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Abstract 

The robust 𝐻∞ control design for bilinear systems with multi inputs is presented in this 

paper. First, the bilinear system is represented as a dynamic Takagi-Sugeno (TS) fuzzy 

system by using sector nonlinearity approach. The dynamic TS fuzzy system is a convex 

combination of local linear systems. The local robust 𝐻∞ controller is designed for each  

local linear system. The controller synthesis for the local linear systems is then 

formulated in the bilinear matrix inequalities (BMIs) problem. After that, the BMIs 

problem is reduced to an equivalent parameter of linear matrix inequalities (LMIs) 

problem which has a feasible solution. The robust 𝐻∞ controller for bilinear systems as a 

convex combination of the local robust 𝐻∞  controllers is obtained by using 

defuzzyfication. The existence condition of the robust 𝐻∞  controller for the bilinear 

systems is also presented. The simulation results are given to clarify the proposed method 

for the robust 𝐻∞ control design of the bilinear systems. 

 

Keywords: robust 𝐻∞  controller, bilinear systems, dynamic TS fuzzy system, local 
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1. Introduction 

The robust 𝐻∞ controller for bilinear systems [1-3] with multi inputs is investigated in 

this paper. The bilinear system with uncertainties that involves the exogenous inputs is 

represented as a dynamic Takagi-Sugeno (TS) fuzzy system. These problems have been 

considered in references [4-5] because the dynamic TS fuzzy system can describe the 

bilinear term. A robust 𝐻∞ fuzzy control for a class of bilinear systems has been discussed 

in [6-7] using the state feedback controller, but it is only for the bilinear systems with 

single control input.  The paper investigates the robust 𝐻∞  controller which has own 

dynamics for the bilinear system with multi inputs. In the TS fuzzy system approach, the 

robust 𝐻∞ controller for the bilinear system with multi inputs is a convex combination of 

the local robust 𝐻∞ controllers. Based on this approach, the bilinear system is represented 

as a convex combination of the local linear systems.  

The novelty of this paper is the existence of the robust 𝐻∞ controller for the bilinear 

systems with multi inputs that guarantees the closed loop system is asymptotically stable 

and has 𝐿2-gain ≤ 𝛾, 𝛾 > 0. The robust 𝐻∞ controller for the bilinear systems is designed 

on each subsystem called local linear systems of the bilinear systems. The robust 𝐻∞-

performance of the local linear systems is formulated as Bilinear Matrix Inequality (BMI). 

The BMI is represented as a Riccati inequality which can be used to characterize the 

behaviors of the local linear systems. By parameterization (change of variables), the BMI 
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is converted into an equivalent set of Linear Matrix Inequalities (LMIs) which have 

feasible solutions. Furthermore, the solution of the set of LMIs is used to design the 

suboptimal solution for the robust 𝐻∞ control design problem. 

The bilinear system represents a simple model of nonlinear systems which is linear in 

inputs and states but it is not linear in both. The bilinear systems appear naturally in 

science and technology problems such as power systems [8], suspension systems [9], 

electrical circuits [10], quantum mechanics [11-12], paper making machines [2], immune 

systems [1] and biomedicine systems [1]. The bilinear system is usually a high order 

system, so that the reduced order model is an important part in control system design. 

There are many methods to reduce the order of the bilinear system [8,10,13]. The bilinear 

systems give a lot of theoretical knowledge because they form an intermediary class 

between the linear and the general nonlinear systems. 

Theory and control design of the bilinear systems have been investigated by many 

researchers. The nonlinear state feedback 𝐻∞  control of nonlinear system has been 

discussed by using an approach based on Hamilton-Jacobi equations and inequalities [14]. 

The nonlinear 𝐻∞ control of the nonlinear systems is characterized in term of continuous 

positive definite solutions of algebraic nonlinear matrix inequalities [15]. The robust 𝐻∞ 

control design for the bilinear systems is solved via algebraic 𝐻∞ Riccati equations [16-

17]. In [18], the 𝐻∞ suboptimal control problem of nonlinear system with disturbance 

attenuation level 𝛾 > 0 , is solved by the Hamilton-Jacobi-Bellman-Isaacs (HJBI) 

equations or inequalities. 

