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Abstract 

k-Nearest Neighbor Trajectory (k-NNT) Query is a basic and important spatial query 

operation widely used in many fields, such as intelligent transportation and urban 

planning. However, with the rapid increase of trajectory data volume, traditional k-NNT 

query algorithms for centralized environment are not effective and scalable enough, 

because the computational complexity increases dramatically when the spatial continuity 

of trajectories is considered. To address this problem, we propose a distributed grid index 

for trajectory data which partitions the trajectory into grids under MapReduce 

framework. Furthermore, a parallel query approach MR-GB-KNNT is proposed based on 

the proposed grid index to improve the efficiency and scalability of the k-NNT query. The 

experiment demonstrates that MR-GB-KNNT could perform well in cloud computing 

environment and improve the querying performance of the k-NNT. 

 

Keywords: Nearest Neighbor Query, Moving Object Trajectory, Grid Index, 

MapReduce 

 

1. Introduction 

In recent years, with the rapid development of GPS, mobile Internet and location-based 

services, a large amount of spatial-temporal trajectory data gathered in many fields such 

as traffic, environment, social networking and so on, put forward a higher requirement on 

the diversity and efficiency of spatial information services. Spatial query serves as a basis 

of spatial information services, of which processing efficiency is the key factor of system 

performance. Therefore, how to provide an efficient spatial query approach is one of the 

research hotspots for spatial information processing. 

In this paper, we focus on the k nearest neighbor trajectory query. Different from 

traditional kNN query, k-Nearest Neighbor Trajectory (k-NNT) Query is to retrieve the 

top-K trajectories with the shortest aggregate distance from the query trajectory T in the 

trajectory dataset S. k-NNT has been widely used as classification and recommendation 

algorithm in trajectory databases [1]. For example, social network users want to retrieve 

the traces of some scenic spots visited by their friends as a reference for travel plans. This 

scenario can be simplified to a k-NNT query problem. 

However, some of the traditional query methods are to find k nearest neighbor point 

objects [2], ignoring the spatial continuity of trajectories. Some other consider sequential 

dimension of trajectories, but only support some query of trajectory data instead of k-

NNT query based on spatial-temporal distance [3]. Additionally, traditional k-NNT query 

algorithms are based on spatial index in a stand-alone, so it is difficult to deal with the 

massive trajectory data because the computation and memory are limited. As a result, we 
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call for the cloud computing platform to provide a promising method to handle the 

trajectory of large volume and complex format. Therefore, in order to support the efficient 

k-NNT query algorithm in distributed environment, we provide a grid index for trajectory 

data and an auxiliary structure of the trajectory rebuilding table with considering of the 

spatial and temporal characteristics of location and trajectory data. Finally, we implement 

the distributed k-NNT query based on MapReduce. 

The rest of this paper is organized as follows. Section 2 reviews the related work. 

Section 3 provides the preliminaries. In Section 4, we present the processing framework 

and the detailed solution of the k-NNT query in the MapReduce model. Section 5 

evaluates the experimental results. We conclude in Section 6. 
 

2. Related Work 

There are many researches have been conducted on the k-NNT query problem for 

centralized environment. Chen [4] proposed IKNN algorithm applied depth-first strategy 

to find the trajectories which pass as close as possible to a few points. Tang [5] added a 

Global Heap structure to storage candidate trajectories on the basis of R-Tree, and gave 

the k-NNT query algorithm. These methods follow candidate generation and validation 

strategy, invoking the kNNT query algorithm with each query point as the center, and at 

last sort by the distance from the trajectory to the point set. Qi [6] designed a hybrid NN 

method by the means of a spatial range-based search, which addressed the problem of 

increasing I/O and CPU costs caused by running multiple NN searches independently. 

However, in the face of a large amount of spatial data, it is very time-consuming and even 

impossible to store and process these data on a stand-alone computer due to resource 

limit. 

