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Abstract 

In the standard spectrum clustering algorithm, the metric based on Euclidean space 

can not represent the complicate space distribution feature of some data set, which might 

lead to the clustering result inaccuracy. While the geometric relationship between data 

can be describe more precise by manifold space. Considering Grassmann manifold is a 

entropy of Lie group, which not only has the smooth curved surface but also has the 

feature more fit for measuring the distance between data. All these can make the 

clustering result more accurate. The improved spectrum clustering analysis algorithm 

based on the distance metric under Graasmann manifold is proposed by this paper. The 

similarity between data is analyzed under manifold space. Experimental results show that 

the proposed algorithm can cluster data set either belonging the same or different 

subspace more accurately, further more, it can cluster data set with more complicate 

geometric structure under manifold space efficiently. 

  

Keywords: clustering analysis; Lie group; Grassmann manifold; spectrum clustering; 
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1. Introduction  

Clustering analysis is the basis of modern data analysis. Clustering is to group data 

objects into multiple clusters, which makes the objects in the same cluster have high 

degree of similarity, while objects in different clusters are of great difference. This kind of 

algorithm firstly defines a matrix describing the similarity between the date points 

according to the given sample data set, and calculates the eigenvalues and eigenvectors of 

the matrix, then clusters different data points by selecting the appropriate feature vectors 

[1-2]. Classification based clustering method has been widely used in pattern recognition, 

data mining and other fields, and it is still the source of many research work. K means 

clustering and FCM(Fuzzy C means clustering) clustering are typical representatives of 

this kind of algorithm. In recent years, the research results mainly include: the density 

weighted fuzzy clustering algorithm [3], the double exponential fuzzy C mean algorithm 

[4] based on the hybrid distance learning and so on. The advantages of this kind of 

algorithm can be attributed to the fast convergence speed and easy to extend [5]. These 

algorithms can obtain more accurate classification results when the data set to be analyzed 

is consistent with the assumption of the model structure [6-7].But they usually need to 

specify the number of clusters. In addition, the selection of the initial cluster center, the 
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existence of noise data and the number of clusters set will have great influence on the 

clustering results. Especially when the data structure is complicated, the classification 

results of these algorithm are not accurate. 

Usually spectral clustering analysis method are used to deal with the complicated 

problem of data clustering [8]. Essentially, spectral clustering algorithm educes the new 

characteristics of the objects to be clustered by the theory on matrix spectral analysis, and 

clusters the original data using the new data features [1]. And spectral clustering 

algorithm based on normal Laplasse matrix is one of the typical algorithms, which is also 

called NJW algorithm. But the topological structure of manifold is constructed based on 

Euclidean distance in all the classical spectral clustering analysis algorithms [9-15], which 

may lead to the chaotic topology. 

Manifold study algorithm is dimension reduction algorithm developed in recent years 

with the aim of finding the more important lower dimension structure in the higher 

dimension data. and the algorithm is widely used in the recognition of face, traffic logo 

etc. [16-21]. Considering the Grassmann manifold is a manifold entropy in Lie group 

manifold, which not only has a smooth surface expression of space, but also has the 

characteristics being more suitable to measure the distance between data points. Based on 

the study of NJW algorithm, this paper proposed an analysis method for data clustering 

based on Grassmann manifold, which compares the similarity of data points in Grassmann 

manifold space that can cluster the data points either in dependent or independent 

subspace effectively. At the same time it can effectively cluster the manifold space data 

set. 
 

2 Grassmann Manifold and its Metric  

The points on Grassmann manifold
 ,Gr k n

are the set of equivalence classes 

of n k dimensional orthogonal matrix, that is: 

   , : kO
k

Gr k n Y YV V O    
                      (1) 

Where, Y denotes n k dimensional orthogonal matrix, 
Y   represents the relationship 

of equivalence classes, and V is k k dimensional orthogonal matrix.  

Grassmann manifold
 ,Gr k n

 can also represent the set of all the k-dimensional 

subspaces in n-dimensional vector space
nR . Grassmann manifold has the representation 

form of quotient space 
( , ) ( ) ( ( ) ( ))Gr n k O n O n k O k   ，which is the remaining portion in 

the orthogonal Lie group removing the swirling of coplanar and non-coplanar. 