Recently, analysis and synthesis to design the controller of the linear and the nonlinear 

systems are formulated in LMIs problem [19-33]. To illustrate, the 𝐻∞ optimal control 

design problems involve Riccati inequality which can be solved by basic manipulation on 

LMIs [19]. The LMI can be described as a convex optimization which can be solved by 

an efficient algorithm [20]. The solvability condition of regular and singular 𝐻∞ control 

problems for the linear systems can be presented in LMIs [21]. The stabilization of the 

bilinear systems via linear state-feedback control for a certain domain of state space by 

using linear matrix inequalities (LMIs) has also been discussed in [22]. Moreover, the 

estimation of stability regions for the bilinear systems has been considered in [28-29].  

The paper is organized as follow. The representation of the bilinear systems in the 

dynamic TS fuzzy systems and the definition of robust 𝐻∞-performance are presented on 

Section 2.1. and Section 2.2.. Respectively, in Section 3, it is represented the existence of 

the robust 𝐻∞ controller for the bilinear system which guarantees the closed loop system 

is asymptotically stable and has 𝐿2 -gain ≤ 𝛾, 𝛾 > 0.  The other main result is the 

formulation of robust 𝐻∞ control design for the bilinear systems in LMIs. Moreover, the 

algorithm to design the robust 𝐻∞ controller of the bilinear systems is presented. Section 

4 shows the simulation results which clarify the proposed methods and Section 5 gives the 

conclusions.  

 

2. Representation for Bilinear Systems 

In this section, the bilinear systems are represented in the dynamic TS fuzzy systems 

by nonlinearity approach. The definition of robust 𝐻∞-performance for linear system is 

presented. 

 

2.1. Representation of Bilinear Systems in Takagi-Sugeno Fuzzy Systems 

Consider the bilinear system 𝐺 with uncertainty is described as follows 

      𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) + 𝐵2(𝑥)𝑢(𝑡),     
 𝐺:  𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),    (1) 

      𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡) + 𝐷22𝑢(𝑡),      
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where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 ∈ ℝ𝑛  is the state vector, 𝑤̂ ∈ ℝ𝑞  is the exogenous 

inputs (uncertainty), 𝑦 ∈ ℝℎ is the measured outputs, 𝑢 ∈ ℝ𝑚 is the control inputs, 

and 𝑞 ∈ ℝ𝑟  is the controlled outputs. While 𝐴, 𝐵1, 𝐵2(𝑥), 𝐶1, 𝐶2, 𝐷11, 𝐷12, 𝐷21  are 

matrices with suitable dimensions, where element of 𝐵2  is a linear function of 𝑥 . 

The system is assumed to be strictly proper from 𝑢 to 𝑦, i.e. 𝐷22 = 0. 
The robust 𝐻∞  controller for the bilinear system 𝐺  is difficult to obtain directly. 

Therefore, the bilinear system will be represented as the generalized TS fuzzy system. 

Consider the bilinear system (1). Denote 

 𝐵2(𝑥) = [
𝑓11(𝑥) ⋯ 𝑓1𝑚(𝑥)

⋮ ⋱ ⋮
𝑓𝑛1(𝑥) ⋯ 𝑓𝑛𝑚(𝑥)

], 

𝑓𝑖𝑗 is a linear function of 𝑥 for each 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑚, 𝑥 ∈ ℝ𝑛 .  Then, set a 

new variables as  𝑧1 = 𝑓11(𝑥), 𝑧2 = 𝑓12(𝑥), … , 𝑧𝑝 = 𝑓𝑛𝑚(𝑥), 𝑝 = 𝑛𝑚.  Furthermore, 

consider a polytope 𝒫 ⊂ ℝ𝑛 which is described as follows 

 𝒫 = conv{𝑥̃1, 𝑥̃2, … , 𝑥̃𝑘}     (2) 

where 𝑘 = 2𝑛  is an integer number, 𝑥̃𝑙  denotes the 𝑙 -th vertex of polytope 𝒫, 𝑙 =
1,2, … , 𝑘 and conv{} denotes the operation of taking the convex hull of arguments. For 

example, the box in ℝ2 is given by 

 𝒫 ≔ [−3,3] × [−2,2]. 
It can be described as convex hull of the vertices as 𝒫 = conv{𝑥̃1, 𝑥̃2, 𝑥̃3, 𝑥̃4} where 

𝑥̃1 = (−3, −2)𝑇 , 𝑥̃2 = (−3,2)𝑇 , 𝑥̃3 = (3, −2)𝑇 and 𝑥̃4 = (3,2)𝑇.  