There are also many other spatial query based on the cloud platform. Li [2] and Lu [7] 

used the Voronoi-based approach to partition the spatial data in MapReduce, and 

processed kNN [2] and kNN Join [7] in the iterative tasks. For spatial-temporal trajectory 

data, Ma [3] made full use of the computational ability of cluster and proposed a query 

processing framework for trajectory data based on MapReduce which solved the range 

query of trajectory data. Similar work, Ji [8] proposed the kNN query method based on 

the grid index, using the PCT algorithm to filter the grid and then validate the candidate 

set one by one during the verification phase. Besides, the join query of trajectory data 

based on the grid index was proposed [9]. Eldawy [10] presented a new spatial data 

processing platform SpatialHadoop, and implemented three basic spatial operations: kNN 

query, range query and spatial join query based on it. Unfortunately, few of the studies 

concern about the kNN query over moving object trajectories on the cloud platform. 

 

3. Preliminaries 

For simplicity, we use Euclidean space to describe the trajectory of moving objects. 

Related definitions are as follows: 

Definition 1 A trajectory of a moving object is a sequence of spatial-temporal points. 

The trajectory Tr can be represented as 1 2{ , , , }nTr p p p , where
jp is the j-th member 

point of Tr. Each point is described as a triple ( , , )x y t , where t is the timestamp 

and ( , )x y is the coordinates of the moving object at t. 

Definition 2 Given trajectory 1 2{ , , , }nTr p p p and point q. The minimum distance 

between the point q and Tr is denoted as ( , )jdist p q .if
k jp p  , ( , ) ( , )j kdist p q dist p q  is 

the minimum distance and ,jp q   is the shortest matching pair of q and Tr. 

To compute the distance between the two trajectories, the closest-pair distance is 

usually adopted as the measure [11]. However, this approach is unreasonable because it 
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ignores the contribution of other points in the query trajectory t. On the other hand, there 

are also other studies about trajectory distance measure [12], focusing on the shape of 

trajectory, while our method consider spatial distance. Definition 3 is our approach of the 

distance measure. 

Definition 3 Given trajectory 1 2{ , , , }nTr p p p and input query trajectory 

1 2{ , , , }mt q q q . The distance of shortest matching pair ,jp q   is the distance between 

Tr and a query point q. The aggregated distance between Tr and t is defined as follows. It 

is the sum of distance of the shortest matching pairs from all points in t. 

( , ) ( , ) ( , )j

q t q t

dist Tr t dist Tr q dist p q
 

              (1) 

In our method, we consider assigning the contribution to each matching pairs in the 

query trajectory t, and sum them as the aggregated distance. The method avoids an 

inaccurate distance caused by some noise points from the trajectory. As we can see in 

Figure 1, The aggregated distance between Tr and t is 

1 2 3( , ) ( , )+ ( , ) ( , )dist Tr t dist Tr q dist Tr q dist Tr q   65m . 

 

 

Figure 1. Example of Aggregated Distance 

With the above definition of distance measure, now we formally give a description of 

the k-NNT query problem. 

Definition 4 Given the trajectory dataset S, and a query trajectory t, the k-NNT query 

is to retrieve k trajectories K from S, 1 2{ r , r , , r }kK T T T  that for iTr K   

and
jTr D K   , ( , ) ( , )i jdist Tr t dist Tr t .

 
To solve the problem mentioned above, we usually adopt the divide-and-conquer 

strategy when the dataset becomes too much, and the MapReduce framework provides a 

viable way. Therefore, we introduce a baseline parallel solution of k-NNT query problem 

using MapReduce and denote the approach as MR-Base-KNNT. It scans the total 

trajectory dataset and computes all the aggregated distances between each trajectory and 

the query trajectory in the map() and sorts their distances in the reduce(). Finally, it 

outputs the k nearest neighbor trajectories to the HDFS. The main drawback of MR-Base-

KNNT is expensive computational cost, since all the trajectories are retrieved. 

