
International Journal of Database Theory and Application

Vol. 10, No.12 (2017), pp. 13-22

hhtp://dx.doi.org/10.14257/ijdta.2017.10.12.02

ISSN: 2005-4270 IJDTA

Copyright © 2017 SERSC Australia

ScaffdCF: A Prototype Interface for Managing Conflicts in Peer

Review Process of Open Collaboration Projects

1

Wenjian Huang, Tun Lu and Ning Gu

School of Computer Science, Fudan University, Shanghai, China

Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

{wenjianhuang11, lutun, ninggu}@fudan.edu.cn

Abstract

Open collaboration projects (e.g., Wikipedia, open-source software projects) usually

employ peer review mechanism to ensure the quality of productions. Due to the large

variance of contributors and reviewers’ backgrounds, expertise, and interests, conflicts

are often unavoidable. Existing peer review systems do not support effective conflict

management. This paper presents a prototype interface, named “ScaffdCF”, for project

reviewers and administrators to manage conflict more effectively. We identify three

problems of existing peer review systems: 1) argument points are overwhelmed; 2)

conflict management guidelines are lacking; and 3) contexts about members in conflict

are lacking. To address these problems, ScaffdCF integrates new features to scaffold

conflict management process. A survey-based user study shows that some features (e.g.,

highlighting arguments, explicitly expressing agreement or not) can help to manage

conflict more effectively without significantly increasing administrators’ cognitive

overload. Meanwhile, some features (e.g., decomposition into sub-issues) fail. We

discussed the limitations and future improvements.

Keywords: conflict management; peer review; open collaboration; prototype interface

1. Introduction

In open collaboration projects (e.g., Wikipedia, open-source software development

projects), people with varied backgrounds and expertise collaborate to create knowledge

or artifacts. To ensure the quality of productions, peer review is commonly adopted. For

instance, in GitHub – the largest open-source software development platform, a member’s

code changes should be submitted as a “pull-request” and fully reviewed by other

members of the project [12]. Only pull-requests without any problem can be accepted and

merged into the main code repository.

Due to the large variance of members’ backgrounds, expertise, and interests, conflicts

between contributors and reviewers are often unavoidable, especially when reviewers

rejected one’s contribution. Prior studies in the context of traditional organizations

suggested that conflicts generally had negative effects on group loyalty, work productivity,

and job satisfaction [2, 6, 8]. A recent research found that the argument between

contributors and reviewers in GitHub would make the likelihood of a contributor leaving

the project increase by 16.8% [19].

This paper aims to design a prototype interface, named “ScaffdCF”, which provides

various scaffolding features for project reviewers or administrators to manage conflicts

more effectively. We identified several problems of existing peer review process and

design new features accordingly to overcome these problems.

Received (October 9, 2017), Review Result (November 24, 2017), Accepted (December 5, 2017)

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

14 Copyright © 2017 SERSC Australia

First, since the discussions between contributors and reviewers are heterogeneous and

multifaceted, the focal argument points might be overwhelmed in the tedious post threads.

To overcome this problem, a feature is designed to highlight arguing comments. It is also

supported for users to establish sub-issues for a contribution and re-organize these sub-

issues by tabs. Besides, project members can explicitly express their agreements or

disagreements on a sub-issue.

Secondly, when conflict occurs, few explicit guidelines or tips suggest which way to

communicate with members in conflict is more effective. In our prototype, when a

contributor’s argument is detected, a tip encouraging reviewers to give concrete advices to

solve the problem is displayed and reviewers should also check whether their comments

indeed have any advices.

Thirdly, some contexts about members in conflict (e.g., how many times a contributor

argued before, how often a reviewer gave criticisms before) are critical for the decision

making about how to deal with the conflict. So, in our prototype, some basic and

historical information (i.e., background, prior experience, and prior arguments) about

contributors and reviewers is given on the page.

A survey-based user study was conducted to examine the effectiveness of ScaffdCF.

The result shows that some features (e.g., highlighting arguments, explicitly expressing

agreement or not) are helpful for effective conflict management without significantly

increasing administrators’ cognitive overload. Meanwhile, some features (e.g.,

decomposition into sub-issues) fail. We discuss the limitations of ScaffdCF and possible

improvements on it.

The rest of this paper is organized as follows. Section II reports some related work

about conflict and its management in open collaboration projects. In section III, we

analyze the disadvantages of existing peer review process for conflict management. In

section IV, we present the implementation of our prototype interface. Section V presents

the user study.