The generalized bilinear system can be represented as the generalized TS fuzzy system 

by using the sector nonlinearity approach [5]. The TS fuzzy model consists of an if-then 

rule base. The partition of a subset of the new variables is carried out into fuzzy sets as the 

rule antecedents and the simple functional expression as the sequent of each rule. The 

form of the i-th rules are as follows 

 Model rule i: 

 If 𝑧1 is 𝑍1
𝑖  and … and  𝑧𝑝 is 𝑍𝑝

𝑖  then 

  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) + 𝐵2𝑖𝑢(𝑡), 
  𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),                             

    𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡),                                      

where 𝐵2𝑖 = 𝐵2𝑖(𝑥̃𝑙),  𝑥̃𝑙  denotes the 𝑙 -th vertex of polytope 𝒫, 𝑙 = 1,2, … , 𝑘,  𝑧𝑗 , 𝑗 =

1,2, … , 𝑝 represent the scheduling variables and 𝑍𝑗
𝑖, 𝑖 = 1,2, … , 𝑠, are fuzzy sets, with the 𝑠 

is number of rules. The value of 𝑧𝑗  belongs to 𝑍𝑗
𝑖  with a truth value given by the 

membership function 𝑤𝑖𝑗(𝑧𝑗): 𝑅 → [0,1].  The fuzzy set 𝑍𝑗
𝑖  can be either 𝑍̅𝑗

0  or 𝑍̅𝑗
1  [5]. 

Consequenly, the TS fuzzy rules consist of 𝑠 = 2𝑝 rules. The scheduling variables are 

chosen as 

 𝑧𝑗(. ) ∈ [𝑧𝑗, 𝑧𝑗], 𝑗 = 1,2, … , 𝑝, 

where 𝑧𝑗  and 𝑧𝑗  are the minimum and maximum of 𝑧𝑗 ,  respectively. The 

scheduling variables are usually selected as a subset of the state, input, output or 

other exogenous variables in the system or functions of the states, inputs, outputs or 

other exogenous variables. The weighting functions can be constructed as  

 𝛽𝑗
0(. ) =

𝑧𝑗−𝑧𝑗(.)

𝑧𝑗−𝑧𝑗
, 

 𝛽𝑗
1(. ) = 1 − 𝛽𝑗

0(. ), 𝑗 = 1,2, … , 𝑝. 

Moreover 𝑧𝑗  can be presented as  𝑧𝑗 = 𝑧𝑗𝛽𝑗
0(𝑧𝑗) + 𝑧𝑗𝛽𝑗

1(𝑧𝑗).  The fuzzy sets 

corresponding the both weighting functions are defined on [𝑧𝑗, 𝑧𝑗] which denoted in the 

sequal by 𝑍̅𝑗
0 and 𝑍̅𝑗

1. 
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The membership function of rule 𝑖  is computed as the product of the weighting 

functions [5] that correspond to the fuzzy sets in the rule that is 

 𝑤𝑖(𝑧) = ∏ 𝑤𝑖𝑗(𝑧𝑗),𝑠
𝑖=1      (3) 

where 𝑤𝑖𝑗(𝑧𝑗) is either 𝛽𝑗
0(𝑧𝑗)  or 𝛽𝑗

1(𝑧𝑗) depending on which weighting function is 

used in the rule. If the scheduling variables are taken as a subset of the state, then 𝛽𝑗
0(𝑧𝑗)  

or 𝛽𝑗
1(𝑧𝑗) is an affine function of 𝑥, 𝑥 ∈ ℝ𝑛 [5]. Therefore, the subset of the states will 

perform as a polytope for example box in ℝ𝑛. Clearly that 

 𝑤𝑖(𝑧) ≥ 0 and ∑ 𝑤𝑖(𝑧) = 1𝑠
𝑖=1 .  

