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Abstract 

Assessing and Mining phylogenetic trees is very useful in storing, querying the 

phylogenetic databases, and finding an accurate phylogenetic tree for a set of species is 

very difficult. Assessing a phylogenetic tree also resolves the problem of conflicting 

phylogenies. This paper discusses the methods for validating and mining phylogenetic 

trees. We propose a new way to compare two trees by accessing importance of node in 

tree. This new method is applied on phylogenetic trees and the results compared with 

symmetric distance, Maximum Agreement Subtree and Bootstrapped tree. 
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1. Introduction 

The phylogenetic tree represents the relationship between a set of species, and  presents   

a model of molecular evolution Trees which is  non-linear and semi-structured data 

structure  useful and is very common in data mining problems. Any type of data, 

represented in the form of a tree is easy to analyze and understand. Tree mining is an 

component of data mining where we can extract useful information from a set of trees. A 

tree can be called as semi-structured data structure that shows a hierarchical relationship 

among its nodes. Phylogeny comprises homology and homoplacy; the former is similarity 

due to common ancestor while the latter is a parallel evolution [13]. The fundamental 

component of phylogenetics is Taxa (specie) also called as leaves and analysis of 

phylogenetics involves finding relationship among Taxa’s.  The concept of tree mining 

arises naturally in biology as a consistency among the evolutionary trees over the species. 

It is difficult to obtain a true phylogeny if we are not provided with a particular set species 

and a bootsrapping is promising way of gaining confidence in particular tree, and tree 

mining helps us gain several lines of evidence  in favor of a tree. 

 

1.1. Information on Trees [1-2] 

The trees can be rooted or unrooted and the rooted tree branches emerge from one root 

so as to form a tree-like network. The evolutionary change and history can be visualized 

in a rooted tree where root depicts the ancestor, the branches lead to the descendants, and 

along that path, evolutionary change takes place, the species at leaf level are current day 

species. The trees can be ordered if the order is defined among siblings and unordered if 

no order is defined among siblings.  In Figure 1(left) {4,5,6,7} are leaves whereas {2} 

and{3} are ancestors of {4} {5,6,7} respectively and {1} is a root node. In an 

evolutionary tree taxa is represented by its leaves and internal nodes are responsible for 

representing the ancestral relationships. 
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Figure 1. Rooted (Left) and Unrooted Tree (Right) 

An unrooted phylogenetic tree where every internal (i.e. non-leaf) vertex has a degree  

of 3, there is no root and the edges can be spread to all sides. In the unrooted tree(right) 

1,2,3,4 are leaves shown in Figure 1 which has both rooted and unrooted trees  and 

{13}{24} are leaf pairs. Unrooted trees are also called as free trees as they make no 

inference about the ancestry of leaves but visualize relatedness among sequences/TAXA. 

Embedded subtrees : Suppose we have a rooted tree T=(V,E,L) then T’ is said to be 

an embedded tree of T where T’ is represented by T’=(V’,E’,L’).  Maintenance of 

ancestral relationship and Left to Right order of siblings are two necessary conditions of 

an embedded relationship. Phylogenetic tree mining is a kind of embedded subtree 

mining. 

 

Figure 2. Original Tree (Left) Embedded Subtree (Right) 

 
1.2. Induced Subtree [2-3] 

In a tree T let the vertex set be V and edge set be E, then T’ with V’ and  T’ with E’ be  

the vertex set and edge set respectively. These are said to be the induced subtree of T only 

when the labeling of E and V is preserved in T’. So an induced subtree follows Canonical 

ordering of siblings and removes the leaf nodes repeatedly 
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Figure 3. Original Tree (Left) Induced Subtree (Right) 

Mining of the frequent patterns in a tree is aimed at identifying the common patterns 

[1]. A frequent subtree is a tree that is supported by at least some given number of the 

input trees. Frequent subtrees can reveal common patterns. The frequent tree mining aims 

at discovering all frequent subtrees from a large database of trees, which is referred to as 

forest. Support is a major component in mining of the frequent patterns and is defined as 

the total number of common subtree trees in the tree database. If there is one appearance 

of a particular subtree in a forest then the support count is 1 and if appearance increases 

its support count is also increased. A minimum threshold for the count is defined by the 

user and a subtree whose support is greater than the user defined threshold then that tree is 

said to be frequent. There are various frequent pattern mining algorithms. All the 

algorithms follow the strategy used in the well known Apriori Algorithm that is based on 

the iterative pattern mining where we break each iteration into two phases: i) Candidate 

