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Abstract 

Implementations of state-machine replication prevalently use the variants of Paxos. 

Some of the recent variants of Paxos like, Ring Paxos, Multi-Ring Paxos, S-Paxos and 

HT-Paxos achieve significantly high throughput. However, to meet the growing demand 

of high throughput, we are proposing HT-Ring Paxos, a variant of Paxos that is basically 

derived from the classical Paxos. Moreover, it also adopts some fundamental concepts of 

Ring Paxos, S-Paxos and HT-Paxos for increasing throughput. Furthermore, HT-Ring 

Paxos is best suitable for clustered data centers and achieves comparatively high 

throughput among all variants of Paxos. However, similar to Ring Paxos, latency of the 

HT-Ring Paxos is quite high as compared with other variants of Paxos.  
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1. Introduction 

Most of the database applications use State Machine Replication (SMR) [1] [6] for 

increasing the availability and performance of the database systems. Replication of data 

provides that the failure of one or more replicas does not prevent the operational replicas 

from executing client requests. Implementations of SMR prevalently use the variants of 

Paxos [4], such as, Google’s Megastore [25], chubby lock service [14] and yahoo’s Zab 

[24] are few popular variants of Paxos.   

In leader based protocols, bottleneck is generally found at the leader and the maximum 

throughput is limited by the leader’s resources (such as CPU and network bandwidth). 

Moreover, increasing the number of client requests results in a decrease of the throughput. 

Since the bottleneck is at the leader, more additional replicas may not improve 

performance; in fact, it decreases throughput since the leader requires to process 

additional messages. 

Ring Paxos [23] offloads the leader by ordering of ids (of client requests) by the leader 

instead of client requests, dissemination of requests and learned-ids by the leader through 

ip-multicasting, a ring of acceptors (it reduces the number of messages sent to other 

acceptors and received from other acceptors by the leader), batching of requests at the 

leader and use of pipelining (i.e. parallel execution of ring Paxos instances).   

However, in Ring Paxos leader still requires to handle all client communications, 

assigns unique id to client requests, disseminates client requests to all acceptors and 

learners. Any client also requires knowing about the leader; if leader fails then service 

will interrupt until the election of a new leader.   

S-Paxos [29] offloads the leader by distributed client communications among all non-

faulty replicas, disseminating client requests among replicas in a distributed manner, 

ordering of ids (of client requests) by the leader instead of client requests using classical 

Paxos [3] [4], batching the client requests and use of pipelining.   
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However, in S-Paxos, every non-faulty replica (including leader) receives all client 

requests either directly from clients or through other replicas (all these requests may reach 

to the leader in less number of messages compare to Ring Paxos, because of the batching 

at various replicas). Moreover, leader partially disseminates the client requests and 

partially handles client communications. In addition, leader also handles all messages 

belongs to classical Paxos. High number of messages at leader adversely affect 

throughput.   

HT-Paxos [32] adopts all aforementioned concepts of S-Paxos for offloading the 

leader. In addition, it further offloads the leader by eliminating the work of handling client 

communications and client request dissemination from the leader, instead it only receives 

the batch ids (or request ids) and arranges them in an order (unlike S-Paxos and Ring 

Paxos). Moreover, as compare to S-Paxos, HT-Paxos significantly reduces the 

acknowledgement messages at disseminators in large clustered data centers (unlike S-

Paxos, where every disseminator sends acknowledgement messages to every other 

disseminator). Therefore, leader as well as other disseminators becomes truly lightweight 

and hence for any large clustered data center, HT-Paxos provides higher throughput. 

Furthermore, it uses the concept of multiple LANs for avoiding the collision that 

adversely affect throughput. In S-Paxos every replica is also a broadcaster. Multiple 

broadcasters on a single LAN may adversely affect throughput. 

In this paper, we are proposing HT-Ring Paxos (HT stands for high throughput) a 

variant of Paxos, that is basically derived from the classical Paxos and among other high 

throughput Paxos protocols, it largely adopts the basic fundamental concepts of Ring 

Paxos. In addition, it also incorporates some fundamental concepts of S-Paxos and HT-

Paxos to further offload the leader. HT-Ring Paxos is best suitable for clustered data 

centers and achieves comparatively high throughput among all variants of Paxos. 

