
International Journal of Database Theory and Application

Vol.10, No.1 (2017), pp.67-78

http://dx.doi.org/10.14257/ijdta.2017.10.1.07

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2017 SERSC

Assessing and Mining of Phylogenetic Trees

Geetika Munjal
*
, Madasu Hanmandlu, Sangeet Srivastva and Deepti Gaur

The NorthCap University Gurgaon, India

munjal.geetika@gmail.com

Abstract

Assessing and Mining phylogenetic trees is very useful in storing, querying the

phylogenetic databases, and finding an accurate phylogenetic tree for a set of species is

very difficult. Assessing a phylogenetic tree also resolves the problem of conflicting

phylogenies. This paper discusses the methods for validating and mining phylogenetic

trees. We propose a new way to compare two trees by accessing importance of node in

tree. This new method is applied on phylogenetic trees and the results compared with

symmetric distance, Maximum Agreement Subtree and Bootstrapped tree.

Keywords: Bootstrap, Phylogenetic, Tree mining, Sequence alignment

1. Introduction

The phylogenetic tree represents the relationship between a set of species, and presents

a model of molecular evolution Trees which is non-linear and semi-structured data

structure useful and is very common in data mining problems. Any type of data,

represented in the form of a tree is easy to analyze and understand. Tree mining is an

component of data mining where we can extract useful information from a set of trees. A

tree can be called as semi-structured data structure that shows a hierarchical relationship

among its nodes. Phylogeny comprises homology and homoplacy; the former is similarity

due to common ancestor while the latter is a parallel evolution [13]. The fundamental

component of phylogenetics is Taxa (specie) also called as leaves and analysis of

phylogenetics involves finding relationship among Taxa’s. The concept of tree mining

arises naturally in biology as a consistency among the evolutionary trees over the species.

It is difficult to obtain a true phylogeny if we are not provided with a particular set species

and a bootsrapping is promising way of gaining confidence in particular tree, and tree

mining helps us gain several lines of evidence in favor of a tree.

1.1. Information on Trees [1-2]

The trees can be rooted or unrooted and the rooted tree branches emerge from one root

so as to form a tree-like network. The evolutionary change and history can be visualized

in a rooted tree where root depicts the ancestor, the branches lead to the descendants, and

along that path, evolutionary change takes place, the species at leaf level are current day

species. The trees can be ordered if the order is defined among siblings and unordered if

no order is defined among siblings. In Figure 1(left) {4,5,6,7} are leaves whereas {2}

and{3} are ancestors of {4} {5,6,7} respectively and {1} is a root node. In an

evolutionary tree taxa is represented by its leaves and internal nodes are responsible for

representing the ancestral relationships.

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

68 Copyright ⓒ 2017 SERSC

Figure 1. Rooted (Left) and Unrooted Tree (Right)

An unrooted phylogenetic tree where every internal (i.e. non-leaf) vertex has a degree

of 3, there is no root and the edges can be spread to all sides. In the unrooted tree(right)

1,2,3,4 are leaves shown in Figure 1 which has both rooted and unrooted trees and

{13}{24} are leaf pairs. Unrooted trees are also called as free trees as they make no

inference about the ancestry of leaves but visualize relatedness among sequences/TAXA.

Embedded subtrees : Suppose we have a rooted tree T=(V,E,L) then T’ is said to be

an embedded tree of T where T’ is represented by T’=(V’,E’,L’). Maintenance of

ancestral relationship and Left to Right order of siblings are two necessary conditions of

an embedded relationship. Phylogenetic tree mining is a kind of embedded subtree

mining.

Figure 2. Original Tree (Left) Embedded Subtree (Right)

1.2. Induced Subtree [2-3]

In a tree T let the vertex set be V and edge set be E, then T’ with V’ and T’ with E’ be

the vertex set and edge set respectively. These are said to be the induced subtree of T only

when the labeling of E and V is preserved in T’. So an induced subtree follows Canonical

ordering of siblings and removes the leaf nodes repeatedly

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

Copyright ⓒ 2017 SERSC 69

Figure 3. Original Tree (Left) Induced Subtree (Right)

Mining of the frequent patterns in a tree is aimed at identifying the common patterns

