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Abstract 

Mining high utility itemsets from a transactional database refer to the discovery of 

high utility itemsets that generate high profit and several approaches have been proposed 

for this task in recent years. Algorithms like HUIM-MMU and MHU-Growth overcome 

the limitation of using a single threshold for the whole database. However, they still 

generate a large number of candidate itemsets and thus it degrades the performance of 

the algorithms. In this paper, we address this issue by combining two different kinds of 

thresholds used by HUIM-MMU and MHU-Growth. By using these two thresholds we 

propose two algorithms namely HUIM-MMSU and HUIM-IMMSU. HUIM-MMSU is a 

candidate generation and retest based algorithm, which relies on sorted downward 

closure (SDC) property. On the other hand, HUIM-IMMSU uses a tree-like data 

structure. Experiment result shows that the proposed two algorithms can effectively 

discover high utility itemsets from the transactional database. 

 

Keywords: High utility itemset (HUI); Multiple minimum support; Multiple minimum 

utility 

 

1. Introduction 

Among many of the data mining research topics, Frequent Itemsets Mining (FIM) [1], 

[2] is one of the fundamentals. The most popular application of Frequent Itemsets Mining 

(FIM) is market basket analysis which refers to mine the itemsets that have bought 

together in a frequency greater than specified by the user. The traditional frequent pattern 

mining approaches treat all items with the same importance and it assumes that every item 

in a transaction is binary (whether it is present or absent in a transaction ignoring the 

number of occurrence in the transaction) but in real world applications, the frequency of a 

pattern may not be the only indicator of meaningful pattern. The reason behind it is an 

item in a transaction can have a different degree of importance (Weight). Several 

weighted rule mining technique [3,4] has been proposed to solve this problem. However, 

the weighted rule mining technique only considers weights of an item such as unit profit 

for a transaction database. Therefore it does not satisfy user requirement since the profit 

composed with the purchase quantity for a transaction database and the weighted rule 

mining does not consider purchase quantity. 

To solve the above limitation of weighted association rule mining, utility mining 

[5]–[14] was proposed as an interesting expansion of frequent itemsets mining and 

weighted association rule mining. In real life, utility value can be labeled as profit, 

cost and preference value from the user.  In a word, utility means how useful an 

itemset is. Since the utility mining had proposed, high utility (e.g: profits) itemsets 

mining become an important topic in data mining. High utility itemsets mining 

refers to mine itemsets those have high utility. For this paper , we will mainly focus 

on mining high utility itemsets. There are a lot of real life applications of high 

utility itemsets mining [10], [12], [15]–[17]. For example, somebody may be 
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interested in finding itemsets that generate large revenue or somebody wants to 

make a decision based on the high value of costs. 

The problem of mining all the high utility itemsets efficiently is much more complex 

because the utility of an itemset is neither monotonic nor anti-monotonic, that means high 

utility itemset may have a superset or subset with a low, equal to high utility value [1]. 

The widely used downward-closure for frequent itemsets mining states that the support of 

an item is anti-monotonic, that means subsets of a frequent itemset are frequent and 

supersets of an infrequent itemset are infrequent. Downward-closure property is very 

powerful to prune the infrequent itemsets and reduce the search space but we cannot apply 

this technique directly for mining high utility itemsets. 

The problem of mining high utility itemsets has been carried out by many studies  [13], 

[15]–[18]. Mining high utility itemsets in two phases using transaction weighted 

downward-closure property is the most popular approach. The algorithms that use this 

technique are Two-phase [19], IHUP [11], UP-Growth [7] and so on. In the first phase, 

these algorithms generate potential high utility itemsets by overestimating their utility. 

Then in the second phase, it calculates the exact utility and prunes the low utility itemsets. 

A more efficient algorithm was proposed named HUI-Miner [20] that mine high utility 

itemsets in a single phase and it does not require candidate generation. HUIM-MMU [21] 

and MHU-Growth [22] algorithms use a new technique for discovering high utility 

itemsets. HUIM-MMU uses multiple minimum utility thresholds to reduce the search 

space and on the other hand, MHU-Growth uses multiple minimum support thresholds. 

However, there is a fundamental gap between these two algorithms. Therefore it is still 

challenging to design an efficient algorithm for mining high utility itemsets. 