Generation: Frequent patterns discovered in one iteration are used to generate potentially 

frequently candidates. We can merge two patterns with size k and consist of k-1 elements 

to generate candidates  with size k+1. ii). Support Counting: In this phase we find the 

support of the frequent candidates, ignore the less frequent candidates and keep the 

actually frequent candidates. Actually frequent candidates are those whose support is 

greater than the user defined threshold. The scope list based method for frequent subtree 

was introduced by Zaki [1] which follows the representation of the occurrence list and an 

efficient candidate generation method. The goal of finding the frequent subtrees  in 

phylogenetics is to find a subset of the species  on which all or some significant species 

tree matches.  

 

2. Phylogenetic Tree Building Methods [14-15] 

Various tree building methods are characterized as either distance based methods or 

character based methods. Distance based methods include  unweighted  pair grouping 

using arithmetic mean(UPGMA)  and neighbor joining and character based methods 

include maximum parsimony and maximum likelihood. Distance based methods are based 

on sequence similarity and are computationally fast but there are chances of information 

loss due to data transformation. However they are good for large datasets [14]. Character 

based methods require data in the form of the aligned sequences and are widely used for 

inferring phylogenies. They include maximum parsimony method which aims at finding 

the maximum parsimonious tree from all possible trees. This method determines the 

mutations between the species to find the length of trees, and selects a tree having the 

shortest length. The outcome of the maximum parsimony method is an unrooted tree with 

the maximum parsimony score. Parsimony method has two motives: i) To construct all 

possible trees, and. ii) To find a tree having the largest length by an algorithm. Problems 

of maximum parsimony method is that the tree space is very huge as it generates unrooted 

tree, i.e. one tree with 3 possible leaves and 3 trees with 4 possible leaves. As the number 

of species increases, the possible unrooted trees increase very rapidly. So it is not possible 

to do an exhaustive search on large datasets.  This problem is solved by branch and bound 

method which randomly constructs a tree by adding a specie and cutting the lineages 
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which are not compatible (depending on the length of tree) with the tree. It follows a 

shortcut for perfection. In the Maximum likelihood method all possible branch lengths 

and topologies are examined to obtain the likelihood of a tree. Finding the best suitable 

tree for a small set of nodes is not very costly but as the set of nodes increases the 

numbers of possible trees increase exponentially and the task becomes intensive, so the 

next important thing is to find an optimal tree.  

 

3. Validating Phylogenetic Trees 
 

3.1. Bootstrapping Phylogenetic 

Bootstrap is a sampling technique where the sequence data is re-sampled to create a 

new alignment matrix of identical dimension, i.e. each bootstrap replicate contains the 

same number of species. From each replication (artificial data), a tree can be 

reconstructed using any of the available reconstruction techniques discussed above. 

Bootstrap support values can be determined for every branch that connects two inner 

nodes of the tree, that is, for each inner branch of the tree [5]. Support is a measure to give 

a score to each clade among all bootstrap replicates. As many bootstrap trees are 

generated through repeated sampling and the bootstrap score (or support) of a branch in 

the inferred tree is computed as the proportion of the bootstrap trees that contains this 

branch/clade. As finding a support value is our primary task in bootstrap analysis, so 

some fast method is required to compare support, and also to explore the effect of using 

increasing numbers of replicates on support values. Moreover bootstrap reflects the 

results based on an alignment matrix and constructed tree if a there is some noise in the 

matrix and tree construction method then it will lead to the incorrect assumptions [5]. The 

bootstrap results are dominated by the alignment results and a wrong alignment will lead 

to misguiding the bootstrap value. An alternate to bootstrap is Jack-knife methods but it 

works on smaller datasets as it doesn’t duplicate the original dataset, but considers the 

randomly selected samples from the dataset. Both bootstrapping and Jacknife suffer from 

the problem of time complexity for large datasets. As the number of replicates increases 

fast bootstrap can be used but the bootstrap value becomes imprecise [5]. In spite of 

problems associated with bootstrapping it is a preferred method to find the stabilized 

groups in a tree. 

