
International Journal of Database Theory and Application 

Vol.10, No.1 (2017), pp.89-104 

http://dx.doi.org/10.14257/ijdta.2017.10.1.09 

 

 

ISSN: 2005-4270 IJDTA 

Copyright ⓒ 2017 SERSC  

An Attack Model on Differential Privacy Preserving Methods for 

Correlated Time Series 
 

 

Wenjun Xiong
1,2

, Zhengquan Xu
1,2,*

 and Hao Wang
1,2

 

1
State Key Laboratory of Information Engineering in Surveying, Mapping and 

Remote Sensing, Wuhan University, Wuhan, 430079, China 
2 

Collaborative Innovation Center for Geospatial Technology,  

Wuhan, 430079, China 

 *Corresponding author: xuzq@whu.edu.cn 

wendyxiong@whu.edu.cn, haowang354@whu.edu.cn 

Abstract 

Differential privacy has played a significant role in privacy preserving, and it has 

performed well in independent series. However, in real-world applications, most data are 

released in the form of correlated time series. Although a few differential privacy methods 

have focused on correlated time series, they are not designed by protecting against a 

specific attack model. Due to this drawback, the effectiveness of these methods cannot be 

verified and the privacy level of them cannot be measured. To address the problem, this 

paper presents an attack model based on the principle of filtering in signal processing 

theory. Since the distribution of the noise designed by current methods is independent and 

different from that of the original correlated series, a filter is designed as a unified attack 

model to sanitize the independent noise from the perturbed time series. Furthermore, the 

designed attack model can realize the function of measuring the effective privacy level of 

these methods and comparing the performance of them. Experimental results show that 

the attack model leads to degradation in privacy levels and can work as a unified 

measurement. 

 

Keywords: Privacy Preserving, Differential Privacy, Correlated Time Series, Attack 

Model 

 

1. Introduction 

Time series is a collection of data recorded chronologically and generally correlated. 

As a significant form of data storage and publishing, time series is prevalent in various 

fields, such as process monitoring, financial predict and traffic dispatching. 

As time series could carry abundant information and it is beneficial to our daily lives, 

many efforts have been focused on time series data mining. However, individuals’ 

sensitive information may be revealed by the data mining results. Due to privacy 

considerations, an approach which could release personal data while ensuring the safety 

of the sensitive information is highly desired. In order to achieve this goal, Dwork 

proposed a definition referred as differential privacy [1]. As a novel privacy preserving 

mathematical framework, differential privacy provides a strict mathematical model, which 

is independent of the attackers’ background knowledge. Therefore, it has become a 

widely accepted method for preserving data privacy. 

Differential privacy mechanism is actually a noise perturbation mechanism, which is 

designed under the assumption that the datasets are independent. Global sensitivity is 

defined to measure the maximal effect a single record has on a dataset, and therefore the 

noise level added to the original dataset can be calculated. However, for preserving the 

privacy of correlated datasets, as the data correlation will raise the global sensitivity, for 

achieving the expected privacy level, adding noise according to the standard global 
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sensitivity function will introduce redundant noise and lead to degradation in data utility. 

Therefore, a differential privacy mechanism for correlated data, that can retain the data 

utility while preserving the data privacy, is in high demand. As a typical correlated series, 

time series has drawn considerable research interests. Existing differential privacy 

preserving methods for correlated time series can be categorized into model-based 

methods and transform-based methods. The model-based methods rebuilt the sensitivity 

function by applying correlation models, such as Markov [2] and Bayesian [3] correlation 

models, or by applying coefficient matrix models [4]. The transform-based methods can 

be divided into two types. The first type is to transform the correlated time series into 

independent series of another domain by transformation techniques, thus the series can be 

processed independently. Examples of such techniques include Discrete Fourier 

Transform (DFT) [5] and Wavelet Transform (WT) [6, 7]. Another type utilized data 

feature extraction methods, e.g., Principal Component Analysis (PCA) [8], to extract the 

correlation properties of time series, and therefore they can be represented by a set of 

independent properties. 

Although improvements of these methods are made, there are still some challenges: 1) 

the model-based methods and the transform-based methods are designed under the 

assumption that time series is correlated according to a certain rule. However, much of the 

research on privacy preserving has focused on building an attack-defense system, thus a 

specific attack model on the attacker-side is still in high demand; 2) the effectiveness of 

these methods cannot be verified and the privacy level of them cannot be measured. 