Based on the observation we propose two algorithms named HUIM-MMSU and 

HUIM-IMMSU. Both the algorithms use two different kinds of thresholds: multiple 

minimum support threshold and multiple minimum utility thresholds. By using these two 

thresholds search space is reduced so as the execution time and cost. HUIM-MMSU uses 

candidate generation and retest based technique and relies on the sorted downward-

closure property, on the other hand, HUIM-IMMSU uses a novel tree structure. We 

compare the performance of HUIM-MMSU and HUIM-IMMSU using real life dataset. 

Results show that HUIM-IMMSU performs better in comparison with HUIM-MMSU in 

terms of execution time and memory consumption. 

The remainder of this paper is organized as follows. In section II we will introduce 

preliminary and related work. Algorithm HUIM-MMSU and HUIM-IMMSU are 

presented in section III. Experiments are shown in section IV and conclusions are given in 

section V. 

 

2. Background 

This section is divided into two parts. In the first part, we define some definitions 

and discuss the problem of utility mining. In the second part, we introduce related 

work. 

 

2.1. Preliminary 

Let I be a finite set of items where I= {i1, i2, i3,….., im}, each item ip(1≤p≤m) 

has a unit profit pr(ip). A transaction database D= {T1, T2, T3, ….., Tn} where Tr ∈ 

D (1≤r≤n) is a subset of I and has a unique identifier r called Tid. Each item ip in 

transaction Tr is associated with a quantity q(ip, Tr), that is the purchased quantity 

of item  ip in transaction Tr. 

Definition 1(utility of an item/itemset in a transaction): utility u of an item ip in a 

transaction Tr is denoted by u(ip, Tr) and defined as pr(ip) × q(ip, Tr). The utility u of an 
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itemset X, where X is a group of items and X ⊆ I in a transaction Tr is denoted by u(X, 

Tr) and defined as ∑ip∈X u(ip, Tr). For example, the utility of an item a in T1  is u(a, T1)= 

2×2 = 4 and utility of an itemset {a, d} in T1 is u({a, d}, T1) = 2×2+1×3=7 (from table 1 

and 2). 

Table 1. Transaction Database 

TID Transaction (item, Quantity) Transaction Utility (TU) 

T1 a:2, d:3, e:1 11 

T2 b:1, c:2, d:1 14 

T3 a:3, b:2 12 

T4 a:1, f:1 3 

T5 b:1, d:3 6 

T6 b:2, d:2, e:1 12 

T7 a:2, b:3, c:2 23 

T8 b:2, c:3 21 

T9 a:1, f:4 6 

T10 a:2, c:2 14 

Table 2. Property of Items 

Item Profit MMU MMS Support Utility TWU 

a 2 12 4 6 22 69 

b 3 20 3 6 33 88 

c 5 25 3 4 45 72 

d 1 10 2 4 9 43 

e 4 20 2 2 8 23 

f 1 15 2 2 5 9 

 

Definition 2 (utility of an itemset in a database): utility of an itemset X in database D is 

denoted by u(X) and defined as ∑X∈Tr∧Tr∈D u(X, Tr). For example utility of an itemset {a, 

c} in database D is u({a, c})= u({a, c}, T7) + u({a, c}, T10) = 2×2+5×2+2×2+5×2=28 

(from table 1 and 2). 

Definition 3 (transaction utility of a transaction): transaction utility (TU) of a 

transaction Tr is denoted by TU(Tr) and defined by  ∑ip∈Tr u(ip, Tr). For example 

transaction utility of T1 is TU(T1)= u({a, d, e}, T1) = 11 (from table 1 and 2). 

Definition 4 (minimum support of an itemset): If an itemset X consists of items such 

that X={i1, i2, i3, …, ik}then minimum support if itemset X refers to least MIS values of 

items in X. Minimum support of itemset X is denoted by MIS(X) and defined as 

min[MIS(i1), MIS(i2), MIS(i3),….. MIS(ik)] where ip∈ X and 1≤p≤k. For example 

minimum support of an itemset {a, b, c} is MIS({a, b, c })= 3 (from table 1 and 2). 

Definition 5 (minimum utility of an itemset): ): If an itemset X consists of items such 

that X={i1, i2, i3, …, ik} then minimum utility of itemset X refers to least MU values of 

items in X. Minimum utility of itemset X is denoted by MU(X) and defined as 

min[MU(i1), MU(i2), MU(i3), ….. MU(ik)] where ip∈ X and 1≤p≤k. For example 

minimum utility of an itemset {a, b, c} is MU({a, b, c })= 16 (from table 1 and 2). 