 
3.1 MAST 

MAST step involves, for each of the clusters finding a majority accepted subtree 

(MAST) as a consensus tree representing the overlap of the cluster.  MAST is a strong 

representative of the common Substructures as each MAST is embedded as a subtree in 

each tree in the input collection; it does not give information about relationships among 

species [6]. MAST is a representative of common substructures and it follows the concept 

of embedded and isomorphic trees The MAST problem is polynomially-solvable for two 

trees, but is NP-hard for three or more input trees. The complexity of MAST is O(n log n) 

and its variant has a complexity of O(K n
3
 +n

3
 ) where k and n are the number of binary 

rooted trees and the number of taxa respectively. MAST is also known as common pruned 

tree and any of the pruned trees will be identical to the strict consensus tree of the pruned 

input trees. MAST returns a set of trees and can also be used to summarize the results of 

bootstrap [7]. All these trees need to be stored somewhere to choose the optimized one by 

applying backtracking procedure. This entire process may lead to a combinatorial 

explosion problem. 
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Figure 4. Maximum Agreement Subtree is T4 of T1,T2 and T3 

 

4. Proposed Word 
 

4.1. Distance Algorithm for Comparing Two Trees 

We propose an optimized solution for comparing two trees where we can prune each 

specie to reach for the best results after analyzing the pruning effect. To know the pruning 

effect on a tree the bootstrap tree needs to be parsed again. This comparison metric tells 

whether the two trees fall under the category of similar trees or dissimilar trees and then 

by pruning the edges one at a time we can find which edge is responsible for the 

maximum distance. 

 

 

Figure 5. Figure To Illustrate Distance Algorithm for Comparing T5 and T6 

Distance between each possible combination of nodes is calculated and after that the 

edges are pruned 
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Table1. Distance among Tree T5 and T6 

Nodes Distance (T1) Distance (T2) T1 –T2 

AB 2 2 0 

AC 3 4 1 

AD 4 5 1 

AE 5 3 2 

AF 5 5 0 

BC 3 4 1 

BD 4 3 1 

BE  5 5 0 

BF  5 5 0 

CD 3 3 0 

CE 4 3 1 

CF 4 3 1 

DE 3 4 1 

DF 3 4 1 

EF 2 2 0 

 

Table 1 gives the node-wise distance between the trees T5 and T6 . Counting the 

number of nodes having the same distance, where the difference is either 0 or 1 the 

number of nodes having different distance can be found. If the nodes having the same 

distance is greater than the latter then the two trees can be put in a similar category 

otherwise they are considered dissimilar. As can be seen in Table 1 the total number of 

possible combination of nodes is 15, number of nodes having the same distance is 6 and 

number of nodes having different distances is 9. Here the number of nodes having 

different distances is greater than the nodes having the same distance and distance is 9/6, 

i.e. 1.5. So these two trees can be considered dissimilar. But applying tree pruning, i.e. 

eliminating some portion of the tree we can get very useful results. Sometimes, the tree 

becomes so large that a specific part of the tree is not useful at all. Eliminating that part 

does not affect the overall results of the tree and it is better to prune that part. As shown in 

Figure 6 pruning the connecting edges As of the trees T5 and T6 one at a time we obtain 

the trees T7 and T8 respectively and then apply the distance algorithm.  
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Figure 6. Resultant Trees after Pruning Edge A from T5 and T6 

We have removed the edge A from both the trees; now applying the distance algorithm 

on the above trees we obtain the distances between the nodes (BC) as 3 and 4 respectively 

for the trees T3 and T4. We computes the distances among all nodes (BD, BE, BF, CD, 

CE, CF, DE, DF, EF) in T3 and T4. Here the possible combination of nodes is 10 and the 

number of nodes having the same distance is 6. The number of nodes having a different 

distance is 4. So from the above results, we can say that pruning edge A has no positive 

effect. The total nodes are 10 and the distance between the tree after pruning edge A is 

6/5, i.e 1.2. The results of pruning each edge from T1 and T2 are shown in Table 1. By 

pruning edges C and D, there is a positive effect because the nodes having a different 

distance are greater.   