To deal with the above challenges, we propose an attack model based on the principle 

of filtering in signal processing, under which the independent noise can be sanitized from 

the perturbed time series and attackers can obtain the original time series with a higher 

probability. The contributions in this paper are as follows: 

1) As the distribution of the Laplace noise designed by the current methods is 

independent, and different from that of the original correlated series, it provides us with 

an opportunity to design an attack model in the view of signal processing. Based on this, 

an attack model is proposed in this paper. 

2) To filter out the Laplace noise from the perturbed time series, we propose a practical 

and optimal filter as an attack model. Therefore, the perturbed time series can be sanitized 

by applying the filter. 

3) The proposed attack model can be used as a unified measurement of the privacy 

level, thus the performance of the current methods can be compared. 

The rest of this paper is organized as follows: we discuss related work in Section 2. 

Section 3 shows the preliminaries of differential privacy and provides the problem 

statement. We propose an attack model and analyze the effective privacy level under the 

attack model in Section 4. Section 5 presents the experimental evaluation, followed by 

conclusions in Section 6. 

 

2. Related Work 

Existing differential privacy preserving methods for correlated time series can be 

categorized into model-based methods and transform-based methods. 

In the model-based methods, a major approach is to build a probability model for 

correlated series data releasing. Cao et al. [2] proposed a correlated Hidden Markov 

detection model to deal with the problem that abnormal data may raise the global 

sensitivity. They detected and removed the abnormal data by applying the one-step 

transition probability, which can decrease the noise level added to the original data. 

However, this model assumed that the releasing probability of the current data is only 

relevant to its former data. Thus the detecting results were not accurate enough. To 

increase the accuracy of the detecting results, Yang et al. [3] proposed a privacy 

definition called Bayesian differential privacy, and then they constructed a Gaussian 
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correlation model, which assumed that the data released currently is related to all the data 

released before. Except for these probability models, Zhu et al. [4] built a correlated 

degree matrix to measure the whole relationship between records. The coefficients of the 

correlated degree matrix were used as weights to rebuild the sensitivity function, in place 

of the traditional global sensitivity. Therefore, the correlated sensitivity can be used to 

decrease the redundant noise introduced by the global sensitivity. These model-based 

methods can preserve the privacy for correlated time series to some extent. However, 

there are still some challenges: 1) the correlations of time series are complicated, thus 

they cannot be represented by a single model; 2) these methods are proposed under the 

assumption that time series is correlated according to a certain rule, thus research on the 

effectiveness of these methods under a specific attack model is highly desired. 

In the transform-based methods, a typical approach is to transform time series into 

independent series of another domain, thus the series can be processed independently. For 

example, Rastogi et al. [5] transformed time series into independent series of another 

domain by applying DFT, and then the noise was added to the Fourier coefficients. Thus, 

a perturbed series can be obtained by applying the inverse DFT transform. However, DFT 

is just a global transformation, which cannot describe the local features of the original 

time series accurately. As an improved algorithm, Xiao et al. [6, 7] expanded the range of 

applications by applying WT, which can preserve more features of the series in 

comparison with DFT. In dealing with high dimensionality time series, Jiang et al. [8] 

extracted the features of the correlated time series using the properties of PCA, and then 

these correlated features were classified into several groups of independent features by 

applying Singular Value Decomposition (SVD). Compared to the model-based methods, 

these transform-based methods can ensure a high data utility. Whereas the transform-

based methods may lose correlated features in the process of transforming, they cannot 

ensure the expected privacy level. 

In privacy preserving for correlated time series, the existing methods are proposed 

under the assumption that time series is correlated according to a certain rule. However, 

due to the lack of a specific attack model, the effectiveness of these methods cannot be 

verified and the privacy level of these methods cannot be measured. To deal with the 

problems detailed above, an attack model on differential privacy preserving methods for 

correlated time series is proposed. 

 

3. Preliminaries 

In this section, we first illustrate the background of differential privacy; then we 

illustrate the problem faced by the existing differential privacy preserving methods for 

correlated time series under the attack model via filtering. 