2. Related Work

2.1. Conflict in Open Collaboration Projects

In open collaboration projects where a number of participants have to combine their

own agendas and points of view, conflict is likely unavoidable. Rahim described conflict

as “an interactive process manifested in incompatibility, disagreement, or dissonance

within or between social entities (i.e., individual, group, organization)” [14]. Conflicts

generally develop from scenarios such as disagreement between users, procedures and

rules for coordination and resolution.

Open collaboration projects are especially prone to conflict due to factors like a lack of

shared context, difficulties in sharing information, and reduced familiarity with other

members [7]. Kittur et al., described how conflicts arose in Wikipedia when people edit

the same parts of articles [9]. In open-source software projects, researchers have found

that communication channel issues, information overload, competing technologies and

incompatible software versions can often lead to conflicts [5]. Peer review is a common

mechanism to ensure the quality of online productions. Conflict might arise in the peer

review process when one’s contribution was unjustly rejected [18].

In offline settings, it has been proven that conflict generally have negative effects on

group loyalty, workgroup productivity, and job satisfaction [2, 6, 8]. Deutsch found that

conflicts decrease goodwill and mutual understanding, which hinders the completion of

organizational tasks [3]. Haq also suggested that conflict may increase employees’ stress

in workplace and lead to deviant behavior [6].

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

Copyright © 2017 SERSC Australia 15

2.2. Conflict Management Strategies

Conflict management has been studied from a variety of different perspectives, mostly

in the context of traditional organizations. For example, Blake and Mouton proposed five

methods to handle conflicts: forcing, withdrawing, smoothing, compromising, and

problem solving [1]. Rahim and Bonoma also summarized five styles of handling conflict

(i.e., integrating, obliging, dominating, avoiding and compromising) and the situations in

which these are appropriate [14]. Thomas described a framework to manage conflict by

the degree to which individuals attempt to satisfy their own concerns (“assertiveness”) vs.

others’ concerns (“cooperativeness”) [17]. A number of other studies independently

attempt to build typologies of conflict management strategies and identify aspects of

conflict management that are important to outcomes. Despite these studies, few studies

apply these strategies to the design of peer review processes or systems in open

collaboration projects for effective conflict management.

3. Problems of Existing Peer Review Process

In this section, we analyze the problems of existing peer review process. Most open

collaboration projects rely on a number of volunteers’ contribution. The goal of peer

review is to decide whether a contribution should be accepted.

A typical instance is open-source software projects’ code review mechanism. In

GitHub, project members can “fork” the project’s code repository, and commit code

changes to the forked branch repository. If they want to contribute these changes back to

the root repository, they can submit a “pull-request” (PR) to ask for merging changes into

the root repository. Then, there is a peer review process. Reviewers can be the project’s

administrators as well as other peer members. The reviewing process is organized similar

to a thread of an online forum. The PR-contributor discusses with reviewers back and

forth about the PR’s usefulness and any technical issues. Sometimes, reviewers might

give advices to further modify the PR. Figure 1 shows the workflow of GitHub’s code

review process.

Another instance is Wikipedia’s open editing model. It can be viewed as an informal

peer review mechanism where all contributions are initially accepted and then other

editors perform review and reject unwanted contributions [16]. The article’s talk page is

where editors discuss whether an edit should be reverted.

Existing peer review mechanism is constituted by a simple discussion process back and

forth between contributors and reviewers. While this works well for general use, it has

some drawbacks when conflict occurs.

Problem 1: The argument points are overwhelmed.

Existing peer review process is organized like a discussion thread in an online forum.

As comments grow rapidly, the original arguing comments would be overwhelmed in the

tedious discussion thread. This problem is more significant for third-party reviewers, who

are not involved in the conflict directly but join the discussion to manage conflict. These

third-party reviewers usually didn’t join the discussion at first. So, when conflict occurs,

they need to quickly learn about the exact argument points. A prior research on open-

source software

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

16 Copyright © 2017 SERSC Australia

Figure 1. The Workflow of GitHub’s Pull-Request Reviewing Process

development projects found that information overload was a heavy burden for developers,

because they had to handle a steady flow of communication coming through the mailing

lists every day [5]. Similarly, in peer review process, the overwhelming reviews might

make reviewers get lost in the noise and fail to find the exact argument points.