Moreover, like other high throughput Paxos protocols, HT-Ring Paxos also offloads the 

leader by ordering of ids (of client requests) by the leader instead of client requests and 

using the concepts of batching and pipeline. Furthermore, HT-Ring Paxos adopts a ring of 

acceptors (Like Ring Paxos, for reducing the total number of messages sent to other 

acceptors and received from other acceptors by the leader, it also reduces the bandwidth 

requirements). However, HT-Ring Paxos adopts distributed client communications among 

all non-faulty replicas as well as it also disseminates client requests among replicas in a 

distributed manner (Unlike Ring Paxos). HT-Ring Paxos uses the concept of multicasting 

for dissemination of requests and learned-ids (Like Ring Paxos). In order to avoid 

collisions (multiple sources of ip-multicast on a single LAN largely impact throughput 

[19]) and to increase reliability of communication channel, it uses the concept of multiple 

LANs (Like HT-Paxos). 

Organization of this paper is as follows, Next section presents a system model. 

Moreover, Section 3 proposes the HT-Ring Paxos. While Section 4 presents a 

comparative analysis of proposed work with other related work. Finally, concluding 

Section discusses the advantages of HT-Ring Paxos. 

 

2. System Model 

HT-Ring Paxos is basically derived from the classical Paxos and also uses some 

fundamental concepts of Ring Paxos, S-Paxos and HT-Paxos. Like classical Paxos, HT-

Ring Paxos have the three classes of agents as proposers, acceptors and learners, wherein 

each acceptor also assumes a role of coordinator. Among all coordinators, one coordinator 

works as a leader. HT-Ring Paxos has the same fundamental guarantees as with the case 

of the classical Paxos, like, Nontriviality, Stability, Consistency and Liveness.    

We assume that clustered data center have multiple LANs (local area networks), all 

acceptors and learners subscribe to all the LANs. We further assume that at most and at 

least one acceptor can multicast or broadcast for each LAN. Moreover, we call such an 

acceptor as a broadcaster. Any acceptor can be a broadcaster of one or more LANs. On 
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being a broadcaster of multiple LANs, acceptor randomly chooses a LAN from all such 

LANs for broadcasting or multicasting.  Furthermore, leader will always be a broadcaster. 

We also assume that for any two non-faulty acceptors, the difference of number of LANs 

for which these are broadcaster cannot be more than one. At any computing site, there 

could be at most one acceptor and one learner. Each computing node has two buffers for 

each LAN, one for incoming messages and another for outgoing messages.     

Like classical Paxos, we assume that agents communicate through messages. These 

messages can take arbitrarily long time for reaching their destinations, can be duplicated, 

can be delivered out of order, and can be lost. Moreover, system detects all corrupted 

messages and considers such messages as lost. Furthermore, agents discard duplicate 

messages and proposals. 

Like classical Paxos, we assume the customary partially synchronous, non-Byzantine, 

and distributed model of computation. Thereby agents may fail by stopping, may restart, 

may operate at arbitrary speed, and always perform an action correctly. Agents have 

access to stable storage whose state survives failures.  

We assume that, at least 
/ 2 1n     acceptors will always remain non-faulty out of the 

total n acceptors and at least one learner will always be non-faulty. Furthermore, like 

Ring-Paxos, a circular ring of acceptors is assumed which constitutes a majority. Any 

failure of acceptor in a ring requires a view change.  

For sending a message, two primitives are used (i) Send < message > to one receiver 

(ii) Multicast < message > to multiple receivers. Send primitive is for one to one 

communication and Multicast primitive represents that sender sends a single message but 

specified multiple receivers can receive this message. We can implement this multicasting 

by using Ethernet/hardware multicasting or by using IP multicasting. Moreover, we also 

assume that if any agent does not get intended reply then it resends the message after a 

certain TIMEOUT. 