 

4. Query Processing 
 

4.1. Framework 

The framework of the k-NNT query system is composed of storage module, grid index 

module and query module, which is shown in Figure 2. First, all trajectory data are 

imported into HDFS to store as replications for reliability. Second, because the cost of 

performing a k-NNT query is measured by the number of the input trajectory it handles, 

we need to build the index to speed up this process. The grid cells and Voronoi diagrams 
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are both the spatial-aware partitioning strategy which organize the trajectory data into 

different regions, so that they could reduce the number of the trajectory candidate set, 

hence reducing computing cost. In this work, we adopt the grid-based index for spatial-

temporal trajectories data with MapReduce. Grid-based index is flat and easy for 

parallelization, because its multiple local sub-grid indexes could be constructed by the 

divide-and-conquer strategy in MapReduce. Moreover, it is particularly more suitable for 

dealing with dynamic data set, while Voronoi-based index suffers from rebuilding the 

index or other complex changes of the index when processing dynamic data. As a result, 

we use the grid partition strategy to divide an n-dimensional space into multiple grid 

units. Finally, after building the grid index, with the help of the trajectory rebuilding 

strategy, the results will be returned quickly when a k-NNT query is submitted. 

 

 

Figure 2. Framework of k-NNT Query Processing 

4.2. Grid-based Index Structure 

Without loss of generality, we could assume that the space is a rectangle. Given a two-

dimensional space trajectory dataset S, a point p
 
of any trajectory in S can be represented 

in coordinates ( . , . )p x p y . For the point p, there is a Function ( )index p  which returns a 

grid that contains the point p. Clearly, the point ( . , . )p p x p y  falls into the 

cell [ . / , . / ]c p x p y  , where   is the grid size. After we use the single-layer grid with a 

size of *   to partition the space area into regular grid cells, all trajectory data should be 

allocated to at least one grid. It can be easy to explain that a trajectory line segment is 

assigned to the grid if it is fully covered by one grid. There is another situation, the 

trajectory should be split at the boundary if the trajectory spans a spatial grid boundary, 

and then should be inserted into two grids. The grid index is managed with key-value 

pairs, and the trajectory segments in the same grid are stored in the area mapping the same 

grid key.  
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Figure 3. Process of Building Grid Index 

Figure 3 shows the process of building grid index with MapReduce model. After the 

preprocessing phase, each input file contains one trajectory per line, and then we build the 

trajectory grid index on the input file. In map phase, each datanode reads and splits a 

trajectory Tr into m sub-trajectory segments on the basis of its spatial dimension, and 

transforms m trajectory segments to a list of , , [1, , ]sub

iGridId Tr i m   , such as 

1 12{ 0,0 , ( , )}g s A A  , 12 12'{ 1,0 , ( , )}g s A A  . In key-value pair, the key is the GridId  of the 

grid index while the value is sub-trajectory belonging to this grid. Before reduce phase, 

we reconstruct the custom partitioning strategy of MapReduce to make the grid id 

( , )GridIdPair x y  sorted and split in the order of x  value, and then output to different 

reduce nodes to group. In reduce phase, reducer groups trajectory segments with the key 

of ( , )GridIdPair x y  and outputs as , {segment}GridIdPair Set  , such as 

23 23' 12 12'{ 1,0 ,{ ( , ), ( , )}}g s B B s A A  . Algorithm1 gives the details of the grid index building 

process. 

 

Algorithm 1 Grid Index Build Method 

Input:  Trajectory dataset 

Output: Grid index files 

1. procedure MAP(k1,v1) 

2.  trSegMap ← SpatialPartition(v1); //Split trajectory to grids 

3.  for each trSeg   trSegMap do  

4.  k2 ← trSeg.gridIdPair, v2 ← trSeg 

5.  OUTPUT(k2,v2); 

6.  end for 

7. end procedure 

8. procedure REDUCE(k2,v2) 

9.  sort(k2); //Sort the GridId with order of x 

10.  OUTPUT(k2,v2); // Output to different grid files 

11. end procedure 

 
4.3. Trajectory Rebuild Table 

With the purpose of retrieving and rebuilding the entire trajectory when processing a k-

NNT query, we have to keep track of the sub-trajectory segments on the grid index. As a 
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result, we propose Trajectory Rebuild Table (TRT) which is a table-like structure and 

managed with key-value pairs. The key in the pair is a trajectory id while the value is a 

list of references to grid index which the trajectory crosses. We could load and store the 

TRT to memory in map-setup() phase in order that all the nodes could read it to retrieve 

and rebuild the entire trajectory before finding the candidate trajectory. The MapReduce 

program idea is as follows. In map phase, each datanode splits a trajectory and maps it to 

a list of pairs ,TrId GridIdPair  , which is composed of trajectory identifier and the grids 

it overlaps with. In reduce phase, the reducer groups GridIdPair  with the key of 

trajectory identifier and outputs as , { }TrId Set GridIdPair  . 