The generalized TS fuzzy system by using the sector nonlinearity approach can be 

presented as follows 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) + ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 𝐵2𝑖𝑢(𝑡),      

𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑖𝑤̂(𝑡) + 𝐷12𝑖𝑢(𝑡),              (4) 

𝑦(𝑡) =  𝐶2𝑥(𝑡) + 𝐷21𝑖𝑤̂(𝑡),       

where 𝑤𝑖(𝑧) is weighting function of rule i. Representation (4) is not unique. Therefore 

the TS fuzzy system representation of the bilinear system which is obtained by the sector 

nonlinearity approach is not unique. Hence, it will be chosen 𝑤𝑖(𝑧), 𝑖 = 1,2, … , 𝑝 such 

that the error between the impulse response of the bilinear system and the TS fuzzy 

system is as small as possible. Denote the local linear system with uncertainty of (4) by 

𝐺𝑖 = {𝐴, 𝐵1, 𝐵2𝑖, 𝐶1, 𝐷11, 𝐷12, 𝐶2, 𝐷21}, 𝑖 = 1,2, … , 𝑠.               (5) 

Then, the form of the fuzzy i-th controller is given by 

 Controller rule i: 

 If 𝑧1 is 𝑍1
𝑖  and … and 𝑧𝑝 is 𝑍𝑝

𝑖  then 

 𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖 , 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2, … , 𝑠. 

The i-th controller is presented as a state space realization as follows 

 𝜉̇(𝑡) = 𝐴̂𝑖𝜉(𝑡) + 𝐵̂𝑖𝑦(𝑡),       

𝑢(𝑡) = 𝐶̂𝑖𝜉(𝑡) + 𝐷̂𝑖𝑦(𝑡), 𝑖 = 1,2, … , 𝑠,             (6) 

where 𝜉 ∈ ℝ𝑘 , 𝑘 = 𝑛 is a compact open set which contains the origin. From (5) and 

(6), it will be obtained the local closed loop system for each the local linear system as 

follows 

𝑥̇𝑐(𝑡) = 𝐴𝑐𝑖𝑥𝑐(𝑡) + 𝐵𝑐𝑖𝑤̂(𝑡),       

 𝑞(𝑡) = 𝐶𝑐𝑖𝑥𝑐(𝑡) + 𝐷𝑐𝑖𝑤̂(𝑡), 𝑖 = 1,2, … , 𝑠,             (7) 

 

where 𝑥𝑐 = [
𝑥
𝜉], 𝐴𝑐𝑖 = [

𝐴 + 𝐵2𝑖𝐷̂𝑖𝐶2 𝐵2𝑖𝐶̂𝑖

𝐵̂𝑖𝐶2 𝐴̂𝑖

], 𝐵𝑐𝑖 = [
𝐵1 + 𝐵2𝑖𝐷̂𝑖𝐷21

𝐵̂𝑖𝐷21

],   

𝐶𝑐𝑖 = [𝐶1 + 𝐷12𝐷̂𝑖𝐶2 𝐷12𝐶̂𝑖],  and  𝐷𝑐𝑖 = [𝐷11 + 𝐷12𝐷̂𝑖𝐷21]. The robust 𝐻∞  control 

design problem for the systems (5) is to find a controller (6)  𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 =

1,2, … , 𝑠 on each the local linear system of the generalized TS fuzzy system 𝐺𝑖 such that 

the closed loop system (7) is asymptotically stable and has 𝐿2-gain ≤ 𝛾𝑖, 𝛾𝑖 > 0 for each 

𝑖 = 1,2, … , 𝑠. 
 

 

 

2.2. Definition of Robust 𝑯∞-Performance 
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Definition 1 is used to define the asymptotically stable condition and the 𝐿2- gain of a 

system.  

Definition 1 [14-15, 31-33] Consider the closed loop system (7) where initial condition 

𝑥𝑐(0) = 𝑥0. System (7) is called has 𝐿2- gain ≤ 𝛾𝑖, 𝛾𝑖 > 0 if 

 ∫‖𝑞(𝑡)‖2𝑑𝑡

𝑇

0

≤ 𝛾𝑖
2 ∫‖𝑤̂(𝑡)‖2𝑑𝑡

𝑇

0

, ∀𝑇 ≥ 0, 𝑤̂ ∈ 𝐿2[0, 𝑇], 

for each 𝑖 = 1,2, … , 𝑠, where 𝐿2[0, 𝑇]: = {𝑤̂| ∫ ‖𝑤̂(𝑡)‖2𝑑𝑡
𝑇

0
< ∞} and ‖. ‖ denotes the 

Euclidian norm. System (7) is called asymptotically stable if lim𝑡→∞ 𝜙(𝑡, 𝑥0, 0) = 0, for 

any initial state 𝑥0 ∈  ℝ2𝑛, where 𝜙 is the transition matrix. 

Lemma 1 is known as Complement Schur. The property is used in order to change 

nonlinear matrix inequality into linear matrix inequality. 