 

3. HT-Ring Paxos 
 

3.1. An Overview 

Like classical Paxos, HT-Ring Paxos may also execute the various instances of the 

protocol at once, where each instance has a unique instance number i and learner of each 

instance can learn only a single value. At various sites, learners of the same instance 

number will learn the same value. Moreover, all learners learn the values in the order of 

instance numbers. Unlike classical Paxos, HT-Ring Paxos achieves the consensus on the 

id rather than request or proposal (like, Ring Paxos, S-Paxos and HT-Paxos). Because, in 

general, it reduces the bandwidth requirements.  

Leader election protocol elects a leader and sets the leader variable of leader as TRUE 

and leader variable of others as FALSE. Moreover, leader election protocol also achieves 

consensus on I and lsn where, I is the highest known instance number among all the non-

faulty coordinators at the time of leader election (coordinator may read instance numbers 

written by any agent on the stable storage). We consider its initial value as null. Whereas, 

lsn is a leader sequence number. Initially its value is null and non-faulty coordinators at 

the time of leader election increments its value by one and then achieve consensus on the 

maximum value of lsn among any majority of non-faulty coordinators. Leader election 

protocol writes the updated values of leader, I and lsn on stable storage. 

Any proposer (client) sends request (request contains a proposal and their unique id) to 

any one coordinator (randomly chosen). Moreover, if proposer (client) does not receive a 

reply message < id > in a reasonably long time, then it periodically sends same request to 

any one coordinator (randomly chosen) until it gets a reply. 

After receiving a request from any proposer, coordinator inserts the request into 

req_set, if it does not exist. After that, if it is a broadcaster then it multicasts the request to 
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all other coordinators and learners, in addition, on being a leader too, it calls a new 

instance of this protocol. Otherwise, it forwards the request to any randomly chosen 

broadcaster. 

After receiving a request from any coordinator through one to one communication, 

coordinator inserts the request into req_set, if it does not exist. After that, if it is a 

broadcaster then it multicasts the request to all other coordinators and learners.  In 

addition, on being a leader too, it calls a new instance of this protocol.  

As explained in [5], variables 
[[ ], ], [] ], [ ][ ,c rnd a vrndrnd c a vvcva alc al

in HT-Ring Paxos 

also have the same meanings as in classical Paxos. HT-Ring Paxos updates these 

variables like classical Paxos but the difference here is that the variables 
[ ], [ ]vvcv l alc aa either have an id of any request (instead of any request) or a null value.   

Upon startup, if i < I (highest known instance number), no value has been learned at 

instance i and [ ]crnd c lsn then after assigning the value of lsn to
[ ],crnd c

leader sends 

phase 1a messages to any majority of acceptors. Moreover, if 
[ ]crnd c lsn

 then it sends 

phase 2a message to the successor. 

 In HT-Ring Paxos, how the messages of various phases reach their destination is quite 

different as compared to classical Paxos. 

 

 

Figure 1. Message Flow as per the Basic Algorithm of HT-Ring Paxos under 
No Failures 

3.1. Optimizations of HT-Ring Paxos 

We introduce a few optimizations in HT-Ring Paxos, most of which have been 

described previously in the literature. Under high load conditions, any 

broadcaster/acceptor may wait for more client requests for making a batch of client 

requests and then creates a batch id, now it multicasts <batch, batch id>.  Leader can 

achieve consensus for these batch ids.  At the leader, Phase 2 is executed for a batch of 

proposed ids, and not for a single id; one consensus instance can be started before the 

previous one has finished. Placing any suitable quorum system [31] for the construction 

of a ring can reduce the number of communication steps to reach a decision and may 

increase fault tolerance but at the cost of availability (for the construction of a ring in HT-

Ring Paxos, we have earlier considered a majority quorum systems [7] for the higher 

availability). Finally, leader can club various multicast messages (if they are concurrently 

available to send) into a single one and then multicast.  