 
4.4. k Nearest Neighbor Trajectory Query 

In this section, we introduce the MapReduce process of the k-NNT query. The 

CircularTrip algorithm [13] is usually used as an efficient method to access around grids. 

However, the traditional CircularTrip algorithm doesn’t support the distribution and 

trajectory query. Therefore, we propose grid-based k-nearest neighbor trajectory query 

algorithm under MapReduce framework and denote the approach as MR-GB-KNNT. 

Before searching candidate trajectories in k-NNT, we locate the input query trajectory 

into the grids and then determine the center of these grids in map-setup(). Around this 

center, the CircleTrip() algorithm is executed once by default to find the candidate grid set 

candidateGridList. After that, we also load TRT from HDFS to memory in map-setup() 

for avoiding reading duplication in every map(). Besides, we rewrite the class 

RecordReader in Hadoop and reconstitute the map method to read one index file rather 

than one line at one time. In map phase, the datanode reads the whole grid index file and 

finds the candidate trajectory id set with no duplication at the first time. CircularTrip() is 

executed continuously to find candidate trajectories until _candidateNum K NUM  we 

want to retrieve. And then, it would search the rebuildTable to get the entire trajectory. In 

reduce phase, we provide treeMap to store the trajectory segment and restore to full 

trajectory so that we can easily compute the distances between the entire candidate 

trajectories and our input trajectory. Finally, we sort and output k nearest neighbors to 

HDFS. The following is the pseudo-code for MR-GB-KNNT. 

 

Algorithm 2  MR-GB-KNNT 

Input:  Grid index file 

Output: k nearest neighbor trajectories 

1. procedure MAP-SETUP(k1,v1) 

2.  inputGridSet←Φ; candidateGridList←Φ; 

3.        centerX=0; center=0; 

4.  inputGridSet=locTraj2Grid(inputTraj); // Locate the grids of input   

 trajectory; 

5.  findCenterGrid(inputGridSet,centerX,centerY); 

6.  candidateGridList.addAll(CircularTrip(1)); // Execute CircularTrip once 

 by default; 

7.  readRebuildTableFromHDFS(context);  

8. end procedure 

9. procedure MAP(k1,v1) 

10.  candidateNum=0;wholeFileString=null;candidateIdSet←Φ; 

11.         // Load grid index file; 

12.  wholeFileString=loadWholeIndexFile();  

13.  //find id of the candidate trajectory segment; 

14.  candidateIdSet=traverseFileString(wholeFileString,candidateGridList); 

15.  while candidateNum < K_NUM do 
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16.   candidateIdSet.addAll(traverseFileString(wholeFileString, 

17.   CircularTrip(++cycle_num))); //Execute CircularTrip until find K 

 result; 

18.  end while 

19.  //find other traj segments by trajId in TRT 

20.  findRebuildEntireTraj(candidateTrajectoryIdSet,wholeFileString,context); 

12.  k2 ← trId, v2 ← traj segment; 

21.  OUTPUT(k2,v2); 

22. end procedure 

23. procedure REDUCE(k2,v2) 

24.  tempMap←Φ; 

25.  for each seg   v2s do  // Use TreeMap to restore the entire traj 

26.   tempMap.put(trId, seg);  

27.  end for 

28.  calculateTraj2TrajDist(tempMap,inputTrajectory);// Compute aggregated 

 distances; 

29.  select and ouput k nearest neighbors to HDFS; 

30. end procedure 

 

5. Experimental Evaluation 
 

5.1. Experiment Setting 

The experiment chooses MR-Base-KNNT discussed in Section 3 for comparison. The 

comparison focuses on the value of k number of nearest neighbors, the size of dataset, the 

width of cell in grid and the length of input query trajectory. 

Experiments are performed on a Hadoop cluster with 9 nodes, one is Master node, and 

the others are as Slave nodes. The specific cloud computing experimental environment is 

shown in the Table 1. 