Lemma 1 [20] Consider matrix-valued function 𝑆(𝑥) ∈ ℝ𝑛×𝑛 and symmetric matrix-

valued functions 𝑄(𝑥), 𝑅(𝑥) ∈ ℝ𝑛×𝑛 that depend affinely on 𝑥. Then  

     [
𝑄(𝑥) 𝑆(𝑥)

𝑆(𝑥)𝑡 𝑅(𝑥)
] ≽ 0, if only if  𝑅(𝑥) ≻ 0 and 𝑄(𝑥) − 𝑆(𝑥)𝑅(𝑥)−1𝑆(𝑥)𝑡 ≽ 0. 

According to the bounded real lemma for linear systems [19], the closed loop system 

(7) is asymptotically stable and has 𝐿2-gain ≤ 𝛾𝑖 , 𝛾𝑖 > 0 if only if there exists a positive 

definite matrix 𝑃𝑐 such that 

 [
𝐴𝑐𝑖

𝑡 𝑃𝑐𝑖 + 𝑃𝑐𝑖𝐴𝑐𝑖 + 𝐶𝑐𝑖
𝑡 𝐶𝑐𝑖 𝑃𝑐𝑖𝐵𝑐𝑖 + 𝐶𝑐𝑖

𝑡𝐷𝑐𝑖

𝐵𝑐𝑖
𝑡 𝑃𝑐𝑖 + 𝐷𝑐𝑖

𝑡 𝐶𝑐𝑖 𝐷𝑐𝑖
𝑡 𝐷𝑐𝑖 − 𝛾𝑖

2
𝐼

] ≼ 0, 𝑖 = 1,2, … , 𝑠.           (8) 

The linear matrix inequality (8) can be rewritten as 

 [
𝐴𝑐𝑖

𝑡 𝑃𝑐𝑖 + 𝑃𝑐𝑖𝐴𝑐𝑖 𝑃𝑐𝑖𝐵𝑐𝑖

𝐵𝑐𝑖
𝑡 𝑃𝑐𝑖 −𝛾𝑖

2𝐼
] + [

𝐶𝑐𝑖
𝑡

𝐷𝑐𝑖
𝑡] 𝐼[𝐶𝑐𝑖 𝐷𝑐𝑖] ≼ 0, 𝑖 = 1,2, … , 𝑠.          (9) 

By multiplying on each side of the inequality (9) by 𝛾𝑖
−1 and let 𝑃1𝑖 = 𝛾𝑖

−1𝑃𝑐𝑖, then 

inequality (10) can be obtained 

 [
𝑃1𝑖𝐴𝑐𝑖 + 𝐴𝑐𝑖

𝑡 𝑃1𝑖 𝑃1𝑖𝐵𝑐𝑖

𝐵𝑐𝑖
𝑡 𝑃1𝑖 −𝛾𝑖𝐼

] + [
𝐶𝑐𝑖

𝑡

𝐷𝑐𝑖
𝑡] 𝛾𝑖

−1𝐼[𝐶𝑐𝑖 𝐷𝑐𝑖] ≼ 0, 𝑖 = 1,2, … , 𝑠.        (10) 

By Schur complement and replace 𝑃1𝑖 by 𝑃𝑐𝑖, inequality (10) can be written as 

 [

𝐴𝑐𝑖
𝑡 𝑃𝑐𝑖 + 𝑃𝑐𝑖𝐴𝑐𝑖 𝑃𝑐𝑖𝐵𝑐𝑖 𝐶𝑐𝑖

𝑡

𝐵𝑐𝑖
𝑡 𝑃𝑐𝑖 −𝛾𝑖𝐼 𝐷𝑐𝑖

𝑡

𝐶𝑐𝑖 𝐷𝑐𝑖 −𝛾𝑖𝐼

] ≼ 0, 𝑖 = 1,2, … , 𝑠.           (11) 

Thus, finding a matrix 𝑃𝑐𝑖 such that the inequality in (8) is satisfied is equivalent to 

finding a matrix 𝑃𝑐𝑖 such that the inequality in (11) is satisfied. Therefore, the system (7) 

is said to have robust 𝐻∞-performance if there exists 𝑃𝑐𝑖 ≻ 0 such that satisfies (11). 