[1]. A frequent subtree is a tree that is supported by at least some given number of the

input trees. Frequent subtrees can reveal common patterns. The frequent tree mining aims

at discovering all frequent subtrees from a large database of trees, which is referred to as

forest. Support is a major component in mining of the frequent patterns and is defined as

the total number of common subtree trees in the tree database. If there is one appearance

of a particular subtree in a forest then the support count is 1 and if appearance increases

its support count is also increased. A minimum threshold for the count is defined by the

user and a subtree whose support is greater than the user defined threshold then that tree is

said to be frequent. There are various frequent pattern mining algorithms. All the

algorithms follow the strategy used in the well known Apriori Algorithm that is based on

the iterative pattern mining where we break each iteration into two phases: i) Candidate

Generation: Frequent patterns discovered in one iteration are used to generate potentially

frequently candidates. We can merge two patterns with size k and consist of k-1 elements

to generate candidates with size k+1. ii). Support Counting: In this phase we find the

support of the frequent candidates, ignore the less frequent candidates and keep the

actually frequent candidates. Actually frequent candidates are those whose support is

greater than the user defined threshold. The scope list based method for frequent subtree

was introduced by Zaki [1] which follows the representation of the occurrence list and an

efficient candidate generation method. The goal of finding the frequent subtrees in

phylogenetics is to find a subset of the species on which all or some significant species

tree matches.

2. Phylogenetic Tree Building Methods [14-15]

Various tree building methods are characterized as either distance based methods or

character based methods. Distance based methods include unweighted pair grouping

using arithmetic mean(UPGMA) and neighbor joining and character based methods

include maximum parsimony and maximum likelihood. Distance based methods are based

on sequence similarity and are computationally fast but there are chances of information

loss due to data transformation. However they are good for large datasets [14]. Character

based methods require data in the form of the aligned sequences and are widely used for

inferring phylogenies. They include maximum parsimony method which aims at finding

the maximum parsimonious tree from all possible trees. This method determines the

mutations between the species to find the length of trees, and selects a tree having the

shortest length. The outcome of the maximum parsimony method is an unrooted tree with

the maximum parsimony score. Parsimony method has two motives: i) To construct all

possible trees, and. ii) To find a tree having the largest length by an algorithm. Problems

of maximum parsimony method is that the tree space is very huge as it generates unrooted

tree, i.e. one tree with 3 possible leaves and 3 trees with 4 possible leaves. As the number

of species increases, the possible unrooted trees increase very rapidly. So it is not possible

to do an exhaustive search on large datasets. This problem is solved by branch and bound

method which randomly constructs a tree by adding a specie and cutting the lineages

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

70 Copyright ⓒ 2017 SERSC

which are not compatible (depending on the length of tree) with the tree. It follows a

shortcut for perfection. In the Maximum likelihood method all possible branch lengths

and topologies are examined to obtain the likelihood of a tree. Finding the best suitable

tree for a small set of nodes is not very costly but as the set of nodes increases the

numbers of possible trees increase exponentially and the task becomes intensive, so the

next important thing is to find an optimal tree.

3. Validating Phylogenetic Trees

3.1. Bootstrapping Phylogenetic

Bootstrap is a sampling technique where the sequence data is re-sampled to create a

new alignment matrix of identical dimension, i.e. each bootstrap replicate contains the

same number of species. From each replication (artificial data), a tree can be

reconstructed using any of the available reconstruction techniques discussed above.

Bootstrap support values can be determined for every branch that connects two inner

nodes of the tree, that is, for each inner branch of the tree [5]. Support is a measure to give

a score to each clade among all bootstrap replicates. As many bootstrap trees are

generated through repeated sampling and the bootstrap score (or support) of a branch in

the inferred tree is computed as the proportion of the bootstrap trees that contains this

branch/clade. As finding a support value is our primary task in bootstrap analysis, so

some fast method is required to compare support, and also to explore the effect of using

increasing numbers of replicates on support values. Moreover bootstrap reflects the

results based on an alignment matrix and constructed tree if a there is some noise in the

matrix and tree construction method then it will lead to the incorrect assumptions [5]. The

bootstrap results are dominated by the alignment results and a wrong alignment will lead

to misguiding the bootstrap value. An alternate to bootstrap is Jack-knife methods but it

works on smaller datasets as it doesn’t duplicate the original dataset, but considers the

randomly selected samples from the dataset. Both bootstrapping and Jacknife suffer from

the problem of time complexity for large datasets. As the number of replicates increases

fast bootstrap can be used but the bootstrap value becomes imprecise [5]. In spite of

problems associated with bootstrapping it is a preferred method to find the stabilized

groups in a tree.