Moreover, instead of having a fixed ring of acceptors, we can choose an alternative 

approach. We can assign each acceptor a unique natural number j in a sequence, starting 

from one. Any acceptor
  modj d n

 will be the successor of acceptor j, where, initially, 

d is a natural number equal to one. Any acceptor (including leader) will always 

acknowledge to the sender acceptor (including leader). After a certain timeout, if acceptor 
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does not receive an acknowledgment then it increases d by one and again sends the 

message to the successor. This approach does not require a view change on every failure 

of an acceptor in the ring. However leader will receive an extra acknowledgment from the 

first acceptor of the ring and will send an extra acknowledgment to the last acceptor of the 

ring under normal operations. 

 

4. Comparative Analysis 

Throughput of any system can be increased by increasing the processing power of 

computers and increasing the bandwidth of communication network. This solution may 

not be suitable for increasing throughput every time for either technological and/or 

economic reasons.  

Alternatively, we can adopt a more scalable and throughput efficient state machine 

replication protocol, i.e., a state machine replication protocol that requires comparatively 

less computation at individual computers and less data communication at individual 

LANs/ individual computers. In addition, more scalable state machine replication protocol 

allows us to increase throughput by increasing more computers and more LANs. 

However, after a certain limit, it cannot scaled up because of coordination overload; in 

fact, it may start reducing the throughput. This limit depends on the protocol that we use.  

Compare to earlier versions of Paxos (like classical Paxos, fast Paxos or generalized 

Paxos), new variants of Paxos (like ring Paxos, multi-ring Paxos, S-Paxos and HT-Paxos) 

increase the scalability and throughput by reducing the processing and bandwidth 

requirements at the busiest computing node. Now, we start comparing the processing and 

bandwidth requirements of various Paxos protocols that affects system scalability and 

throughput. 

 

4.1. Processing Requirements 

In general, processing requirements reduce at any individual computing node, if it 

requires to response or process a less number of messages for state machine replication 

protocols. Therefore, we require analyzing the total number of messages required at the 

busiest node for some given number of client requests.  

Moreover, Data communication also requires some processing at any individual 

computing node. Higher data communication at any individual computing node also 

requires higher processing requirement. We will discuss this requirement in the next 

bandwidth requirements section. 

 

4.1.1. Comparative Message Analysis 

 

 

Figure 2. Comparison among Mentioned Variants of Paxos for the 
Messages Requirements at the Busiest Computing Nodes, where Total 

Number of Acceptors (Acceptors/Disseminators in Case of S-Paxos and HT-
Paxos) = 40. 
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Figure 3. Comparison among Mentioned Variants of Paxos for the 
Messages Requirements at the Busiest Computing Nodes, where, Total 
Forty Acceptors (Disseminators/Acceptors in Case of S-Paxos and HT-

Paxos) = 40 

As shown in Figure 2, the very high number of messages in classical Paxos and ring 

Paxos are because of the fact that all client communication passes through the leader. S-

Paxos, HT-Paxos and HT-Ring Paxos decentralize the client communication. As shown in 

Figure 3, Message advantage of HT-Paxos over S-Paxos is because of the fact that in S-

Paxos, every disseminator is required to send an acknowledgement message to every 

other disseminator, in HT-Paxos acknowledgement message goes only to the sender 

disseminator. Moreover, HT-Ring Paxos have the advantage over S-Paxos and HT-Paxos 

because of the ring of the acceptors and it does not require at all the acknowledgement 

messages as these were used in the S-Paxos and HT-Paxos for the purpose of stabilizing 

the requests. 

 

4.2. Bandwidth Requirements 

Bandwidth requirement of any communication network depends upon the size of data 

(requests) and number of messages required to communicate by any computer. If any 

protocol requires more messages than due to message overhead, more data will pass 

through the communication network, hence will requires higher bandwidth.  

In any data center, bottleneck may be the bandwidth of communication network, in 

such a case, either we replace the lower bandwidth LAN with higher bandwidth LAN or 

adopt multiple LANs. First option may not be convenient for either technological or 

economic reasons. In data centers, we do not require big data cables; therefore, 

economically it may not a big issue in any large data center. 