Problem 2: Conflict management guidelines are lacking.

Once conflict arose, proper interventions to manage the conflict should be given.

However, most existing peer review mechanism does not have explicit guidelines or tips

suggesting reviewers which ways to manage conflict are more effective. In traditional

organizations, conflict management requires strategic diagnoses and interventions. For

instance, Blake and Mouton first presented a conceptual scheme for classifying the styles

for managing conflicts into five types: forcing, withdrawing, smoothing, compromising,

and problem-solving [1]. Rahim also summarized five specific styles of handling conflict:

integrating, obliging, compromising, dominating, and avoiding [14]. In the setting of

online open collaboration projects, smoothing and problem-solving are two applicable

strategies. A recent study based on GitHub’s open-source software projects found that

problem-solving (i.e., giving the concrete suggestions to fix the issues) was the only

effective strategy to retain arguing contributors to keep participating in projects.

Smoothing strategy, that is giving rational explanations or social encouragements, is not

effective [19]. Based on these findings, we argue that existing peer review process should

be improved by educating reviewers to adopt proper intervention strategies to manage

conflict.

Problem 3: Contexts about members in conflict are lacking.

To correctly adjudicate conflict, contexts about members in conflict (e.g., prior

experiences in projects) are needed. For instance, if a reviewer in conflict trends to give

harsh criticisms on minor issues, which can be learned from his/her prior reviewing

experiences, then third-party reviewers should pay more attention to examine whether the

conflict is caused by the reviewer’s unfair criticism. There have been many theories

suggesting that context awareness and social transparency are critical for interactions in

distributed collaboration systems. Erickson and Kellogg introduced the concept of social

translucence and argued that it is possible to design digital systems that support coherent

behavior by making participants and their activities visible to one another [4]. They

suggested three characteristics of “socially translucent systems” –visibility, awareness,

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

Copyright © 2017 SERSC Australia 17

and accountability –which enable people to draw upon their social experience and

expertise to structure their interactions with one another. Making co-workers more visible

and letting them know others’ activities in the joint project would encourage participation

and promote collaborative work [15]. In the scenario of peer review, it is obvious that

being aware of other members’ historical activities in the project can help people make

proper decisions to deal with the conflict.

4. Implementation of the Prototype Interface

In response to the above problems, we implement a prototype interface for peer-review

in open collaboration projects. The prototype is designed based on GitHub’s pull-request

review model. As we have introduced, in GitHub projects, a developer contribute code

changes by submitting a pull-request, and other members review it to decide whether it

should be accepted (see Figure 1).

The prototype interface is implemented as a web application, which is built on Node.js

framework. We use Angular.js and Bootstrap to build the front-end interface. The back-

end data is stored in a MySQL database. Figure 2 shows the main page of the prototype

interface, which specifically is the peer-review page about a pull-request. In the

following, we present the features designed in response to the above problems of existing

peer-review process.

4.1. Features in Response to Problem 1

Problem 1 concerns that the argument points might be overwhelmed in the tedious

discussion thread. To overcome this problem, we designed three features.

Highlighting Arguments. In traditional peer review process, few explicit clues infer

who is making arguments against someone. Actually, it’s feasible to detect contributors’

or reviewers’ arguing comments, either in a manual manner or through an automatic text

mining technique. In our interface, when a user edits his/her comment, he/she can

explicitly label the comment as an argument, by choosing an option in the “argument”

dropdown button (see Figure 2-E). In such a way, the comment would be labelled with

“argument” (see Fig.2-D). However, this manual manner might not be preferred by some

users, because people tend to not be too rude to other users. So, a more feasible method to

highlighting argument is using automatic text mining techniques. Although the

comprehensive text mining techniques to detect arguing comments are not within the

scope of this paper, previous studies have proposed various text mining algorithms or

models to detect arguments or disputes (e.g., [10, 13]).

Decomposition into sub-issues. For some pull-requests, reviewers might discuss

multiple issues of it. If all comments flow in a single thread, it might increase the

cognitive overload to find out the comments about a particular issue. So our prototype

interface support users to divide the discussion about a pull-request into multiple sub-

issues. A user (either the contributor or a reviewer) can create a sub-issue and give the

detailed description about this sub-issue with less than 140 words. As Figure 2-B shows,

the interface would create an individual tab for this sub-issue. Any reviews about this sub-

issue should be carried out in the page of this tab.