3.1 MAST

MAST step involves, for each of the clusters finding a majority accepted subtree

(MAST) as a consensus tree representing the overlap of the cluster. MAST is a strong

representative of the common Substructures as each MAST is embedded as a subtree in

each tree in the input collection; it does not give information about relationships among

species [6]. MAST is a representative of common substructures and it follows the concept

of embedded and isomorphic trees The MAST problem is polynomially-solvable for two

trees, but is NP-hard for three or more input trees. The complexity of MAST is O(n log n)

and its variant has a complexity of O(K n
3
 +n

3
) where k and n are the number of binary

rooted trees and the number of taxa respectively. MAST is also known as common pruned

tree and any of the pruned trees will be identical to the strict consensus tree of the pruned

input trees. MAST returns a set of trees and can also be used to summarize the results of

bootstrap [7]. All these trees need to be stored somewhere to choose the optimized one by

applying backtracking procedure. This entire process may lead to a combinatorial

explosion problem.

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

Copyright ⓒ 2017 SERSC 71

Figure 4. Maximum Agreement Subtree is T4 of T1,T2 and T3

4. Proposed Word

4.1. Distance Algorithm for Comparing Two Trees

We propose an optimized solution for comparing two trees where we can prune each

specie to reach for the best results after analyzing the pruning effect. To know the pruning

effect on a tree the bootstrap tree needs to be parsed again. This comparison metric tells

whether the two trees fall under the category of similar trees or dissimilar trees and then

by pruning the edges one at a time we can find which edge is responsible for the

maximum distance.

Figure 5. Figure To Illustrate Distance Algorithm for Comparing T5 and T6

Distance between each possible combination of nodes is calculated and after that the

edges are pruned

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

72 Copyright ⓒ 2017 SERSC

Table1. Distance among Tree T5 and T6

Nodes Distance (T1) Distance (T2) T1 –T2

AB 2 2 0

AC 3 4 1

AD 4 5 1

AE 5 3 2

AF 5 5 0

BC 3 4 1

BD 4 3 1

BE 5 5 0

BF 5 5 0

CD 3 3 0

CE 4 3 1

CF 4 3 1

DE 3 4 1

DF 3 4 1

EF 2 2 0

Table 1 gives the node-wise distance between the trees T5 and T6 . Counting the

number of nodes having the same distance, where the difference is either 0 or 1 the

number of nodes having different distance can be found. If the nodes having the same

distance is greater than the latter then the two trees can be put in a similar category

otherwise they are considered dissimilar. As can be seen in Table 1 the total number of

possible combination of nodes is 15, number of nodes having the same distance is 6 and

number of nodes having different distances is 9. Here the number of nodes having

different distances is greater than the nodes having the same distance and distance is 9/6,

i.e. 1.5. So these two trees can be considered dissimilar. But applying tree pruning, i.e.

eliminating some portion of the tree we can get very useful results. Sometimes, the tree

becomes so large that a specific part of the tree is not useful at all. Eliminating that part

does not affect the overall results of the tree and it is better to prune that part. As shown in

Figure 6 pruning the connecting edges As of the trees T5 and T6 one at a time we obtain

the trees T7 and T8 respectively and then apply the distance algorithm.

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

Copyright ⓒ 2017 SERSC 73

Figure 6. Resultant Trees after Pruning Edge A from T5 and T6

We have removed the edge A from both the trees; now applying the distance algorithm

on the above trees we obtain the distances between the nodes (BC) as 3 and 4 respectively

for the trees T3 and T4. We computes the distances among all nodes (BD, BE, BF, CD,

CE, CF, DE, DF, EF) in T3 and T4. Here the possible combination of nodes is 10 and the

number of nodes having the same distance is 6. The number of nodes having a different

distance is 4. So from the above results, we can say that pruning edge A has no positive

effect. The total nodes are 10 and the distance between the tree after pruning edge A is

6/5, i.e 1.2. The results of pruning each edge from T1 and T2 are shown in Table 1. By

pruning edges C and D, there is a positive effect because the nodes having a different

distance are greater.

