 

on-demand once the topological relationships are identified, and hence formulation (2.1) 

can be simplified to the following: 

 
( , ) , ,Topo A B A B R 

 (2.2) 

In terms of feature’s property, it can be described as a set of attributes, where the 

values are paired with the corresponding attribute name. The formulation is shown below: 

        1 1 2 2{( , ),( , ),...,( , )}n nProperty(F) Attr Value Attr Value Attr Value
     (2.3) 

According to the designed topology-concerned logical data model, a feature can be 

defined by the following abstract class. 
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{

      { };

      

      

      

}

Feature

GeometryType gType Point,Line,Pologon,Node,Edge

Geometry geo

Topology Topo = {Topo(A,B),Topo(A,C),...};

Property property(F)



  (2.4) 

3. Data Storage Model based on Column-oriented Databases 

The data storage model in column-oriented databases can be defined as a distributed, 

sparse and column-oriented mapping table. Compared to row-oriented database, column-

oriented databases have sparse storage characteristics, and therefore are more efficient for 

operations like data query, insert, update, and delete in data intensive databases. An 

illustration of the logical and physical table structure and storage mode in a column-

oriented database is shown as Figure 3[18]. 

 

 

Figure 3. A Diagram for the Logical and Physical Table Structure in Column-
Oriented Database 

Column-oriented databases utilize Rowkey (row index) to organize the table into a 

two-dimensional matrix. Through the Rowkey, column families (CF) and columns, we 

can smoothly access the information in the corresponding cell. Moreover, multiple 

versions of data in the same cell will be stored concurrently, where each data is tagged 

with a timestamp when it is stored. These multiple versions of data are sorted in 

descending order so that the latest version will be accessed first. In summary, each cell 

now contains not only the information of column and value, but also Rowkey and 

timestamp, where the table is sorted according to the dictionary order of Rowkey. 

 

3.1. Topology-concerned Spatial Vector Data Storage Model 
 

(1) Logical Data Storage Model  

Column-oriented databases only support “string” data type, and different column 

families are stored separately. All spatial objects and property information must be 

organized into tables, which consist of Rowkey, column family, column qualifier and 

timestamp. Data within a column family is addressed via its column qualifier, or simply, 

column. Column qualifiers, defined as “<family>:<qualifier>”, do not need to be 

specified in advance nor should be consistent between rows.  
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For the topology-concerned data model, the vector data consist of geometry, property, 

and topology. The data model should be transformed to column-oriented organization 

before being directly used for the column-oriented table. Following the organization rules 

of column-oriented databases, the logical storage structure of the data model is shown as 

Figure 4. 

Column Family:

Geometry
Column Family:

Property
Column Family:

Topology

Entity

Rowkey

 

Figure 4. Logical Structure of Data Storage Model 

In column-oriented databases, any spatial vector object from the data storage model 

can be defined by the following formulation: 

}M(f)=< Rowkey,Timestamp,{Geometry;Property;Topology >
 (4.1) 

Where Rowkey is the unique identifier of the spatial object in the database; Timestamp 

records the time when the particular object gets updated. This model contains three 

column families: Geometry, Property, and Topology, where Geometry can be defined by 

formulation (4.2); geoType is any of “Point”, “Line”, “Polygon”, “Node”, or “Edge”; 

Shape is an(x,y) coordinate sequence or an array of other object’s ID such as Edge, Node; 

and ProCoorSys is the spatial reference information. 