 
    , , ,pT Gr k n p g g R n k k     

              (2) 

The common method for defining the metric structure on manifold M is to assign 

inner product 
, 

for the tangent space pT M
of each point p M , that is Riemann metric. 

For any point
 ,p Gr k n

,Where 
 ,Gr k n

 is Grassmann manifold, the tangent space is : 

  
    , , ,pT Gr k n p g g R n k k     

               (3) 

Where 
p is the orthogonal complement for point p . The metric on the 

 ,Gr k n
is 

defined as: 

 TTr  
                            (4) 
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Let 
 : t t 

be the geodesics for the initial point
 0

, the initial vector 
 0

d

dt




, 

where the exponential map 
   Exp 1p  

defines the end of the geodesics: 

     Exp cos sinp pV U    
                        (5) 

Where 
 TU V SVD  

. The corresponding inverse mapping is
 Log T

p q U V 
, 

where 
 arctan S 

and
 

1
T T TUSV p p q p q



 
.  Therefore, the geodesic distance between 

the points ( , )p q on Grassmann manifold is defined as: 

   
1 2

2

2
1

,
k

G i
i

d p q 


  
                          (6) 

An example for 
 2,3Gr

is shown in Figure 1. The line between 1Y
and 2Y

 

represents the geodestic on Grassmann manifold.  

Its sectional curvature is: 

 
2

( , ) , [ , ]Gr n kK X Y X Y
                        (7) 

 

 

Figure 1. Visualization of Grassmann Manifold  2,3Gr
 

From formula (2), each point on Grassmann manifold has non negative sectional 

curvature. Especially, when p equals 1 or n-1, the Grassmann manifold is degenerate into 

a spherical manifold, whose sectional curvature is constant 1. 
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3. Spectral Clustering Analysis Algorithm Based on Grassmann 

Manifold 
 

3.1. Improved Spectral Clustering Algorithm 

Spectral clustering algorithm is based on spectrum division theory, and it is a kind of 

high performance computing method. It regards the data clustering as a undirected graph 

multiway division problem. Ng-Jordan-Weiss (NJW) algorithm is a popular spectral 

clustering algorithm. The algorithm is to select the eigenvectors corresponding to 

Laplasse matrix of the largest K eigenvalue, which correspond with the original data 

representation in Rk space, and then clustered in the space [22]. 

In this paper, taking into account that the local manifold topological structure used by 

NJW algorithm  is constructed on Euclidean distance, chaotic topology of local manifold 

may exist. In order to make the spectral clustering algorithm has better clustering 

accuracy for different data, we propose a spectral clustering algorithm based on distance 

metric of Grassmann manifold, thereby improving the accuracy of clustering. 

The method is carried out according to the following steps: 

step 1: 

input n data points 1{ } 

n

i ix
and number k to be clustered. 

step 2: 

Compute the distance between data points based on the distance formula on the 

Grassmann manifold
 

1 2

2

2
1

, 


 
   
 


k

G i

i

d p q

, then build the similarity matrix 
 n nS R . 

where p and q are the two points on Grasmann manifold, the main angle between p and 

q is 1, , k . 

step 3: 

Construct Laplasse matrix
1/2 1/2 L D SD , where D is diagonal matrix 1


n

ii ij

j

D S

. 

step 4: 

compute the eigenvectors 1 2, ,..., kv v v
corresponding to Laplasse matrix of the largest K 

eigenvalue, and build matrix 1 2[ , ,... ]   n k

kV v v v R
, where kv

is column vector. 

step 5: 

Normalize the row vector of V , and get the matrixY , where 

2 1/2/ ( ) 
ij ij ij

j

Y V V

. 

step 6: 

Regarding each row of Y as a point in space 
kR ,cluster them using k-means 

algorithm. 

step 7: 

If row i belong to class j, the original data lx is to be classified to cluster j. Then output 

the division 1 2, ,..., kc c c
. 