Table 2. Reflecting the Effect of Pruning in Trees in T5 and T6

Pruned edge Number of

Nodes having

same distance

Number of

Nodes having

different

distance

Distance Pruning

effect t on

tree

A 6 4 1.2 neutral

B 4 6 1.2 positive

C 6 4 0.8 neutral

D 4 6 0.6 positive

E 6 4 1.2 neutral

F 5 5 1.2 neutral

Table 2 shows the distances between trees T3 and T4 after pruning each edge. So the

average distance comes out to be 1.06

Algorithm finaldist

Input: Tree t1(u,k) & t2(v,k)// u and v are the edges and k is number

 of node

Output: finaldist //distance between two trees

dist array |t1,t2| //array of distance between two trees t1 and t2

 finaldist=0,dist[u,v] = 0

for i=1 to k //For each vertex v in tree t1 and t2

by pruning i each edge in t1 and t2

 for j=1 to n-I // where n is the number of edges

 distj [u,x] = ∑w1(u,x) +w2 // where w1 is weight assigned in tree t1

 and w2 assigned in tree t2 between edge

 connecting u and x by default w is 1

 end

 finaldist=avg(dist I [u,x])

Stop

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

74 Copyright ⓒ 2017 SERSC

Figure 7. Maximum Parsimony Tree Generated Using Phylip T7 (Left)
T8(Right)

Figure 8. T9 Bootstrapped Tree with Confidence Values

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

Copyright ⓒ 2017 SERSC 75

Figure 9. T10 guide Tree Generated by ClustalW

Figure 10. T11 Jukes Cantor Distance

Table 3. Depicting Various Distances between Trees with Respect to Jukes
Cantor Tree(T9)

Distance T12(maximum

likelihood)

T7 (maximum

parsimony)

T8

(maximum

parsimony)

Branch Score .41 .494 .492

Symmetric

Distance

4 2 0

Distance

algorithms

.2 .2 .2

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

76 Copyright ⓒ 2017 SERSC

Table 4. Depicting Distances between Trees with Respect to Guide Tree
ClustalW

Distance T11 T7 T8

Branch Score .161 .132 .130

Symmetric Distance 2 4 2

Distance algorithms .4 .5 .5

Tables 3 and 4 give the difference among the trees. The symmetric distance is

calculated using treedist [11] module of PHYLIP which is based on Robinson foulds [16]

metrics. The branch score distance [17] uses branch lengths, and can only be calculated

when the trees have lengths on all branches. The distance of clustal W [12] tree (Figure 9)

and Jukes–Cantor tree (Figure 10) is 0.3 and If we remove any edges connecting the

nodes { Mouse, rat, loach, Carb, frog} from Jukes-cantor tree t9 its effect will be neutral

but removing the edges connecting the nodes {human, chicken}{seal, cow, whale} will

give positive results and also decrease the distances among the trees. As can be seen in the

bootstrap tree branch connecting {loach, Carb, frog} and { Mouse, rat} have confidence

value of 98% and 93%, whereas branch connecting {human, chicken} {seal, cow, whale}

have confidence value 23%. Here the similarity between the trees is depicted as the

distance between by assigning weight of 1 to each edge. Table 3 shows the maximum

similarity with the clustalW tree using branch score and distance algorithm also it has the

same set of nodes directly connected to each other, thus ignoring the topological

dissimilarity.

5. Conclusions

This paper investigates the problem of tree comparison and validation. The similarity

indicates how the distance algorithm has been effective in finding the significant branches

in a tree. Note that the distance between the two trees gives a measure of similarity. For

instance higher the distance more dissimilar the trees are.

Although Bootstrap has been the most widely used method for phylogenetic tree

validation but as the dataset increases the confidence values may not signify the tree

accuracy. MAST can be very useful for comparing two trees but being topology based it

fails on one to one comparison. Moreover none of the methods gives information

regarding the significance of branch, for which we have introduced pruning of each node

one by one. The distance algorithm can be very informative if two trees share the same set

of species but with different topologies. We have applied distance algorithm specifically

for phylogenetic trees but the method can be a useful tool in general tree structured

database as well.