 
3.1. Differential Privacy 

The main idea of differential privacy is to release aggregate information of dataset D 

without revealing the privacy of individuals. A formal definition of differential privacy is 

as follows: 

Definition 1 ( -Differential Privacy [9]). Denote  K D  the output of a mechanism 

K on input dataset D. Then mechanism K is  -differential privacy if for any dataset D 

and its neighbor dataset D  which differs in only one record, and for any output S, the 

following holds: 

     Pr exp PrK D S K D S                                         (1) 

where Pr is the output probability distribution of the mechanism K. 
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Figure 1. Output Probability Distribution of K  on Neighboring Datasets 

Figure 1 illustrates that mechanism K offers  -differential privacy to dataset D. The 

privacy parameter   ensures that the output of dataset D and its neighbor dataset D  

cannot be distinguished within a certain probability. A lower   implies a better privacy 

level. 

To ensure  -differential privacy, Laplace mechanism is applied to add a suitable noise 

level to the true query answer: 

Definition 2 (Laplace Mechanism [10]). Let :f D R  be any query sequence. 

Denote  f D  the query answer of a query f  on input dataset D, and  Lap   a random 

variable drawn from the Laplace distribution with scale  . Then 

     K D f D Lap                                                (2) 

satisfies  -differential privacy.   can be obtained through the following equation: 

f





                                                              (3) 

where f  represents the global sensitivity, which measures the maximum change on 

the result of query f  when removing one record from the dataset. The definition is as 

follows: 

Definition 3 (Global Sensitivity [10]). For any query sequence :f D R , the global 

sensitivity of f  is: 

     1
,

max || ||
D D

f f D f D


                                             (4) 

For many types of queries, f  is quite small. In particular, the simple counting queries 

have 1f  .  

Since the correlation of time series can raise the global sensitivity, for achieving the 

expected privacy level, adding noise according to the standard global sensitivity function 

will introduce redundant noise and lead to a low data utility. In order to achieve a better 

trade-off between privacy level and data utility, some differential privacy preserving 

methods for correlated time series improved the global sensitivity function, in order to 

introduce a smaller noise level. However, the noise added to the original time series is an 

independent and identically distributed (IID) series, which can be filtered out by applying 

an attack model. Therefore, these methods will not achieve the expected privacy level. 

 

3.2. Problem Statement 

This section illustrates the problem, which is faced by the existing differential privacy 

preserving methods for correlated time series, under the attack model via filtering. 
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Figure 2. Impact of Correlation on Privacy Level 

As is shown in Figure 2, to preserve differential privacy of the original time series X, 

mechanism K add an IID noise series N to X, and therefore obtain a perturbed time series 

X  . We query X, as well as the neighboring series X   and X  . The probability 

distribution function (PDF) of the query answers are  K X ,  K X   and  K X  , 

respectively. However, the original time series X is correlated and the noise introduced by 

mechanism K is an IID series. Thus, the IID noise series can be sanitized from the 

perturbed time series by applying a filter. Therefore, attackers can obtain the filtered time 

series X . Compared to  K X  ,  K X  is closer to  K X , which means that the filtered 

time series X  is closer to the original time series X. As a result, the privacy parameter   

increases to   , which means the privacy level decreases, and attackers can obtain the 

original time series with a higher probability. 

To address the correlation problem, a specific attack model on differential privacy 

preserving methods for correlated time series is proposed in the next section. 

 

4. Attack Model 

In this section, we first provide the illustration of the filtering attack; then we calculate 

the impulse response of the filter; finally, the effective privacy level of the standard 

differential privacy mechanism is measured under the proposed attack model. 

 

4.1. Illustration of Filtering Attack 

 

perturbed time series X  filtered time series X

Filter

 

Figure 3. Illustration of Filtering Attack 

Figure 3 shows a specific attack model, which is a practical filter designed in the view 

of signal processing. Since the noise introduced by the Laplace mechanism is not large, 

the correlation of the time series changes little under the attack model. Assume that we 

already know the correlation of the original time series, and the noise introduced by the 

Laplace mechanism is an IID series, then the noise can be filtered out by applying the 

practical and optimal filter. Therefore attackers can obtain the original time series with a 

higher probability. 

javascript:void(0);
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Algorithm 1  X Filter X   

Input:  

Original time series X, perturbed time series X   

Output: 

Filtered time series X  

1: Calculate the auto-correlation function R of X  , as well as the cross-correlation 

function P of X and X   

2: Design a proper impulse response  h k  of the filter according to R and P, in order to 

filter out the noise from X   as much as possible 

3: Obtain X  by applying the optimal filter to filter out the IID noise series from X   

4: Return X  

Algorithm 1 illustrates the working processes of the attack model, the most important 

part of which is the calculation of the impulse response function  h k . Its calculation 

process will be given in the next section. 