 

3.2. Kernel Parameter Determination 

This paper uses the Gauss kernel function as the distance similarity measure, the same 

with standard spectral clustering algorithm. But the difference is, the computation of the 

distance between the elements is carried on the more accurate Grassmann manifold, and 

the result is used to assess the similarity. The kernel function used in this paper are as 

follows: 
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1 2

exp( )
2 




ij

ij

D
K

                             (8) 

Nuclear width: 

( , ) i i ild x x
                               (9) 

Where 
( , )i ild x x

is computed by formula (5). ilx
is the lth neighborhood point of ix . 

 i  changes adaptively with the nearest neighbor distribution to ensure that the similarity 

between the same class in the sample is the largest, while the similarity between the 

different class in the sample is much lower.  

 

4. Experimental Results and Analysis 

In order to verify the effectiveness of the algorithm, the proposed algorithm is 

compared with the standard spectral clustering algorithm. 

Enter 200 data points with 100 dimension
200

1{ } i ix
, the number to be clustered is 2. Each 

data point is a column vector with 100 dimension, and 200 data points consist of a 

100*200 matrix.  
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(a) Clustering Result by Standard Spectrum Clustering Algorithm 
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(b) Clustering Result by the Proposed Algorithm 

Figure 2. Clustering Result for Data Set in Independent Subspace  

If row i belong to class j, the original data lx
is to be classified to cluster j. Then output 

the division 1 2,c c
. The results of the two algorithms are the same. 

In the first group of experiments, we classify the points in the subspace independently. 

This case they are divided into two categories. The results of the two algorithms are the 

same, as shown in Figure 2. 

In the second group of experiments, the selected sample set belongs to dependant sub 

space, and the number of cluster is set manually, which is 3 in this experiment. The results 

of the two algorithms are the same, as shown in Figure3. They can also classify the 

sample set. 

 



International Journal of Database Theory and Application 

Vol.10, No.1 (2017) 
 

 

Copyright ⓒ 2017 SERSC      219 

-1 -0.5
0

0.5 1 -1
-0.5

0
0.5

1-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 

(a) Clustering Result by Standard Spectrum Clustering Algorithm 
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(b) Clustering Result by Standard Spectrum Clustering Algorithm 

Figure 3. Clustering Result for Data Set in Dependent Subspace 

In the second group of experiments, we validate the effectiveness of the proposed 

algorithm for manifold spatial data clustering. And the number of cluster is set manually, 

which is 2 in this experiment. The results of the two algorithms are shown in Figure4. 

From it , we can conclude that the standard spectral clustering algorithm failed to cluster 

the data set, while the proposed algorithm can classify the data set accurately. 
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(a) Clustering Result by Standard Spectrum Clustering Algorithm 
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(b) Clustering Result by the Proposed Algorithm 

Figure 4. Clustering Result for Data Set in Manifold Space 

In the second group of experiments, we validate the effectiveness of the proposed 

algorithm for complex manifold spatial data clustering. And the number of cluster is set 

by the algorithm. The results of the two algorithms are shown in Figure 5. And the 

experimental data set is divided into 2 clusters by the standard spectral clustering 

algorithm. but the number is 4 by the proposed algorithm. From the results shown in the 

Figure, we can conclude the proposed algorithm can classify the data set more accurately. 

In summary, the proposed algorithm can not only effectively to cluster the data set in 

different sub space, but also can analyze the data set with complex geometry and 

effectively cluster them in manifold space. 
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(a) Clustering Result by Standard Spectrum Clustering Algorithm 
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(B) Clustering Result by the Proposed Algorithm 

Figure 4. Clustering Result for Data Set in Manifold Space 

 

5. Conclusion 

In the standard spectral clustering analysis algorithm, the metric based on Euclidean 

space can not fully reflect the complex spatial distribution characteristics of data 

clustering ,which leads to the clustering results being not accurate enough. While 

manifold space can describe the geometrical structure relationship between data more 

accurate. Considering the Grassmann manifold is a manifold entropy in Lie group 

manifold, which not only has a smooth surface expression of space, but also has the 

characteristics being more suitable to measure the distance between data points, this paper 

proposed an analysis method for data clustering based on Grassmann manifold, which 

compares the similarity of data points in Grassmann manifold space that can cluster the 
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data points either in dependent or independent subspace effectively. At the same time it 

can effectively cluster the manifold space data set. 
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