Definition 6 (high utility itemset): If the support of an itemset X is no less than the 

minimum support of X and utility of itemset X is greater than equal to the minimum 

utility of X then itemset X is called high utility itemset. For example itemset {b, c} is an 

high utility itemset because SUP({b, c})=3 which is equal to MIS({b, c}) and U({b, c})= 

53 which is greater than MU({b,c}) (from table 1 and 2). 

Definition 7 (transaction weighted utility): Transaction weighted utility of an itemset X 



International Journal of Database Theory and Application 

Vol.10, No.3 (2017) 
 

 

34   Copyright ⓒ 2017 SERSC 

refers to the sum of all the transaction utilities that contain X. Transaction weighted utility 

of itemset X is denoted by TWU(X) and defined as . For example, 

transaction weighted utility of a is TWU(c) = TU(T2)+ TU(T7)+ TU(T8)+ TU(T10) 

(from table 1). 

 

2.2. Related Work 

Before the problem of mining high utility itemset mining was proposed formally, 

extensive studies have been proposed for mining frequent itemsets. Apriori [1] was the 

first well-known frequent itemsets mining algorithm which relies on a property called 

downward-closure property [1]. A more efficient frequent itemsets mining algorithm 

named Fp-Growth [2] was then proposed. Fp-Growth uses tree-like data structure and it 

does not require to generate candidates to mine frequent itemsets. The rest of frequent 

itemsets mining algorithms are either based on Apriori or Fp-Growth. 

Considering the importance of items to the user, weighted association rule mining [3,4] 

was proposed. Since the proposal of weighted association rule, a lot of techniques have 

been proposed by researchers. By considering the non-binary transaction of items utility 

mining [5]–[14] was then proposed and become a significant research topic in data 

mining. Two phase algorithm [19] is proposed by Liu et al. which composed of two 

mining phases. IHUP [11] was then proposed by Ahmed et al. to efficiently mine high 

utility itemsets and it uses a tree-like data structure. Some other widely studied high utility 

itemsets mining algorithms are HUP-tree [6] by Lin et al. UP-growth and UP-growth+ [7] 

by Tseng et al. MHU-Growth [22] for mining high utility itemsets with multiple 

minimum support was first proposed by Ryanga et al. HUIM-MMU [21] for Mining high 

utility itemsets with multiple minimum utility thresholds was then proposed by Lin et al. 

Our study aims to remove the fundamental research gap between MHU-Growth and 

HUIM-MMU and use multiple minimum support and multiple minimum utility thresholds 

to efficiently discover all high utility itemsets. 
 

3. Proposed Algorithms 

In this section, we first define some common definitions that are used in both HUIM-

MMSU and HUIM-IMMSU. Then we discuss the pruning techniques. At last, we propose 

HUIM-MMSU and HUIM-IMMSU algorithm. 

Definition 8 (high transaction weighted utilization itemset): High transaction weighted 

utilization is denoted by HTWUI and defined by HTWUI ←{X|TWU(X) ≥MU(X)}. For 

example {b,c} is a HTWUI because its TWU is 58 which is greater than its minimum 

utility of the itemset. 

Definition 9 (least minimum utility): Least minimum utility is denoted by LMU and 

defined by LMU = min{MU(i1), MU(i2),….. MU(im)}, where m is the total number of 

items in MMU table. For example, LMU of items in table 1 is 10 (from table 2). 

Definition 10 (least minimum support): Least minimum support is denoted by LMS 

and defined by LMS = min{MIS(i1), MIS(i2),….. MIS(im)}, where m is the total number 

of items in MMU table. LMS of items in table 1 is 2 (from table 2). 

There are five pruning conditions used by both of our proposed algorithms. These 

pruning conditions are used to prune unwanted itemsets and reduce the search space to 

make the algorithms more efficient. 

Pruning condition 1: (TWU(ij) < LMU) Transaction weighted utility of an item is less 

than the least minimum utility. For example, LMU of transactions in Table 1 is 10 so item 

f will be pruned because its TWU is 9 which is less than 10. It means that item f is unable 

to generate any high utility itemsets so thus it will be pruned. 

Pruning condition 2: (SUP(ij) < LMS) Support of an item is less than least minimum 
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support. Assume that LMS of transactions in Table 1 is 3 so items e and f will be pruned 

because of less support than LMS. It means that items e and f are unable to generate any 

high utility itemsets so thus they will be pruned. 