 

4.2. Impulse Response Calculation 

We already know that correlated time series can be seen as short-time stationary 

processes, and the noise introduced by the Laplace mechanism is an IID series. Since the 

Wiener filter is usually applied to filter out the IID series from stationary processes, we 

take the classic Wiener filter as an example to illustrate the calculation of the impulse 

response function. 

The perturbed time series X   is obtained by adding noise series N to the original time 

series X according to the Laplace mechanism: 

X X N                                                            (5) 

The Wiener filter takes X   as the input series. Assume that the impulse response of the 

filter is  h k , we obtain the output series X  based on the principle of filtering in signal 

processing: 

     
k

x k h k x j k




                                              (6) 

where  x j X  .  

According to the Wiener-Hopf equation, we obtain the impulse response of the Wiener 

filter from: 
T TP h R                                                             (7) 

where R is the auto-correlation function of X  , and P is the cross-correlation function 

of X and X  . Accordingly, the impulse response function  h k  of the Wiener filter is: 

  1h k = R P
                                                         (8) 

Since the noise introduced by the Laplace mechanism is a white noise series, then the 

auto-correlation function of N is: 

 nR k                                                            (9) 

Accordingly, the auto-correlation function R of X   , the cross-correlation function P of 

X and X   are: 

   TR E x k x k                                                      (10) 

        P E x k x k                                                      (11) 

According to Equation 8, we obtain the impulse response function  h k  of the filter. 
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4.3. Privacy Level Evaluation 

This section evaluates the effective privacy level of the standard differential privacy 

under the attack model proposed by this paper. 

 

 

 

 

Pr Pr

Pr Pr

K X S K N S X

K X S K N S X

         

       


  

                                 (12) 

According to Equation 12, the effective privacy level can be calculated by analyzing 

the output series of the filter when we input the Laplace noise series N. The output series 

of the filter is analyzed in the following theorem: 

Theorem 1. A noise series N with m points introduced by the Laplace mechanism 

passes through the filter, and the impulse response function of which is  h k , then the 

output series N  is approximate subject to Gaussian distribution with a variance of 

 

2

2

2m

h k


, i.e., 

 

2

~ 0
2

2m
N N ,

h k

 
  
 

, where   is the magnitude of the noise. 

Proof. According to the principle of filtering in signal processing, if the noise series N 

passes through a linear system, and the impulse response function of the system is  h k , 

then the output series is 

     
k

n k h k n j k




                                                  (13) 

where  n j N . According to Equation 13, the impulse response function  h k  can 

be seen as the weight coefficient of  n k , thus  n k  is the weighted linear combination 

of  n k . According to the features of the Laplace probability distribution,  n k  is an IID 

Laplace series, the weight coefficient of which is 
 h k


  . 

According to the central-limit theorem (CLT), if a series N of random variables is an 

IID series with mean  and variance   , then the sum of the first m terms of N is 

approximate subject to Gaussian distribution with mean  and variance m  , i.e., 

   
1

~
m

k

n k N m m  



                                                 (14) 

As the filter consists of many adders, when the Laplace noise series N with variance 

  22D N   passes through the filter, the output series N  is approximate subject to 

Gaussian distribution, and the variance of the output series N  is 

 

2
22

2

2m
D N m

h k


                                                     (15) 

Since the Laplace noise introduced by the differential privacy preserving methods has 

mean 0, i.e.,  =0, we obtain 

 

2

~ 0
2

2m
N N ,

h k

 
  
 

                                                      (16) 

Accordingly, when the noise series introduced by the Laplace mechanism passes 

through the Wiener filter, the output series is approximate subject to Gaussian 

distribution. Thus we can obtain the mean and variance of the output series. The effective 

privacy level under the attack model is illustrated in the following theorem: 
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Theorem 2. A correlated time series X   with m points perturbed by the Laplace 

mechanism passes through the attack model, then the effective privacy level is 

 
2

1

2
R P

2m
 



  , where    TR E x k x k     , and    P E x k x k    . 

Proof. According to a technical report [11], Gaussian noise can provide  -

approximate  -differential privacy. Specifically when 

1

21
log( ) / 



 
  
 

, Gaussian 

noise can provide 
1

 
- indistinguishable, where    is the variance. Since 0   and the 

value of   is quite small, the inequality can be established under general conditions. 

Take counting queries as an example, it has 1f  . Combined with Equation 3, the 

effective privacy level under the attack model is: 

    2

2

1
2 2h k h k

2m 2m


 



                                              (17) 

According to Equation 8, we obtain: 

 
2

1

2
R P

2m
 



                                                     (18) 

where    TR E x k x k     , and    P E x k x k    . 