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

18 Copyright © 2017 SERSC Australia

Figure 2. Screenshot of the Main Page of the Prototype Interface. (A:Pull-
Request Title; B: Tab and Description for Sub-issues; C: Agreement

Buttons; D: Comments; E: Comment Edit Options; F: Comment Edit Areas;
G: Background Information; H: Prior Experience; I: Prior Arguments)

Explicitly Expressing agreement or not. For third-party reviewers who come to deal

with conflict, they usually need to go through all comments and fully comprehend the

exact opinions of each reviewer or contributor. However, in existing peer review process,

it is common that a reviewer gives a detailed and tedious comment on a pull-request,

which make it difficult for others to comprehend the reviewer’s exact opinion towards the

pull-request (i.e., does the reviewer agree that the pull-request is problematic or not). So,

in our prototype interface, reviewers can explicitly express their attitudes towards a sub-

issue by clicking the “agree”, “neutral” or “disagree” button (See Figure 2-C). For

example, if a reviewer agrees that the sub-issue, as the description states, is true and need

to be fixed, then he/she can click the “agree” button. The numbers of reviewers for these

three attitudes are also visible. When the mouse cursor hovers over an attitude button, the

corresponding reviewer names holding this attitude would be shown. In addition, when

writing a comment, the reviewer can also explicitly express his/her attitude towards the

sub-issues, by choosing an option of the “agreement” dropdown button. In such a way,

third-party can directly comprehend the exact attitudes of reviewers or comments.

4.2. Features in Response to Problem 2

Problem 2 concerns that there is no guidelines for reviewers and project administrators

to manage conflict appropriately. To overcome this problem, we designed features to

encourage reviewers to give the arguing members with concrete advices to fix the issues.

Promoting Advices. Previous literatures suggest that when dealing with conflicts in

peer review process, giving members in conflict with concrete advices to fix the issues is

far more effective than other conflict management strategies such as rational explanation

or social encouragement [19]. According to this reasoning, we designed features to

promote giving advices. When the system detected the occurrence of conflict (i.e., a

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

Copyright © 2017 SERSC Australia 19

contributor argued against a reviewer), a tip saying that “Since an argument arose

between the contributor and a reviewer, it is the best choice for you to give advices to

help fix their problems” will display below the comment edit box (it is not shown in

Figure 2). Besides, if a reviewer did give his/her advices, he/she can label the comment by

choosing the “yes” option of the “advice” dropdown button (see Figure 2-E).

4.3. Features in Response to Problem 3

Problem 3 concerns that the contexts about contributors and reviewers are lacking. In

our prototype interface, we provide three categories of context information, as shown in

Figure 2.

Background information. The first category of context is the contributor or reviewer’s

background information, such as location, followers count and company (see Figure 2-G).

These contexts provide clues inferring the contributor or reviewer’s reputation and

expertise. For instance, a reviewer who has many followers usually holds a high

reputation in the community [11]. A reviewer who is an administrator of the project

should has higher expertise on this project.

Prior experience. Another category of context is the reviewer or contributor’s prior

work experience in the community, such as years joining the community, the number of

pull-requests submitted in the whole community and the project, the number of public

code repositories (see Figure 2-H). These contexts can help third-party reviewers to look

over the prior contributions of members in conflict so as to properly adjudicate conflict.

Prior Arguments. Thirdly, to put the contributor and reviewers’ prior arguments into

context, we provide three kinds of information: argument times in GitHub, argument

times in this project, arguing posts in this pull-request (see Figure 2-I). Prior argument

experience can help third-party reviewers to judge whether one’s argument or criticism is

fair.

5. Survey-Based User Study

To evaluate the effectiveness of ScaffdCF in manage conflicts, we conducted a survey-

based user study. In the study, we compared ScaffdCF with GitHub’s existing peer review

interface. The evaluation is two-fold. One goal is to examine whether ScaffdCF can

significantly improve the effectiveness for reviewers to manage conflict. The other goal is

to examine whether ScaffdCF significantly increase the cognitive overload of reviewers.

We hypothesize that ScaffdCF can significantly improve the effectiveness to manage

conflict, but does not significantly increase reviewers’ cognitive overload.