Pruning condition 3: (TWU(X) < MU (X)) Transaction weighted utility of an itemset is 

less than the minimum utility of that itemset. For example, If TWU of itemset X is 15 and 

MU of X is 20 then X will be pruned. 

Pruning condition 4: (U(X) < MU (X)) Utility of an itemset is less than the minimum 

utility of that itemset. For example, If utility of an itemset X is 15 and its MU is 20 then X 

will be pruned. 

Pruning condition 5: (SUP(X) < MIS (X)) Support of an itemset is less than the 

minimum support of that itemset. For example, if support of an itemset X is 3 and its MIS 

is 5 then X will be pruned. 

 

3.1. Proposed HUIM-MMSU Algorithm 

As we discussed earlier that the famous pruning technique for frequent itemsets 

mining, downward closure property cannot be applied for mining high utility itemsets. 

Transaction weighted downward closure property (TWDC) was introduced by Liu et al. 

[19] for pruning the search space to get better performance. Lin et al. [21] have shown 

that TWU is not downward-closed in some cases. To address this issue Lin et al. [21] 

proposed a new technique called sorted downward closure property (SDC property). 

According to downward closure property if we sort items in ascending order of their MU 

values then the subset of a HTWUI is also a HTWUI. Thus the sorted downward closure 

property guarantees anti-monotonicity for HTWUI. But if we use sorted downward 

closure property directly to produce 1-itemsets HTWUI then some items may miss 

mining. Instead of using SDC to produce 1-itemsets HTWUI we use least minimum 

utility (LMU) and least minimum support (LMS) to get the complete set of high utility 

itemsets. 

Our proposed HUIM-MMSU algorithm generates the complete set of high utility 

itemsets in two phases. In the first phase, HTWUIs are identified by generating and retest 

based technique. If TWU of an itemset is greater than or equal to minimum utility (MU) 

of that itemset then the itemset is a HTWUI and rest of the itemsets are pruned because 

only the HTWUIs are able to generate HUI. In the second phase, an additional database 

scan is required to get the exact utility of HTWUIs. The algorithm then checks whether 

the utility and support values of HTWUIs are greater than or equal to MU and MIS values 

of those itemsets. If it is then the algorithm store those itemsets as HUI and the rest of the 

itemsets are pruned. The pseudo-code of the algorithm is given in algorithm 1. 

 

Algorithm 1: HUIM-MMSU 

Input:  D- a transactional database, an external utility table, MMU- user-specified 

multiple minimum utility threshold table, MMS- user-specified multiple minimum 

support threshold table 

Output: The set of complete high-utility itemsets. 

1. Calculate LMU from MMU- table and LMS from MMS-table; 

2. Scan D to calculate transaction weighted utility, transaction weighted utility of an 

item is the sum of transaction utility that contains that item according to the 

definition we can get the TWU by using the following formula; 

     
3. for each ij∈D do 

4.     if TWU(ij) ≥ LMU && SUP(ij) ≥ LMS then…………(according to the pruning    

condition 1 and 2) 
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5.         HTWUI
1
←HTWUI

1
 U ij; 

6. sort HTWUI
1
 in ascending order of mu values; 

7. set K←2; 

8. While HTWUI
k-1

≠ null do 

9.     Ck = generate-candidate(HTWUI
k-1

); 

10.     for each K itemset X in Ck do 

11.         scan D to calculate TWU(X); 

12.         if TWU(X) ≥ MU(X) then ………(according to the pruning condition 3) 

13.             HTWUI
k
← HTWUI

k
 U X; 

14.     set K ←K+1; 

15. HTWUIs ←U  HTWUI
k
; 

16. for each itemset X in HTWUIs do 

17.     scan D to calculate U(X) and SUP(X); 

18.     if U(x) ≥ MU(X) && SUP(X) ≥ MIS(X) then………(according to the pruning 

condition 4 and 5) 

19.         HUIs← HUIs U X; 

20. return HUIs; 

The HUIM-MMSU algorithm first calculates LMU from MMU-table and LMS from 

MMS-table. Then it scans the database to get TWU and support of each item. Pruning 

condition 1 and 2 are applied on line 4. By applying these two pruning conditions we get 

HTWUI1 on line 5. According to the previous discussion, we then order HTWUI
1
 in 

ascending order of their mu values. From line 8 to line 14 candidates of different levels 

are generated and HTWUI
k
 is identified by the by the pruning condition 3. Then we scan 

the database for the last time to get exact utility and support information of HTWUIs. 