 

5. Experiments and Evaluation 

In this section we first introduce datasets and configuration; then we evaluate the 

impact of the correlation on the privacy level; finally, we measure the performance of the 

state-of-the-art differential privacy preserving methods for correlated time series by 

evaluating the effective privacy level and data utility of them. 

 

5.1. Datasets and Configuration 

The experiments are running on an Intel Core 2 Quad 2.93 GHz Windows 7 machine 

equipped with 4 GB memory. Each experiment runs 1, 000 times. The experiments 

involve four time series datasets, including the fields of transportation, medical, network 

and economic.  

(a) Trajectory [12]: This GPS trajectory dataset contains 17, 621 trajectories, which is 

represented by a sequence of time-stamped points. Each point contains the information of 

latitude, longitude, height, speed and heading direction. 

(b) Diabetes [13]: This dataset contains the information of outpatient care on 70 

patients, each record of which represents the physical condition of these patients, 

including date, time, code and value. 

(c) NetTrace [14]: This dataset contains the IP-level network trace sampled from a 

border gateway of a university. There are 65, 536 records in total with the connection 

number ranging from 1 to 1, 423. Each record contains the number and time of external 

hosts connected to an internal host. 

(d) Amazon Access Samples [13]: This dataset contains the assigned access of users, 

each file of which contains four categories, including person, resource, group and system- 

support. 

Among the four datasets, Trajectory has the strongest correlation and Amazon Access 

Samples has the weakest correlation. We generate a query set F  with 1, 000 random 

linear queries. The number of queries is represented by | F | . On Trajectory: the query 

returns the number of points whose attribute value is greater than a fixed value. On 

http://xueshu.baidu.com/s?wd=author%3A%28Shiva%20Prasad%20Kasiviswanathan%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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Diabetes: the query returns the mean value of each indicator. On NetTrace: the query 

returns the number of connected internal and external hosts. On Amazon Access Samples: 

the query returns the number of possibly supported users. The probability of each query 

answer fell into [0, 1]. 

 

5.2. Experimental Methods 

According to Dwork [15], 1   is suitable for privacy preserving purposes. Therefore, 

we conduct the experiments with a fixed privacy parameter   varied from 0.1 to 0.9 with 

a 0.2 step on four datasets. 

We calculate the PDF of the queries on four original datasets and their neighboring 

datasets with the fixed privacy parameters. The practical privacy level    and the 

effective privacy level    can be calculated according to the following equation: 

 

 
 

Pr
exp

Pr

K X S

K X S


   


   
                                            (19) 

A lower privacy parameter value implies a higher privacy level. 

To measure the data utility of the current methods under the attack model, we calculate 

the PDF of the queries on four datasets and their neighboring datasets. The accuracy of 

results can be measured by Mean Square Error (MSE): 

    
21

MSE
i

i i

F F

= F X - F X
| F | 

                                       (20) 

A lower MSE implies a better data utility. 

 

5.3. Evaluation of Privacy Level 

We first evaluate the impact of correlation on the privacy level; then we evaluate the 

practical privacy level of the state-of-the-art differential privacy preserving methods for 

correlated time series, as well as the effective privacy level of them under the attack 

model. 

 

5.3.1. Impact of Correlation 

We evaluate the impact of correlation by calculating the practical privacy level under 

various privacy parameters on four datasets, which are protected by the standard 

differential privacy mechanism. 
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Figure 4. Impact of Correlation on Privacy Level 
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Figure 4 shows that, for Trajectory,    is higher than other datasets at each privacy 

parameter  . Specifically, when 0.9  , the    is 1.7950, while for Diabetes the    is 

1.2470, for NetTrace is 1.0240 and for Amazon Access Samples is 0.9320.  

The experimental result shows that, the stronger correlation of a dataset, the less 

privacy level it achieves. 

 

5.3.2. Calculation of Practical Privacy Level 

We calculate the practical privacy level of the current methods on four datasets, and the 

practical privacy level can be measured by   . 
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Figure 5. Comparison of Practical Privacy Level (a) Trajectory (b) Diabetes 
(c) NetTrace (d) Amazon Access Samples 

From Figure 5 we observe that each method performs differently when protecting the 

same dataset. Specifically, for Trajectory, when 0.1  , Markov achieves a    at 0.3210, 

while WT achieves 0.8420. Other datasets have similar trends. For example, for Diabetes, 

when 0.5  , Bayesian achieves a    at 0.2155, while CIM achieves 0.4296. We also 

observe that the same method performs differently when protecting different datasets. 