               
( ) [ ]Geometry f geoType,ProcoorSys,Shape

                            (4.2) 

{ " }geoType "Point","Line","Polygon","Edge ,"Node"
                   (4.3) 

Property column family can be described by <Field, Value>, and Topology column 

family can be define as formulation (4.4) 

,Topology(f) TopoR Rowkey 
                                         (4.4) 

Within the topology-concerned spatial vector data model, the boundary TopoR 

(topological relations) of Point, Line and Polygon types has been converted to the 

relations between Node and Edge. For Node type, the topology information is its touched 

Edge, which is recorded as , EdgeTouch Rowkey   ; the topology information of Edge 

consists of two types: the first is the relationship between Edge and Node record by 

, NodeTouch Rowkey   ; the second is the adjacent relation including Line with Line, Line 

with Polygon, and Polygon with Polygon, recorded by , LineAdjacent Rowkey   or 

, EdgeAdjacent Rowkey    The interior topological relations of Point, Line and Polygon 

types can be recorded by ,Contains RowkeyArray   ,where RowkeyArray is the array of 

Rowkey values of the contained spatial objects. So TopoR is valued one of the set 

{" ", ," "}Touch Adjacent Contain
 . 

Based on the above analysis for the logical structure of the data storage model in 

column-oriented databases, the logical view of the model is illustrated in Table. 1: 
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Table 1. Logical View of Storage Data Model 

Rowkey Timestamp 

Column Family: 

Geometry 

Column Family: 

Attribute 

Column Family: 

Topology 

Info Value Info Value Info Value 

ID1 

 

T1 Shape （x,y） Atrrib:1 Value1   

T2 ProCoorSys SR1 Atrrib:2 Value2   

T3 Type 
Point 

Node 
    

ID2 

 

T1 Shape （x,y） Atrrib:1 Value3   

T2 ProCoorSys SR1 Atrrib:2 Value4   

T3 Type 
Point 

Node 
    

 

ID3 

 

T1 ProCoorSys SR1 Atrrib:1 Value5   

T2 Type 
Line 

Edge 
Atrrib:2 Value6   

T3 Shape （x,y）   Adjacent 
ID4, 

ID5,… 

T4     Touch 
ID1, 

ID2,… 

ID4 

 

T1 ProCoorSys SR1 Atrrib:1 Value7   

T2 Type Polygon Atrrib:2 Value8   

T3 Shape ID3,…   Contain 
…

… 

ID5 

 

T1 ProCoorSys SR1 Atrrib:1 Value9   

T2 Type Polygon Atrrib:2 Value10   

T3 Shape ID3,…   Contain 
…

… 

 

Note that every spatial object has three column families in addition to the Rowkey and 

the timestamp. In this table view, all data is ordered and identified by the Rowkey. 

Rowkey is always treated as a “byte” array. The Rowkey maps a list of column families, 

where each column family consists of a list of column qualifiers with corresponding 

timestamp and value. In other words, those rows with the same Rowkey belong to the 

same spatial object. The default version number of a spatial object is the timestamp. To 

access a specific version of spatial object, if the timestamp is not specified, the latest one 

will get returned; if a timestamp is not recorded when the data was written, the current 

timestamp of the system is used. 
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(2) Physical Data Storage Model 

In column-oriented database, the physical storage of logical tables is organized by the 

column family only. One column family can be stored in many files, but each file can 

only store one column family data, where empty columns are not stored to improve 

efficiency. Table 2 provides the overall view of the physical storage for our data model. 

Table 2. Overall View for the Physical View of Column Family 

Rowkey Timestamp  
Column Family 

info value 

ID 
T1 <family>:<qualifier1>  value1 

T2 <family>:<qualifier2>  value2 

 

Based on the above illustrations, the spatial objects can be defined as below: 

 

 
 

In addition, every table is initialed with a Region and can be further separated into 

several Regions, where each Region is recognized as a storage node. When the data 

volume increases and reaches a threshold value, the table will be split into two Regions 

automatically by the distributed storage model and new Region will be stored in another 

physical storage node. Naturally, when the table keeps growing, it will be divided into 

multiple Regions. 

 

3.2. Design of Rowkey Encoding 

Rowkey is a unique identifier for spatial objects in column-oriented databases. All 

rows are sorted lexicographically based on the Rowkeys. In terms of physical storage, a 

well-designed Rowkey encoding will make significant difference for efficient database 

query. For example, a poorly designed Rowkey encoding approach that uses ill-suited 

schema is usually a common source of hotspotting. Hotspotting occurs when a large 

amount of client traffic is directed at one node, or at only a few nodes of a cluster. 