Pruning condition 4 and 5 are then applied to get HUIs on line 18 and 19. 

 

3.2. Proposed HUIM-IMMSU Algorithm 

Our proposed HUIM-IMMSU algorithm discovers all the high utility itemsets in three 

steps. In the first step, a global tree is constructed from the database. In the second step, 

some pruning techniques are used to prune unwanted items and restructure the global tree. 

Finally, the mining technique comes to the action. 

First step: IMMSU-tree is constructed by a single scan and used to maintain the 

information about transactions and some other important information about the items such 

as minimum utility, minimum item support. Each node Ni in IMMSU-tree consists of 

several elements such as Ni.name is for storing the name of the item, Ni.MIS for storing the 

minimum item support of the item, Ni.MU for storing minimum utility of the item, Ni.count is 

for support count of the node, Ni.nu for TWU, Ni.parent to store parent info of the node and 

Ni.nodelink for storing the information about the node that has the same name as Ni.name. To 

facilitate tree traversal in restructure and mining process IMMSU-tree also includes a 

header table consisting of the item name, utility value, TWU value, support count and a 

node link. To insert transaction from the database a function named 

Insert_Transaction(Tree T, MMU Table, MMS Table) is called. The pseudo code for 

IMMSU-tree construction is given in Algorithm 2.  The fully constructed IMMSU-tree for 

the transaction database Table I is given in figure 1. 

 

Algorithm 2: IMMSU-tree 

Insert_Transaction (Tree T, MMU Table, MMS Table) 

1. N←the root node of Tree 

2. reorder items in T by Support descending order 

3. calculate transaction utility of T, TU(T) 
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4. for each item i in transaction T 

5.     if N has not a child Ni such that Ni.name=i 

6.         create a new child Ni under N where Ni.name=i, Ni.MIS = MIS(i), Ni.MU=MU(i) 

7.     increase Ni.count by 1,  Ni.nu by TU(T) 

8.     if header has not an entry for i 

9.         create a new entry Ei, where Ei.nu = 0 , Ei.count =0, Ei.MIS=MIS(i), Ei.MU = MU(i) 

10.     increase Ei.nu by TU(T),  Ei.count by 1 

11. N←Ni 

 

 

Figure 1. IMMSU Tree 

Second step: Once the IMMSU-tree is constructed it is ready for restructuring by 

pruning unimportant items and reduce the search space. Pruning conditions 1 and 2 are 

applied in the second step. The pseudo code of the second step is given in algorithm 3. It 

consists of three functions: Restructure_Tree, Prune, and Merge. If TWU of any item is 

less than LMU or support of an item is less than LMS then Prune function is called from 

the Restructure_Tree function. To remove all the items that satisfy the pruning condition, 

link and node link are used. If node Ni where Ni.name =i is removed from the IMMSU-tree 

if Nchild is the child node of Ni then it is necessary to change Nchild.parent to Nparent. If Nparent 

already has a child node Nj.child such that Nj.child.name = Nchild.name then need to be merged.  If 

the nodes are merged then node utility and support of Nj.child  are increased by the 

corresponding value of Nchild. The restructured IMMSU-tree is given in figure 2. 

 

Algorithm 3: Restructure IMMSU-tree 

Restructure_Tree(Tree, MMU Tree, MMS Table) 

1. calculate LMU from MMU table 

2. calculate LMS from MMS table 

3. for each entry of an item i in header of Tree /*Bottom Up*/ 

4. if TWU(i) < LMU then call prune (Tree, i)…(according to the pruning condition 1) 

5. else if SUP(i) < LMS then call prune (Tree, i)..(according to the pruning condition 2) 

 

 Prune(Tree, i) 

1. for each node Ni in tree such that Ni.name=i 

2.     if Ni has children then call Merge(Ni.parent, Ni.children) 

3. remove Ni from Tree 

 

Merge(Parent, Children) 

1. for each child node C in Children 

2.     if Parent has a child Nchild  such that Nchild.name =    
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    C.name 

3.         increase Nchild.count by C.count , Nchild.nu by C.nu 

4.         call Merge(Nchild, C.children) 

5.    else C.parent  ← Parent 

Third step: The last step of HUIM-IMMSU algorithm is used to mine high utility 

itemsets by bottom-up traversal of restructured IMMSU-tree. The header table is used to 

follow the node link for mining all high utility itemsets efficiently. The mining process 

starts from the bottommost item in the header table and for each item, a conditional 

pattern base is created by extracting all paths from the item to root. Support and TWU of 

  

 

Figure 2. Restructured IMMSU tree 

each item in the extracted conditional tree is also calculated. The pseudo code of the third 

step of HUIM-IMMSU algorithm is given in algorithm 4. Figure 3 describes the mining 

process of the last item of header table. 