The user study is designed based on an online survey. The survey participants are

contributors for GitHub’s popular open-source software projects. We obtained their email

addresses from their profiles on GitHub and sent the survey invitations to them. The

online survey was designed via Google Form. In the survey, we presented the interface

and explained the features in detail. Then, for each feature, the survey participants were

asked whether it can improve the effectiveness for them to manage conflict and whether it

would increase their cognitive overload to give reviews. These questions were designed as

single-choice questions with 5-likert scale. Besides, participants were also asked to openly

provide feedback about their opinions on the interface and ideas to improve it. We sent

survey invitations to over 300 users and 15 participants completed the survey. In the

following section, we will present the results of user study.

5.1. Effects on the Effectiveness in Managing Conflict

For each feature of ScaffdCF, participants were asked whether it can help to more

effectively manage the conflict, compared to GitHub’s existing peer review interface. The

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

20 Copyright © 2017 SERSC Australia

answer options were designed as 5-likert scale (from “strongly agree” to “strongly

disagree”). As Figure 3 shows, among 7 major features, 4 were reported positively (i.e.,

the median score is above 3). However, “Decomposition into sub-issues” feature was

reported negatively, that is most participants thought that this feature is useless for

managing conflict (i.e., the median score is lower than 3). Besides, two features,

“Explicitly Expressing Agreement” and “Context (Prior Experience)”, were reported

neutrally (i.e., the median score is 3).

Figure 3. Survey Participants’ Rating on the Effectiveness of ScaffdCF in
Managing Conflict

“Decomposition into sub-issues” feature is not preferred, a possible reason is that in

reality the sub-issues are highly interrelated, so it’s not feasible to divide a pull-request

into multiple sub-issues. And this feature might contribute little for conflict management,

because some related information about the conflict on a particular sub-issue might be

within other sub-issues’ scopes and it’s hard for reviewers to be aware of the whole

situation. Participants also do not prefer the “Promoting Advices” feature. One potential

reason is that the promotion of giving advices is not directly related to conflict

management and participants do not realize the effectiveness of giving advices. For

“Context (Prior Experience)” feature, a possible reason for its ineffectiveness is that only

knowing about some numbers of a contributor or reviewer’s prior work is not enough to

judge his/her expertise or reputation.

5.2. Effects on Cognitive Overload

For the adoption and success of ScaffdCF, another important criteria is that ScaffdCF

would not significantly increase the cognitive overload for reviewers to use. The cognitive

overload might include the extra effort to understand the context information, maintain

the reviews on multiple sub-issues, and figure out advices. For each feature of ScaffdCF,

participants were asked whether it would increase the cognitive overload to use, compared

to GitHub’s existing peer review interface. The results (see Figure 4) shows that

“Decomposition

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

Copyright © 2017 SERSC Australia 21

Figure 4. Survey Participants’ Rating on the Cognitive Overload of using
ScaffdCF

into sub-issues” feature significantly increase reviewers’ cognitive overload. Participants’

feedback to the open question suggested that this feature made reviewers pay more efforts

to switch back and forth between multiple sub-issues. “Promoting Advices” and

“Highlightling Arguments” were reported neutrally. The other features were reported

negatively, that is these features would not significantly increase reviewers’ cognitive

overload.

6. Limitations and Improvements

In this section, we discuss some limitations and improvements about ScaffdCF.

Although “Decomposition into sub-issues” is not favored by most participants, an

improvement is to make this feature as an option setting. When a particular issue

(significantly different from others’ discussion) arose, the tab for this “sub-issue” can be

created, but it should be supported as an option that the discussion about this “sub-issue”

can be integrated into the general discussion flow, because some people might prefer to

read the comments naturally as they flow.

Regarding to “highlighting arguments” feature, if the arguments were detected by

automatic text classifiers, a potential risk is that a reviewer would feel being rudely

treated when his/her comments were mistakenly classified as arguing comments. So it

should be cautiously considered to use automatic text classifiers to detect arguments.

Another suggestion is about the context information. In the presenting interface, the

contexts about prior experience and prior argument are just some number of one’s prior

activities. This is not informative enough. It should be better if the collaboration graph

(collaboration on a project, pull-request, or reviewing work) of contributor and reviewers

can be given.

Besides, although we tried to reach survey responders as much as possible, the sample

size of this study is still relatively small (15 participants). We hope future research can

conduct more in-depth evaluation on this prototype interface with more participants.