Table 2. Reflecting the Effect of Pruning in Trees in T5 and T6 

Pruned edge Number of 

Nodes having 

same distance 

Number of 

Nodes having 

different 

distance 

Distance Pruning 

effect t on 

tree 

A 6 4 1.2 neutral 

B 4 6 1.2 positive 

C 6 4 0.8 neutral 

D 4 6 0.6 positive 

E 6 4 1.2 neutral 

F 5 5 1.2 neutral 

 

Table 2 shows the distances between trees T3 and T4 after pruning each edge. So the 

average distance comes out to be 1.06 

Algorithm finaldist 

 

Input: Tree t1(u,k) & t2(v,k)// u and v are the edges and k is number  

                                               of node 

Output: finaldist          //distance between two trees 

dist array |t1,t2| //array of distance between two trees t1 and t2 

 finaldist=0,dist[u,v] = 0 

for i=1 to k    //For each vertex v in tree t1 and t2 

by pruning i each edge in t1 and t2 

           for  j=1 to n-I // where n is the number of edges           

                    distj [u,x] = ∑w1(u,x) +w2 // where  w1 is weight  assigned in tree t1 

                                                          and w2  assigned in tree t2 between    edge   

                                                        connecting u and x by default  w is 1 

             end 

         finaldist=avg(dist I [u,x]) 

Stop  
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Figure 7. Maximum Parsimony Tree Generated Using Phylip T7 (Left) 
T8(Right) 

 

Figure 8. T9 Bootstrapped Tree with Confidence Values 
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Figure 9. T10 guide Tree Generated by ClustalW 

 

Figure 10. T11 Jukes Cantor Distance 

Table 3. Depicting Various Distances between Trees with Respect to Jukes 
Cantor Tree(T9) 

Distance  T12(maximum 

likelihood) 

T7 (maximum 

parsimony) 

T8 

(maximum 

parsimony) 

Branch Score .41 .494 .492 

Symmetric 

Distance 

4 2 0 

Distance 

algorithms 

.2 .2 .2 
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Table 4. Depicting Distances between Trees with Respect to Guide Tree 
ClustalW 

Distance  T11 T7 T8 

Branch Score .161 .132 .130 

Symmetric Distance 2 4 2 

Distance algorithms .4 .5 .5 

 

Tables 3 and 4 give the difference among the trees. The symmetric distance is 

calculated using treedist [11] module of PHYLIP which is based on Robinson foulds [16] 

metrics. The branch score distance [17] uses branch lengths, and can only be calculated 

when the trees have lengths on all branches. The distance of clustal W [12] tree (Figure 9) 

and Jukes–Cantor tree (Figure 10) is 0.3 and If we remove any edges connecting the 

nodes { Mouse, rat, loach, Carb, frog} from Jukes-cantor tree t9 its effect will be neutral 

but removing the edges connecting the nodes {human, chicken}{seal, cow, whale} will 

give positive results and also decrease the distances among the trees. As can be seen in the 

bootstrap tree branch connecting {loach, Carb, frog} and { Mouse, rat} have confidence 

value of 98% and 93%, whereas branch connecting {human, chicken} {seal, cow, whale} 

have confidence value 23%. Here the similarity between the trees is depicted as the 

distance between by assigning weight of 1 to each edge. Table 3 shows the maximum 

similarity with the clustalW tree using branch score and distance algorithm also it has the 

same set of nodes directly connected to each other, thus ignoring the topological 

dissimilarity. 

 

5. Conclusions 

This paper investigates the problem of tree comparison and validation. The similarity 

indicates how the distance algorithm has been effective in finding the significant branches 

in a tree. Note that the distance between the two trees gives a measure of similarity. For 

instance  higher the distance more dissimilar the trees are. 

Although Bootstrap has been the most widely used method for phylogenetic tree 

validation but as the dataset increases the confidence values may not signify the tree 

accuracy. MAST can be very useful for comparing two trees but being topology based it 

fails on one to one comparison. Moreover none of the methods gives information 

regarding the significance of branch, for which we have introduced pruning of each node 

one by one. The distance algorithm can be very informative if two trees share the same set 

of species but with different topologies. We have applied distance algorithm specifically 

for phylogenetic trees but the method can be a useful tool in general tree structured 

database as well. 
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