Table 1. Experimental Environment 

CPU OS Memory Hadoop 
Programming 

Language 
Master Slaves 

2.2GHz CentOS6.5 8G 2.5.2(64bit) jdk1.7.0_07 1 8 

 

We use Beijing Taxi Dataset for our experiment: one is from Microsoft 

GeoLife(DS1)[14] and the other is from DataTang (DS2) [15]. The size of DS1 and DS2 

is 2G and 30G, respectively. The DS1 contains trajectories with a total distance of 

1,251,654 kilometers and a total duration of 48,203 hours. The DS2 is collected by 12000 

taxis in a period of October-December 2012 and is about 4.5 million trajectories. They are 

both the taxi trajectory data and have similar attributes, such as the trajectory id, latitude, 

longitude, timestamp, speed, etc. 

 
5.2. Experimental Result Analysis 

In this experiment, we evaluate the effect of the number of query trajectory we want to 

retrieve on query performance. By default, we choose dataset DS1, and the width of grid 

  is 0.01. As can be seen in Figure 4, MR-GB-KNNT always outperforms MR-Base-

KNNT as k grows because MR-GB-KNNT searches only part of the candidate set rather 

than the whole dataset. For MR-GB-KNNT, when k is small, the number of candidate 

trajectories found by CircularTrip() at first time is always more than k and there is no 

need to execute more CircularTrip(). So it takes almost same time. However, when k 
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raises, the number of candidate trajectories becomes less than k, it costs more time on 

executing more CircularTrip(). But for MR-Base-KNNT, the query time is always 

growing slowly. 

 

 

Figure 4. Effect of Query Number of k on the Query Time 

In this experiment, we evaluate how the size of dataset affects the query time of the 

system. By default, we use dataset DS2,   is 0.01 and k is 20. Figure 5 shows the overall 

results of the experiment. The response time of the two approaches would gradually 

increase when the amount of data continues to increase, but the increase in MR-GB-

KNNT is relatively small. That is because that our grid index helps us locate and search 

only part of the candidate set, while MR-Base-KNNT always searches for the whole 

dataset. The scalability of our MR-GB-KNNT is better. 

 

 

Figure.5 Effect of Data Size on the Query Time 

Figure 6 shows the system query time on different width of grid and dataset. By 

default, we randomly select the sub-dataset with the same size(2G) from two datasets, and 

k is 20. The value of   depends on the distribution of the data in the specific dataset. In 

the experiment, we take   as 0.1, 0.01, 0.001, and 0.0005, which is the measure of 

latitude and longitude. We can see that when the width of cell is 0.1, the grid is too sparse 

to store so many trajectories and make CircularTrip() scan a large set of candidate 

trajectories. So it takes the most time. However, the smaller   is, the more grid files it 

has. If we choose 0.0005, the cluster initializes too much splits which cause performance 

degradation. As a result, it is important to choose an appropriate grid width, such as 0.01. 
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Figure 6. Effect of Width of Grid on the Query Time 

Figure 7 demonstrates the performance of two approaches with different length of 

input query trajectory. By default, we use dataset DS1,   is 0.01 and k is 20. For MR-

GB-KNNT, the effect of trajectory length on the query time is small, but it crosses more 

grids when the length increases, causing more candidate grids to be scanned and more 

query time. However, for MR-Base-KNNT, the longer trajectory length is, the more query 

time it costs. That is because of the dramatic increase of computational cost in global 

scanning. 

 

 

Figure 7. Effect of Trajectory Length on the Query Time 

6. Conclusion 

In order to support the k-NNT query for large-scale trajectory data efficiently in cloud 

computing environment, we propose a distributed trajectory grid index, which is a spatial 

data partitioning approach under MapReduce framework and divides the space into 

multiple grid units. We also represent the details of how to perform distributed k Nearest 

Neighbor Trajectory queries. As well, we apply the Trajectory Rebuild Table to retrieve 

and rebuild the entire trajectory. In addition, we propose MR-GB-KNNT algorithm based 

on the grid index using MapReduce, which locates the query trajectory and executes 

CircleTrip() to find the candidate trajectories in map() and gets the k nearest neighbor 

trajectories in reduce(). The experiment based on the two datasets demonstrates the MR-

GB-KNNT could improve the performance of the query and has good scalability for 

spatial trajectory data. 
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