Hotspotting overwhelms the node that is responsible for hosting that particular region and 

causes performance degradation and potentially leads to region unavailability. It can also 

have adverse effects on other regions hosted by the same region server as the host is 

unable to serve the requested load. It is important to design data access patterns so that a 

cluster is fully and evenly utilized [18, 19]. 

Although the design of Rowkey encoding has been proposed in many mature 

frameworks and data models, column-oriented databases mainly use monotonically 

increased Rowkeys (i.e., using a timestamp or a sequence). For time series data, Rowkey 

is usually designed as
[ _ ][ _ ]metric type event timestamp

 , which contradicts previous 

studies in which timestamp is not used as a key[18]. Nevertheless, all these Rowkey 

encoding methods do not deal with spatial data. In other words, these methods do not 

consider the spatial characteristics of the spatial vector datasets, where some spatial 

objects are (geographically) closer to others and some are farther away from others. In 
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this paper, the design and implementation of the Rowkey encoding for our spatial vector 

data model in column-oriented databases considers the following two conditions: 

(1)Column-oriented databases do not directly support spatial vector data, and database 

query relies solely on the Rowkey. Usually, a Rowkey is only a unique ID sequence, 

which does not have any spatial information. In addition, conventional Rowkeys do not 

have spatial indexing capability. To support efficient spatial database query, a complex 

spatial index structure must be built. 

(2) By simply using the ID sequence or time stamp as the Rowkey, all spatial objects 

would be separately stored in various storage nodes according to the order of the 

sequence. In case of dealing with large volume of data, this will reduce the performance 

of spatial query and increase the cost for database maintenance. 

Therefore, our solution for the design of the Rowkey encoding tries to avoid these two 

problems: (1) Convert the Rowkey encoding from 2 dimensions to1 dimension, and (2) 

Consider the spatial proximity of spatial objects and integrate it into the encoding 

algorithm. In this case, we chose the space filling curves (SFCs) method, which has been 

extensively used as a mapping schema from the n-D space into the 1-D space. Its act like 

a thread that pass through every cell element in D-dimension space so that every cell is 

visited exactly once [20, 21].More importantly, in term of space, the index encoded by the 

SFC method tends to order objects with smaller spatial proximity closely in the sequence. 

With these characteristics of space-filling curves, the encoding of Rowkey can 

combine the conventional Rowkey pattern with SFCs. So, we designed a new Rowkey 

schema as following formulation (4.5): 

 
( ) ( . ) ( )Rowkey f Geocode f geometry FID f 

    (4.5) 

The 
( . )Geocode f geometry

is the encoding function of space-filling curves, which 

can be shown as following formulation (4.6): 

      
1 2( . ) ( ) ( ) .... ( )mGeocode f geometry ZG P ZG P ZG P   

                  (4.6) 

Where the parameters are the spatial object’s geometry coordinates and the
( )mZG P

 is 

the encoding of space-filling curves in each layer. The function
( )FID f

 generates unique 

sequential IDs in the database. Encoding by the space-filling curves approach, the 

Rowkey of various spatial objects in same spatial partition has the same prefix code. 

Coupled with a unique sequence ID number as a suffix, not only avoid the duplication of 

Rowkey, but also overcome the shortcomings of Rowkey which encode only by unique 

sequence ID. Using formulation (4.5), the data which are nearby together can also be 

aggregately stored. This encoding makes data storage take space proximity into account. 

Furthermore, Rowkey have the basic characteristics of spatial index, which makes it 

possible for making spatial query directly in Database. 