 

3. Robust 𝑯∞ Control for Bilinear Systems Using the Dynamic Takagi-

Sugeno Fuzzy Models Based on Linear Matrix Inequalities 

In this section, the main result is presented that is the formulation of the robust 𝐻∞ 

control design for the bilinear systems in LMIs. The bilinear system with uncertainty is 

represented as a convex combination of the local linear systems with uncertainty. The 

local robust 𝐻∞ controller of the local linear systems with uncertainty is then designed on 

a polytope for each the local linear system, given the generalized TS fuzzy system in (4). 

In general, the block diagram of the bilinear control systems is depicted by Figure 1. The 

bilinear system is represented as the generalized TS fuzzy system. The design of the 

controller for bilinear system is performed through the dynamic parallel distributed 
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compensation (DPDC) [4-5]. The main idea of the DPDC is to obtain each control rule so 

as to compensate each rule of the TS fuzzy system. The local robust 𝐻∞ controller is then 

designed for each local linear system. The total robust 𝐻∞ controller is then obtained by a 

fuzzy blending of each local robust 𝐻∞ controller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Scheme of Robust 𝑯∞ Fuzzy Controller 

Formulation (11) is a bilinear matrix inequality (BMI) of the variables 𝑃𝑐𝑖 and 𝒦𝑖, 𝑖 =
1,2, … , 𝑠. The condition 𝐿2-gain of the closed loop system less than 𝛾 is the robustness 

problem of bilinear systems. Therefore, the robust 𝐻∞ control synthesis problem is to 

minimize 𝛾  such that inequalities (11) are satisfied. Because (11) is a bilinear matrix 

inequality, then it is a difficult problem to solve it. Furthermore, it will be derived a 

formulation which is equivalent to (11). The 𝑃𝑐𝑖 ≻ 0 that satisfies (11) is equivalent to the 

existence of 𝑃𝑐𝑖 ≻ 0 that satisfies the following BMI: 

   [

−𝐴𝑐𝑖
𝑡 𝑃𝑐𝑖 − 𝑃𝑐𝑖𝐴𝑐𝑖 𝑃𝑐𝑖𝐵𝑐𝑖 𝐶𝑐𝑖

𝑡

𝐵𝑐𝑖
𝑡 𝑃𝑐𝑖 𝛾𝑖𝐼 −𝐷𝑐𝑖

𝑡

𝐶𝑐𝑖 −𝐷𝑐𝑖 𝛾𝑖𝐼

] ≽ 0, 𝑖 = 1,2, … , 𝑠.         (12) 

It is difficult to obtain the solution of the BMI (12). By the Theorem 1 on [23], there 

exist a certain LMIs whose solvability is equivalent to the BMI (12).  

The main results of the paper are Theorem 1 and Corollary 1. The necessary and 

sufficient conditions of the local robust 𝐻∞ controller on each the local linear system of 

the generalized TS fuzzy system are given in the following theorem. 

Theorem 1. Consider the local linear system of the generalized TS fuzzy system on 

polytope 𝒫 ⊂ ℝ𝑛 that is 

 𝐺𝑖 = {𝐴, 𝐵1, 𝐵2𝑖, 𝐶1, 𝐷11, 𝐷12, 𝐶2, 𝐷21}, 𝑖 = 1, … , 𝑠.  

Consider the local closed loop system (7) that has robust 𝐻∞-performance by the local 

robust 𝐻∞controller 𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖} for each 𝑖 = 1, … , 𝑠. The inequality (12) holds 

for some (𝑃𝑐𝑖, 𝒦𝑖), if only if LMIs (13-14) hold for some 𝑃𝑖 = {𝑉𝑖, 𝑊𝑖 , 𝐹𝑖, 𝐺𝑖 , 𝐻𝑖, 𝐿𝑖},  

 [
𝑉𝑖 𝐼
𝐼 𝑊𝑖

] ≻ 0, 𝑉𝑖, 𝑊𝑖 ≻ 0,            (13) 

z(t) w(t) 

x(t) 
u(t) 

Bilinear system 

Fuzzification Defuzzification 

 

Model rule 

 

Controller rule 

 

Robust 𝐻∞ TS fuzzy controller 



International Journal of Control and Automation 

Vol. 9, No. 7 (2016) 

 

 