 

Algorithm 4: IMMSU-Growth 

IMMSU-Growth (Tree) 

1. for each entry of an item i in header of tree /*Bottom up*/ 

2.      for each node Ni such that Ni.name = i in the tree 

3.          extract a path p consists of nodes from root node to Ni such that each node              

         Nik.MIS ≥ Ni.MIS /*MIS of  every item should be greater than equal to MIS of      

         the itemsets */ 

4.          for each item node Nik in the extracted path p 

5.              accumulate Nik.count to support, Nik.nu to TWU, Nik.MU to MU and Nik.MIS to  

             MIS  

6.          if TWU(i) ≥ MU(X) then generate {i} /* X is the nodes in the extracted path p 

*/……(according to the pruning condition 3) 

7.          create Prefix tree for i, Ti     

8.          prune items from Ti such that U < MU(X) and SUP  < MIS(X) /* X is the   

         nodes in the extracted path p */ …..(according to the pruning condition 4 and 5) 

9.          call IMMSU-Growth (Ti, {i}, MIS, MU) 

 

IMMSU-Growth (Tx, X, MIS, MU) 

1. for each entry of an item i in header Tx /*Bottom up*/ 

2.     for each node Ni such that Ni.name=i in Tx 

3.         extract a path p consists of nodes from root node to Ni such that each node  
        Nik.MIS ≥ Ni.MIS /*MIS of  every item should be greater than equal to MIS of      
        the itemsets */ 
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4.         for each item node Nik in the extracted path p 

5.             accumulate Nik.count to support,  Nik.nu to TWU, Nik.MIU to MU and Nik.MIS to  

            MIS 

6.     If Sup(i) ≥MIS and TWU (i) ≥ MU then generate X U {i} 

7.     X←X U {i} 

8.     create prefix tree for {X}, Tx 

9.     prune items from Tx such that U < MU(X) and SUP < MIS(X) 

10.    call IMMSU-growth(Ti, {i}, MIS, MU) 

 

According to the pruning condition 1 and 2 items d, e, f are pruned from IMMSU-tree 

shown in figure 1 and the fully restructured tree is given in figure 2. As the mining 

process progresses conditional pattern base for c is given in Table 3. It is seen from Table 

3 that there are three paths that satisfy initial conditions to construct prefix tree for c 

(Figure .3). 

 

Figure 3. Prefix Tree for c 

Although item A has greater utility value than its minimum utility value but according 

to the pruning condition 5, it is pruned from the prefix tree of c. On the contrary, item b is 

not pruned as it has greater support and utility value than its minimum support and utility 

value. 

Table 3. Conditional Pattern base for C 

Path Support Utility 

<a,b> 1 23 

<a> 1 14 

<b> 2 35 

 

The conditional tree for C is given in the figure 4. 

 

Figure 4. Conditional Tree for c 

4. Experimental Results 

The Performance of our proposed algorithms is evaluated in this section. 

Experiments were performed on a 1.80 GHz Intel core i3 processor with 4 gigabytes 

of main memory and running on windows 8.1. Java language is used to implement 
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the algorithms. No other studies have been done on the topic of high utility itemsets 

mining that uses multiple minimum support and multiple minimum utility thresholds 

at the same time. MHU-Growth and HUI-MMU are used to verify the effectiveness 

of our proposed algorithm which can provide the benchmark. 

A real life dataset named retail is used in the experiment to validate the effectiveness of 

the proposed algorithms. The retail dataset is about product sales information in a retail 

store. The characteristics of the dataset are given in the table. A uniform distribution in [1, 

10] is used to generate the internal utility values. A Gaussian (normal) distribution is used 

to generate the external utility values. 

MIS (i) = Max [β × Sup (i), LS]                                                                                         (1) 

MU (i) = Max [α × pr (i), GLMU]                                                                                     (2) 

Table 4. Characteristics of Retail Dataset 

Dataset Transactions Items Avg. 

length 

Max. 