Because of holding the characteristic of easy calculation, Z-order curve approach will 

be used in the progress of Rowkey encoding with consideration of high efficiency 

requirements in the vector spatial Big Data storage and query process,  

Definition 4.1: 

In a d-dimensional space, given 1 1( ,..., ) ... ... ,  [ , ]( 1.... )d i d i iiP P D D D D L U i d       the 

number of partitions in each dimension are 2 ( )m m N and the Z-order curve value of P 

is 1( ) ( ,..., )m dZG P zg zg  , where
/ (( ) / 2 )m

i i i izg p U L      .From the Definition 4.1, the  can 

be represented by using length of m binary bit long string. 

Definition 4.2: 

Grid of Z-order curve is defined as the d-dimensional grid of Zcurve of order min 

the
(1 )k k m 

 times to split the space [0,1]d dR  into hyper cubes, which can be 
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determined by the two endpoints of the diagonal 1( ,..., )dS s s   and 1( ,..., )dT t t  , and it is 

denoted as: ( ) ,ZGrid k S T  ,with side length ( ) 2 k

i ir t s    .In the 2D space, Zcurve of 

order m split the edge length square into 
22 (1 )k k m    equal-sized grids, where the length 

of each grid is 2 kr  . Any spatial objects in the same grid have the same Z-order curve 

code. 

Definition 4.3: 

The minimum grid of spatial object G is defined as the smallest grid containing all of 

the points of the object, which is denoted as ( )Mingrid G  .According to the definitions 

above, the Z-order curve encoding algorithm is as below: 

Given a spatial data object G, the highest order of Z-order curve is m. First, from the 

first (1) order of Z-order curve to m, we calculate the highest order k for ( )Mingrid G , and 

convert G to Z-order curve value ( )ZG G  in binary bits for each layer. Finally the value of 

Z-order curve will be jointed. For Point objects, we calculate its coordinates directly, 

while for other spatial objects, the center point or the minimum bounding box (MBR)of 

the geometry will be used. Finally, ( )ZG G is converted to the corresponding encoding. 

Below is the pseudo-code for 2D Z- curve of m-order encoding algorithm: 
Algorithm 4.1: Encoding of 2D Z-order curve 

Input:  spatial object G, Highest order m 

Output:  Encoding of G 

0 Initial order k to 1 

1 for k < m do 

2  if ( ( ).ZGrid k r  <G.Range | every vertex in G not in same zg): 

3   goto 5 

4 end for 

5 for order =1 to k do 

6       /*convert xy coordinate value into 2 dimension array*/ 

7 zg[order][2]= 2( . int/ (( ) / 2 ) )order

i iG CenterPo U L     

8         for i=1 to order do 

9      for j=1 to 2 do 

10             
2( 1) 1( ) ( ) 2 i j

i iZG P ZG P      * zg[i][j] 

11    end for 

12        end for 

13        Zcode:=
22 i

 *Zcode + 
( )iZG P

  
14  end for 

 

4. Experimental Implementation 

For this study, the distributed computing environment is established on 13 PCs. Each 

PC installs a VMware software (version 8.0.4) with a total of 13 virtual Linux operating 

systems (Ubuntu 14.04.2 LTS) to accommodate Apache Hadoop(version2.5.2) and 

HBase(version1.0.1.1), where the parallel compute framework is Yarn. The system 

consists of 2 Master nodes (one is active node, another is backup node), 8Slave nodes 

(Region Server, Data node) and 3 Zookeeper nodes (Zoo1, Zoo2, Zoo3).  

As there is no vector data model in HBase, no existing software or tools are available 

for storing the spatial vector data in a column-oriented database. Therefore, a special 

toolkit is developed that stores the spatial vector dataset in HBase, based on the Yarn 

framework. In order to analysis the designed data model, three experiments on data 

storing, range query and k-NN query were be conducted. 

Firstly, for comparing the change in efficiency of data storing, different size data were 

imported with two different Rowkey encoding. One is designed Z-curve Rowkey 

encoding, and another is undesigned Rowkey which use sequence number from 1 to n. 