7. Conclusion

This paper designed a prototype interface, named “ScaffdCF”, which provides various

scaffolding features for project reviewers or administrators to manage conflict more

effectively. We identify three problems of existing peer review systems and designed new

features to scaffold conflict management process. The survey-based user study shows that

most features can help to manage conflict more effectively without significantly

increasing administrators’ cognitive overload.

International Journal of Database Theory and Application

Vol. 10, No.12 (2017)

22 Copyright © 2017 SERSC Australia

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC)

under grants No.61272533, No.61332008 and No.61233016.

References

[1] R. R. Blake, J. S. Mouton and A. C. Bidwell, “Managerial grid”, Advanced Management - Office

Executive, vol. 1, no. 9, (1962), pp. 12-15.

[2] R. A. Cosier and G. L. Rose, “Cognitive conflict and goal conflict effects on task performance”,

Organizational Behavior and Human Performance, vol. 19, no. 2, (1977), pp. 378-391.

[3] M. Deutsch, “Conflicts: Productive and destructive*”, Journal of Social Issues, vol. 25, no. 1, (1969), pp.

7-42.

[4] T. Erickson and W. A. Kellogg, “Social translucence: an approach to designing systems that support

social processes”, ACM transactions on computer-human interaction (TOCHI), vol. 7, no. 1, (2000), pp.

59-83.

[5] A. Filippova and H. Cho, “Mudslinging and Manners: Unpacking Conflict in Free and Open Source

Software”, In Proc. CSCW '15, (2015), pp. 1393-1403.

[6] I. U. Haq, “The impact of interpersonal conflict on job outcomes: Mediating role of perception of

organizational politics”, Procedia-Social and Behavioral Sciences, vol. 25, (2011), pp. 287-310.

[7] P. J. Hinds and D. E. Bailey, “Out of sight, out of sync: Understanding conflict in distributed teams”,

Organization Science, vol. 14, no. 6, (2003), pp. 615-632.

[8] K. A. Jehn, “A qualitative analysis of conflict types and dimensions in organizational groups”,

Administrative Science Quarterly, (1997), pp. 530-557.

[9] A. Kittur, B. Suh, B. A. Pendleton and E. H. Chi, “He Says, She Says: Conflict and Coordination in

Wikipedia”, In Proceedings of CHI '07, (2007), pp. 453-462.

[10] M. Lippi and P. Torroni, “Context-Independent Claim Detection for Argument Mining”, (2015).

[11] E. K. Lua, R. Chen and Z. Cai, “Social Trust and Reputation in Online Social Networks”, (2011).

[12] R. Padhye, S. Mani and V. S. Sinha, “A Study of External Community Contribution to Open-source

Projects on GitHub”, In Proceedings of MSR 2014, (2014).

[13] R. M. Palau and M. F. Moens, “Argumentation mining: the detection, classification and structure of

arguments in text”, (2009).

[14] A. Rahim and T. V. Bonoma, “Managing organizational conflict: A model for diagnosis and

intervention”, Psychological Reports, vol. 44, no. 3c, (1979), pp. 1323-1344.

[15] Stuart H.C., Dabbish L., Kiesler S., Kinnaird P. and Kang R. Social Transparency in Networked

Information Exchange: A Theoretical Framework. In Proc. CSCW '12 (2012).

[16] Stvilia B., Twidale M.B., Smith L.C. and Gasser L. Information quality work organization in Wikipedia.

Journal of the American Society for Information Science and Technology 59, 6 (2008), 983-1001.

[17] Thomas K.W. Conflict and conflict management: Reflections and update. Journal of Organizational

Behavior 13, 3 (1992), 265-274.

[18] van Wendel De Joode R. Managing conflicts in open source communities. Electronic Markets 14, 2

(2004), 104-113.

[19] Wenjian Huang T.L.H.Z. Effectiveness of Conflict Management Strategies in Peer Review Process of

Online Collaboration Projects. In Proc. CSCW'16 (2016).

Authors

Wenjian Huang, is a PhD student in School of Computer Science, Fudan University.

His research interests include Computer Supported Cooperative Work (CSCW) and

Social Computing.

Tun Lu, is an associate professor at the School of Computer Science, Fudan University,

China. His current research interests include CSCW, collaborative and social computing

and HCI.

Ning Gu, is a full time professor in School of Computer Science at Fudan University.

His research interests include Computer Supported Cooperative Work (CSCW),

Cooperative and Social Computing, Human Computer Interaction (HCI).