Copyright © 2016 SERSC 13 

 [

𝜑11 ∗
𝜑21 𝜑22

∗ ∗
∗ ∗

𝜑31 𝜑32

𝜑41 𝜑42

𝛾𝑖𝐼 ∗
𝜑43 𝛾𝑖𝐼

] ≽ 0,            (14) 

where * denotes the symmetric matrix,   𝜑11 = −(𝐴𝑉𝑖 + 𝐵2𝑖𝐹𝑖) − (𝐴𝑉𝑖 + 𝐵2𝑖𝐹𝑖)𝑇 ,   
𝜑21 = −𝐿𝑖 − (𝐴 + 𝐵2𝑖𝐻𝑖𝐶2)𝑇 ,  𝜑22 = −(𝑊𝑖𝐴 + 𝐺𝑖𝐶2) − (𝑊𝑖𝐴 + 𝐺𝑖𝐶2)𝑇 , 
𝜑31 = (𝐵1 + 𝐵2𝑖𝐻𝑖𝐷21)𝑇 ,  𝜑32 = (𝑊𝑖𝐵1 + 𝐺𝑖𝐷21)𝑇 , 𝜑41 = 𝐶1𝑉𝑖 + 𝐷12𝐹𝑖,   
𝜑42 = 𝐶1 + 𝐷12𝐻𝑖𝐶2, and  𝜑43 = −(𝐷11 + 𝐷12𝐻𝑖𝐷21), 𝑖 = 1,2, … , 𝑠. 

If the LMIs (13-14) have a solution 𝑃𝑖, one of the solutions to the BMIs (12) is given 

by 

   𝐴̂𝑖 = 𝑊𝑖
−1𝐺𝑖𝐶2𝑖𝑉𝑖𝑆𝑖

−1 − 𝐵2𝑖𝐻𝑖𝐶2𝑖𝑉𝑖𝑆𝑖
−1 + 𝐵2𝑖𝐹𝑖𝑆𝑖

−1 − 𝑊𝑖
−1𝐿𝑖𝑆𝑖

−1 +

𝐴𝑖𝑉𝑖𝑆𝑖
−1, 

   𝐵̂𝑖 = 𝐵2𝑖𝐻𝑖 − 𝑊𝑖
−1𝐺𝑖, 

 𝐶̂𝑖 = 𝐹𝑖𝑆𝑖
−1 − 𝐻𝑖𝐶2𝑖𝑉𝑖𝑆𝑖

−1, and 

 𝐷̂𝑖 = 𝐻𝑖, 𝑖 = 1,2, … , 𝑠. 

Proof. Procedure of proof abreast of Theorem 1 on [23] by parameterization of matrix 

variables. Without loss of generality, 𝑃𝑐𝑖 is assumed to have the following structure: 

 𝑃𝑐1𝑖: = [
𝑉𝑖 𝑆𝑖

𝑆𝑖 𝑆𝑖
] , 𝑃𝑐2𝑖: = 𝑃𝑐1𝑖

−1 = [
𝑇1𝑖 𝑇2𝑖

𝑇3𝑖 𝑇4𝑖
], and  𝑈1𝑖: = [

𝐼 0
𝑊𝑖 −𝑊𝑖

],  

where 𝑇1𝑖 = 𝑉𝑖
−1 + 𝑉𝑖

−1𝑆𝑖(𝑆𝑖 − 𝑆𝑖𝑉𝑖
−1𝑆𝑖)−1𝑆𝑖𝑉𝑖

−1, 𝑇2𝑖 = −𝑉𝑖
−1𝑆𝑖(𝑆𝑖 − 𝑆𝑖𝑉𝑖

−1𝑆𝑖)−1,  

𝑇3𝑖 = −𝑆𝑖(𝑆𝑖 − 𝑆𝑖𝑉𝑖
−1𝑆𝑖)

−1
𝑆𝑖𝑉𝑖

−1,  and  𝑇4𝑖 = 𝑆𝑖 − 𝑆𝑖𝑉𝑖
−1𝑆𝑖, 𝑖 = 1,2, … , 𝑠.  Setting a 

regular matrix as follows 

 

 𝑈2𝑖: = 𝑃𝑐1𝑖𝑈1𝑖
𝑡 = [

𝑉𝑖 𝑆𝑖

𝑆𝑖 𝑆𝑖
] [

𝐼 𝑊𝑖

0 −𝑊𝑖
] = [

𝑉𝑖 𝐼
𝑆𝑖 0

], 

where 𝑉𝑖𝑊𝑖 − 𝑆𝑖𝑊𝑖 = 𝐼, 𝑖 = 1,2, … , 𝑠.  Define the matrix valued affine functions as 

follow 

 𝑀𝑃(𝑃𝑐𝑖): = 𝑈2𝑖
𝑡 𝑃𝑐2𝑖𝑈2𝑖 = [

𝑉𝑖 𝐼
𝐼 𝑊𝑖

],  

And 

 