International Journal of Database Theory and Application 

Vol.10, No.5 (2017) 

 

 

Copyright ⓒ 2017 SERSC      43 

Four data sets with different volumes were selected, from 42,096 to more than 10 million 

road lines which maximum size is over 21.6GB.The result is shown in Table 3 and 

illustrated in Figure 5-1 and Figure 5-2. Seeing from the experiment result, the designed 

Rowkey has the same performance level with sequence number Rowkey, and the time 

consumed is increased slowly even with the volume of data increasing. 

Table 3. Time Consumed of Data Storing 

Numbers designed Rowkey undesigned Rowkey 

42096 42.65s 37.80s 

655197 278.89s 260.65s 

3348576 840.23s 798.34s 

10045728 2143.87s 2058.92s 
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Figure 5-(1, 2). Time Consumed Of Data Storing 

For the performance of spatial query in HBase, spatial range query and K-NN query 

experiments are conducted with two different Rowkey. In the processes of range query, 

time consumed were recorded with the different query range, and whole spatial objects 

data were get from HBase. The recorders shown in Table 4 are time cost of the 

undersigned Rowkey data and designed Rowkey data. Two query methods results are 

illustrated in Figure 6-1 and Figure 6-2. From Figure 6-1 and Figure 6-2, it shows that the 

model with designed Rowkey has more highly efficiency than undersigned one. It’s clear 

that efficiency of the spatial query did not drop down even the range expanded. And the 

cost of time for spatial query increased more slowly than the volume of query results. It 

proves that the designed data model not only can make HBase support range query, but 

also speed up the ratio of spatial query in HBase. 

Table 4. Time Consumed of Spatial Query 

Range Number  undersigned Rowkey dersigned Rowkey 
(-201,-11; 4.3,133.6) 84 68.15s 2.13s 

(-201,-11; 450,382) 3493 74.58s 5.45s 

(-201,-11; 758,544) 19524 76.12s 15.38s 

(-201,-11; 2362.7,1776.9) 294118 87.38s 32.69s 
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Figure 6-(1, 2). Time Consumed of Spatial Range Query 
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In the process of k-NN query, more than 4 million points were stored in HBase with 

different Rowkey encoding. In process of k-NN query, the cost of time for K-NN were 

recorded with different Rowkey encoding and shown in Table 5, Figure 7-1 and Figure 7-

2. From Table 5, Figure 7-1 and Figure 7-2, it presents that designed Rowkey can 

accelerate query speed for k-NN. Form all of the analysis of experiments, it cleared that 

designed data model has good ability on the storage and spatial query in the column-

oriented databases. 

Table 5. Time Consumed of K-NN Query 

The value of K undersigned Rowkey dersigned Rowkey 
5000 87.05s 43.52s 

10000 96.64s 44.97s 

15000 99.08s 46.41s 

20000 108.53s 47.75s 
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Figure 7-(1, 2). K-NN Query Performance  

 

5. Conclusions 

This paper presents a topology-concerned geospatial vector data storage model for 

column-oriented databases. The development of the data model is motivated by the urgent 

and enormous need to transform the storage and management of vector Big Data from 

RDBS to cloud storage. This transformation is primarily driven by rapidly growing spatial 

data in many fields to solve vector Big Data problems in GIS and spatial analysis. The 

results of this study show the following: (1) the study establishes a topology-concerned 

geospatial vector data storage model for column-oriented databases. This data model 

helps to achieve unified data management for handling geometry information, attribute 

information and topological information at the same time. (2) The efficiency of the spatial 

vector data storage model is optimized by utilizing the Z-order curve encoding with 

consideration of both the characteristics of Rowkey and the proximity of spatial data. (3) 

With the realized spatial proximity enabled Rowkey, the column-oriented database has a 

basic spatial indexing capability, and can directly support spatial queries. (4)This study 

leads important directions for future research on applications of vector Big Data 

management. 
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