Length 

Dense/sparse ratio 

retail 88,162 16,470 10.3 76 0.625 

 

Furthermore, based on the discussion, we assign MIS and MU values to each item 

using the equation 1 and equation 2. In the equation 1, the parameter β is used to control 

how the MIS values are related to their frequencies where 0≤β≤1. If β=0 then a single 

MIS value that is LS is assigned to every item. In the equation 2, pr(i) refers to the 

external utility of item i and to ensure the randomness of MU values the value of α set to 

[1000, 10000] for the retail dataset. If we set α=0 then a single MU value that is GLMU is 

assigned to each item. 

 

 
Figure 5. Runtime of Algorithms 
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4.1. Runtime Analysis 

The Performance of HUIM-MMSU and HUIM-IMMSU in terms of runtime are 

compared in this part. Figure 5 shows the experimental results on the retail dataset and 

least minimum support (LS) set to 200 in this experiment. Runtimes of algorithms are 

compared within various interval under fixed β, GLMU (figure 5(a)), various GLMU 

under fixed β and fixed interval (figure 5(b)), various β under fixed interval and GLMU 

(figure 5(c)). It is seen that runtime decreases with the increase of the value of parameter 

α, β and GLMU (figure 5). It can be observed from Figure 5(a) and 5(b) that HUIM-

IMMSU outperforms HUIM-MMSU and HUI-MMU. Because HUIM-IMMSU algorithm 

uses tree-like data structure and it does not require to generate candidates while the other 

two generate candidates. It is also seen that HUIM-MMSU requires less time than HUI-

MMU. The region behind that HUIM-MMSU uses some extra pruning conditions to 

reduce the search space and a number of generated itemsets. From Figure 5(c) it can be 

seen that MHU-Growth and HUIM-IMMSU require the same execution time.  
 

4.2. Generated Itemsets Analysis 

In this experiment, number of high utility itemsets generated by algorithms are 

compared. Figure 6 shows the experimental results on the retail dataset. Least 

support (LS) is set to a value of 200. As we are using same pruning conditions, 

number of generated high utility itemsets for HUIM-MMSU and HUIM-IMMSU are 

same. From the figure 6, it is seen that number of HUIs decreases with the increase 

of the values of α, β, and GLMU. It is also seen that number of HUIs generated by 

HUIM-MMSU is less than the baseline algorithm HUI-MMU and MHU-Growth. 

The region behind it is HUIM-MMSU uses some extra pruning conditions in 

compare to HUI-MMU and MHU-Growth. In real world applications traditional 

algorithms for mining high utility itemsets may suffer from “rare item problem” that 

is if minimum utility threshold is set to a low value then a lot of useless itemsets 

will generate and if it is set to high value then many important itemsets may miss 

mining. Our proposed algorithms can avoid the “rare item problem” by setting the 

parameter values based on the actual requirement. Thus the proposed algorithms can 

be acceptable in the real-world application. 
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Figure 6. Number of Generated Itemsets by the Algorithms 

4.3. Memory Usage Analysis 

We compared the memory usage of proposed algorithms with a baseline HUI-

MHU while α and GLMU are variable and MHU-Growth while β is variable. It can 

be seen from figure 7(a) and 7(c) that HUI-MMU and HUIM-MMSU algorithms use  

 

Figure 7. Memory Usage by Algorithms 
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almost same memory because both of the algorithms uses the same kind of data 

structure but HUIM-IMMSU uses less memory because it does not generate 

candidates and uses a  tree-like data structure. Although MHU-Growth and HUIM-

IMMSU use the same tree-like data structure but HUIM-IMMSU uses more memory 

because each node in the tree store some extra information in compare to MHU-

Growth. 

 

5. Conclusion 

In this paper, we proposed two efficient algorithms named HUIM-MMSU and HUIM-

IMMSU for mining high utility itemsets. For mining high utility itemsets efficiently and 

reduce the search space we use five pruning conditions. HUIM-MMSU is a candidate 

generation and retest based algorithm which relies on sorted downward closure property 

and HUIM-IMMSU uses a tree-like data structure and it does not need to generate 

candidates to discover high utility itemsets. Experiments are conducted to compare the 

effectiveness of both the algorithms and the experiment results show that the proposed 

algorithms can mine high utility itemsets effectively in terms of runtime, the number of 

itemsets and memory consumption. Moreover, the proposed algorithms can effectively 

avoid the „rare item problem‟ and give aid to experts to make the correct decision based 

on the items generated.  
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