References

[1] Zaki, Mohammed Javeed. "Efficiently mining frequent trees in a forest: Algorithms and applications."

IEEE transactions on knowledge and data engineering 17.8 (2005): 1021-1035.

[2] Aida Jimenez, Fernando Berzal, and Juan Carlos Cubero “Mining Diff erent Kinds of Trees: A Tree

Mining Overview” CEDI, September 2007, pp 343-352.

[3] Tatsuya Asai1, Hiroki Arimura1, Takeaki Uno, and Shin-ichi Nakano,”Discovering Frequent

Substructures in Large Unordered Trees”, Conference on discovery science, 2003, pp. 47-61.

[4] John Bluis and Dong-Guk Shin, “Nodal Distance Algorithm: Calculating a Phylogenetic Tree

Comparison Metric” Computer Science and Engineering University of Connecticut Storrs, CT 06269-

3155, USA ,Bioinformatics and Bioengineering,IEEE,2003,PP 87-94.

[5] Yu Lin, Vaibhav Rajan, Bernard M.E.Moret “A metric For Phylogenetic Trees Based On Matching”

IEEE, Volume 9, July 2012, pp 1014-1022.

[6] Hong Huang and Yongji Li “MASTtreedist: Visualization of Tree Space based on Maximum Agreement

Subtree” Journal of Computational Biology, Jan 7,2013, PP 42-49.

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

Copyright ⓒ 2017 SERSC 77

[7] Vincent Berry & Franc ois Nicolas “Maximum agreement and compatible supertrees” Journal of

Discrete Algorithms, Volume5, September2007,pp 564-591

[8] Hasan H. and Khalid S. “A new sequence distance measure for Phylogenetic tree construction”

OxfordJournal for Bioinformatics vol 19, pp 2122-2130, 2003.

[9] Damian Bogdanowicz and Krzysztof Giaro “Matching Split Distance for Unrooted Binary Phylogenetic

Trees” IEEE/ACM Trans. on Computational Biology and Bioinformatics, Volume 9 Issue 1, January

2012 pp 150-160.

[10] Bryant, David, et al. "Computing the quartet distance between evolutionary trees." Symposium on

Discrete Algorithms: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete

algorithms. Vol. 9. No. 11. 2000.

[11] Felsenstein, Joseph. "{PHYLIP}: phylogenetic inference package, version 3.5 c." (1993).

[12] “ clustal omega” http://www.ebi.ac.uk/services

[13] Bernard M. E. Moret and Tandy Warnow, “Reconstructing Optimal Phylogenetic Trees :A challenge in

Experimental Algorithmics” LNCS springer 2547, pp. 163–180, 2002.

[14] Jeffrey Rizzo and Eric C. Rouchka, “Review of Phylogenetic Tree Construction” University of

Louisville, Bioinformatics review(report) 2007.

[15] R.Potter, Constructing Phylogenetic Trees using Multiple Sequence Alignment, Master thesis,

University of Washington 2008

[16] Robinson, DavidF, and Leslie R. Foulds. "Comparison of phylogenetic trees." Mathematical biosciences

53.1 (1981) pp.131-147.

[17] Kuhner, Mary K., and Joseph Felsenstein. "A simulation comparison of phylogeny algorithms under

equal and unequal evolutionary rates." Molecular Biology and Evolution 11.3 (1994) pp. 459-468.

[18] Munjal, Geetika, Madasu Hanmandlu, and Deepti Gaur. "A New Alignment Free Method for

Phylogenetic Tree Construction." International Journal of Database Theory and Application 8.6 (2015):

pp. 111-124.

[19] Geetika, Hanmandlu, M., and Deepti Gaur. "Analyzing DNA Strings using Information Theory

Concepts." Proceedings of the Second International Conference on Information and Communication

Technology for Competitive Strategies. ACM, 2016.

[20] Hanmandlu, M., Ashish Sani, and Deepti Gaur. "Modified k-Tuple Method for the Construction of

Phylogenetic Trees." Trends in Bioinformatics 8.3 (2015): 75.

International Journal of Database Theory and Application

Vol.10, No.1 (2017)

78 Copyright ⓒ 2017 SERSC