Specifically, when 0.1  , Bayesian achieves a    at 0.3422 for Trajectory, while 

Bayesian achieves a    at 0.1842 for Amazon Access Samples. 

Moreover, we observe that the practical privacy level of Markov, Bayesian and CIM 

are lower than that of WT and DFT, which means the model-based methods (Markov, 

Bayesian and CIM) perform better in privacy preserving than the transform-based 

methods (WT and DFT). 
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5.3.3. Calculation of Effective Privacy Level 

We calculate the effective privacy level of the current methods on four datasets under 

the attack model, and the effective privacy level can be measured by   . 
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Figure 6. Comparison of Effective Privacy Level (a) Trajectory (b) Diabetes 
(c) NetTrace (d) Amazon Access Samples 

Figure 6 shows the effective privacy level of the current methods on four datasets. 

Compared to Figure 5, the privacy parameters are higher, which means the privacy level 

are lower under the attack model. For example, for Trajectory, when 0.5  , CIM 

achieves a    at 1.0360, while it achieves a    at 0.7832 in Figure 5a. Similarly for 

NetTrace, when 0.3  , the privacy level of Markov increases from 0.3852 to 0.4598, 

and the privacy level of WT increases from 0.8035 to 1.9210. We can infer from the 

experimental results that, the privacy level of these methods are lower under the attack 

model, and the changes are related to the correlation of the time series and the impulse 

response function of the filter. 

 

5.3.4. Comparison of Privacy Level 

More specifically, this section measures the privacy parameter    and    of the current 

methods on four datasets under the fixed privacy parameter 0.7  . 
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Figure 7. Comparison of Practical Privacy Level and Effective Privacy Level 
under the Attack Model (a) Trajectory (b) Diabetes (c) NetTrace (d) Amazon 

Access Samples 

Figure 7 shows the practical privacy level and the effective privacy level under the 

attack model. The results show that, the proposed attack model obtains less effective 

privacy level than expected. The privacy level of different methods changes differently 

under the attack model. Specifically, for Trajectory, the practical privacy level of CIM is 

1.1120, and the effective privacy level under the attack model is 1.3910, which means we 

obtain less privacy budget according to the effective privacy under the attack model. The 

similar trends can also be observed on other methods and other datasets. For example, for 

Diabetes, the practical privacy level of DFT is 0.9510, and the effective privacy level 

under the attack model is 1.6550. The experimental result shows that, under the proposed 

attack model, we can obtain less privacy budgets, and therefore the performance of the 

current methods can be compared. 

 

5.4. Evaluation of Data Utility 

We evaluate the data utility of the current methods under the attack model by 

calculating the MSE of each method on four datasets. 
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Figure 8. Comparison of Data Utility (a) Trajectory (b) Diabetes (c) NetTrace 
(d) Amazon Access Samples 

Figure 8 shows that, for Trajectory, when 0.1  , DFT achieves a MSE of 25.7720, so 

the query answer is quite inaccurate; when 0.7  , MSE drops to 9.0380, retaining an 

acceptable utility of the result. Other datasets show similar trends. For example, when 

0.7  , CIM achieves a MSE of 11.6690 for Diabetes, a MSE of 14.6120 for NetTrace, a 

MSE of 7.2930 for Amazon Access Samples, respectively. The experimental result 

confirms that the data utility is enhanced as the privacy parameter increases. 

Moreover, Figure 8 shows that MSE decreases faster when   increases from 0.1 to 0.5, 

than when   increases from 0.5 to 0.9, which means that, for achieving a higher privacy 

level, there will be a larger utility cost. We also observe that, when 0.7  , CIM, DFT 

and WT perform stable, which indicates that they are capable of retaining the data utility 

while preserving a proper data privacy. 

 

6. Conclusions 

In this paper, we proposed an attack model on differential privacy preserving methods 

for correlated time series. The proposed attack model can verify the effectiveness of the 

current methods and measure the privacy level of them. The experimental results show 

that, the privacy level of the current methods degraded by approximately 50% under the 

attack model, and its function of working as a unified measurement was verified. Our 

future work will focus on the design of a differentially private time series data release 

mechanism, which can achieve a better trade-off between privacy level and data utility. 
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