However, if bottleneck is network sub system of any computing node that handles data 

communication (because of handling more data) then replacement of computing node 

with higher processing power computing node may really be a big issue. Therefore, it is 

important to analyze the bandwidth requirements of individual computing nodes of the 

various variant of Paxos.  

For the analysis of bandwidth requirements of individual computing nodes, we are 

considering the message overhead of 128 bytes (as IP packet header, Ethernet frame 

preamble, gap, header, footer, other network protocols like ARP etc and variables used in 

the protocol create overheads). Bigger message overhead will be in the favor of our 

proposed protocol, because our proposed protocol requires fewer messages as mentioned 

above,  
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Figure 4. Comparison of Bandwidth Requirements at the Mentioned 
Computing Nodes of the Various Mentioned Variant of Paxos, where, Total 

Number of Acceptors (Acceptors/Disseminators in Case of S-Paxos and HT-
Paxos) = 40, and Data Size of Request = 1k bytes 

 

Figure 5. Comparison of Bandwidth Requirements at the Mentioned 
Computing Nodes of the Various Mentioned Variant of Paxos, where, Total 

Number of Acceptors (Acceptors/Disseminators in Case of S-Paxos and HT-
Paxos) = 40, and Data Size of Request = 1k bytes 

As shown in Figure 4, leader of classical Paxos handles extremely large amount of 

data, because this protocol achieves consensus on request (or batch of requests) rather 

than request id or batch id. Other variants of Paxos for high throughput achieves 

consensus on request id or batch id.      

As shown in Figure 5, leader of ring Paxos handles large amount of data as compare to 

other variants of high throughput Paxos, because leader of ring Paxos handles all client 

communications. In case of fewer requests, ring Paxos performs better than S-Paxos, 

because of comparatively large number of acknowledgement messages at the leader (also 

at other disseminators) of S-Paxos.  

As shown in Figure 5, leader of HT-Paxos handles less data compare to leader of 

classical Paxos, ring Paxos and S-Paxos because of decentralized client communications 

like S-Paxos; however, because of fewer acknowledgement messages compare to S-

Paxos, HT-Paxos handles even less data compare to S-Paxos. 

As shown in Figure 5, leader of HT-Ring Paxos handles less data compare to all 

mentioned variants of Paxos, because of decentralized client communications like S-

Paxos and HT-Paxos. However, because of the ring of the acceptors and it no 

acknowledgement messages the HT-Paxos handles least data among all variants of Paxos. 
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4.3. Latency 

When client directly send their request to the leader, HT-Ring Paxos takes (m +2) 

message delays in the best case for learning the client request, where, m represents a total 

number of acceptors in the ring.  Otherwise, if client sends their request to any 

broadcaster except leader then it takes (m +3) message delays in the best case. If client 

sends their request to any coordinator except broadcasters then it takes (m +3) message 

delays in the best case, if this coordinator sends request directly to the leader in the next 

step. Otherwise, it takes (m +4) message delays in the best case. Moreover, Ring Paxos 

take (m +2) message delays in the best case.  

HT-Paxos and S-Paxos take six message delays in the best case (for message-

optimized version of classical Paxos in the ordering layer). While, classical Paxos takes 

four message delays in message-optimized version and three message delays otherwise in 

the best case. Moreover, fast Paxos and generalized Paxos take only two message delays 

in the best case. 

 

4.4. Response Time 

When client directly send their request to the leader, HT-Ring Paxos takes (m +2) 

message delays in the best case for responding to the client request, where, m represents a 

total number of acceptors in the ring.  Otherwise, if client sends their request to any 

broadcaster except leader then it takes (m +4) message delays in the best case. If client 

sends their request to any coordinator except broadcasters then it takes (m +4) message 

delays in the best case, if this coordinator sends request directly to the leader in the next 

step. Otherwise, it takes (m +5) message delays in the best case. Moreover, Ring Paxos 

takes (m +2) message delays in the best case.  

HT-Paxos takes four message delays for responding to the client request in the best 

case. S-Paxos take six message delays in the best case. Moreover, classical Paxos takes 

only four message delays (for message-optimized version of classical Paxos). 

 

4.5. Other Related Work 

Zab [24] is a variant of the Paxos, basically designed for the yahoo’s Zookeeper 

coordination service (a primary-backup data replication system). In zookeeper, any client 

sends their request to any replica (either leader or follower). Follower replica forwards all 

update requests to the primary replica for taking the services of Zab. Zab is a centralized 

protocol, where primary replica disseminates the update requests to all other replicas and 

the leader that generally is on the same primary replica site works for ensuring a proper 

order of the requests. Because of the centralized approach of the Zab, in any large 

clustered data centers bottleneck may be the resources of the leader’s site (or primacy’s 

site as Zab considers both on the same site). Therefore, under very high workload 

conditions throughput and scalability will obviously be less in any large clustered data 

center.  

Mencius [18] works on a moving sequencer approach [9] to prevent the leader from 

becoming the bottleneck. It partitions the sequence of instances of the protocol among all 

replicas and each replica becomes a leader of an instance in a round-robin fashion. After 

failure of any replica, Mencius reconfigures the system to exclude all failed replicas. 

Moreover, even in the case of failure free execution, leader of Mencius disseminates as 

well as orders all the available client requests. Under heavy load environment, leader of 

Mencius will handle more number of messages as well as more data as compared HT- 

Ring Paxos. However, Mencius was designed for optimizing state-machine replication 

protocol for WAN environment. Contrary to this HT-Ring Paxos is for clustered 

environment.         

LCR [22] is a high throughput state-machine replication protocol base on virtual 

synchrony model [20] instead of Paxos. LCR arranges replicas in a logical ring and uses 
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vector clocks for message ordering. LCR is a very much decentralized protocol; thereby it 

utilizes all available system resources properly. However, latency and response time 

increases linearly with the number of replicas in the ring. In large clustered data centers as 

we are considering for, this number could be very significant. Although, LCR has slightly 

better bandwidth efficiency, Moreover, LCR requires reconfiguration of the system after 

every failure for ensuring progress and perfect failure detection is required i.e. 

erroneously considering a replica to have crashed is not tolerated, it implies stronger 

synchrony assumptions.  

Multi-Ring Paxos [27] uses the concept of State partitioning [8] for achieve scalability. 

Multi-Ring Paxos have various logical groups. Each logical group has an instance of ring 

Paxos. Learner may subscribe to any one or more logical groups. If a learner subscribes to 

multiple logical groups then Multi-Ring Paxos uses a deterministic procedure to merge 

messages coming from different instances of ring Paxos. However, proposed HT-Ring 

Paxos can also adopt the concept of state partitioning as broadcasters can multicast the 

client request to only interested learners. 

 

5. Conclusion and Future Work 

Paxos based protocols are very prominent for replica control. Earlier versions of Paxos 

(like classical Paxos, fast Paxos or generalized Paxos) were more focused on fault 

tolerance and latency but throughput was comparatively low. However, in current 

scenario, throughput requirement is increasing significantly. HT-Ring Paxos is a variant 

of classical Paxos designed for achieving significantly high throughput and scalability. 

Moreover, it is best suitable for large clustered data centers and achieves the best 

throughput and scalability among all variants of Paxos.   

Throughput may be limited because of (i) processing power of CPU or (ii) data 

handling capacity of network sub system of any computing node or (iii) bandwidth of 

communication networks. Since, in clustered data centers, computing resources are 

generally more costly than data cables. Therefore, high throughput replica control 

protocols should avoid bottleneck of CPU and network subsystems through less 

computing requirements of CPU and less bandwidth requirements at any individual 

computing node. HT-Ring Paxos achieves all these goals very significantly for improving 

throughput and scalability.  

However, latency and response time of the HT-Ring Paxos as compared to other high 

throughput state-machine replication protocols are as high as of Ring Paxos in the best 

case otherwise slightly higher. Moreover, HT-Ring Paxos achieves the same fault 

tolerance as classical Paxos.  

As future work, we plan to apply our technique to Byzantine faults, and will optimize 

HT-Ring Paxos for WAN. 
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