 [
𝑀𝐴(𝑃𝑐𝑖) 𝑀𝐵(𝑃𝑐𝑖)

𝑀𝐶(𝑃𝑐𝑖) 𝑀𝐷(𝑃𝑐𝑖)
]  = [

𝑈1𝑖 0
0 𝐼

] [
𝐴𝑐𝑖𝑃𝑐1𝑖 𝐵𝑐𝑖

𝐶𝑐𝑖𝑃𝑐1𝑖 𝐷𝑐𝑖
] [𝑈1𝑖

𝑡 0

0 𝐼
], 

                                         = [

Λ11 𝐴 + 𝐵2𝑖𝐻𝑖𝐶2

𝐿𝑖 𝑊𝑖𝐴 + 𝐺𝑖𝐶2
|

𝐵1 + 𝐵2𝑖𝐻𝑖𝐷21

𝑊𝑖𝐵1 + 𝐺𝑖𝐷21

− − − − − − − − − | − − − − − − − −
Λ31 𝐶1 + 𝐷12𝐻𝑖𝐶2 | 𝐷11 + 𝐷12𝐻𝑖𝐷21

], 

where 𝑉𝑖, 𝑊𝑖 ≻ 0, 𝑉𝑖 ≻ 𝑊𝑖 , Λ11 = 𝐴𝑉𝑖 + 𝐵2𝑖𝐹𝑖  and Λ31 = 𝐶1𝑉𝑖 + 𝐷12𝐹 𝑖 , 𝑖 = 1,2, … , 𝑠. 
According to [23], inequality (13) is obtained because 𝑃𝑐𝑖 ≻ 0. BMI (12) equivalent to the 

following inequality (14) 

 

 [

−𝑀𝐴(𝑃𝑐𝑖) − 𝑀𝐴(𝑃𝑐𝑖)𝑡 𝑀𝐵(𝑃𝑐𝑖) 𝑀𝐶(𝑃𝑐𝑖)𝑡

𝑀𝐵(𝑃𝑐𝑖)𝑡 𝛾𝑖𝐼 −𝑀𝐷(𝑃𝑐𝑖)𝑡

𝑀𝐶(𝑃𝑐𝑖) −𝑀𝐷(𝑃𝑐𝑖) 𝛾𝑖𝐼

] =  [

𝜑11 ∗
𝜑21 𝜑22

∗ ∗
∗ ∗

𝜑31 𝜑32

𝜑41 𝜑42

𝛾𝑖𝐼 ∗
𝜑43 𝛾𝑖𝐼

] ≽ 0, 

where * present this matrix is symmetric and 𝜑11,  𝜑21, 𝜑22,  𝜑32, 𝜑41, 𝜑42,  and 𝜑43 

as in Theorem 1. Hence, the local robust 𝐻∞controllers 𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2, … , 𝑠 

are obtained from the relation  
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 [
𝐻𝑖 𝐹𝑖

𝐺𝑖 𝐿𝑖
] =   [

𝐼 0
𝑊𝑖𝐵2𝑖 −𝑊𝑖

] [
𝐷̂𝑖 𝐶̂𝑖

𝐵̂𝑖 𝐴̂𝑖 − 𝐴𝑉𝑖𝑆𝑖
−1] [

𝐼 −𝐶2𝑉𝑖

0 𝑆𝑖
],  

where 𝑊𝑖 and 𝑆𝑖 are invertible matrices       

The robust 𝐻∞  control problem for the TS fuzzy system is finding the solutions  

𝑃𝑐𝑖 ≻ 0  and 𝒦𝑖, 𝑖 = 1,2, … , 𝑠  of the BMI (12) which equivalent to find 

𝑃𝑖 = {𝑉𝑖, 𝑊𝑖, 𝐹𝑖 , 𝐺𝑖, 𝐻𝑖, 𝐿𝑖}  satisfy (13) and (14). Corollary 1 states that the robust 𝐻∞ 

controller of bilinear systems is obtained on a subset of the polytope. The robust 𝐻∞ 

controller of the bilinear system is defined as a convex linear combination of the local 𝐻∞ 

robust controllers. Furthermore, the subset of the polytope is called a basin of attraction of 

TS fuzzy system.  

Corollary 1. Consider the generalized bilinear system (1) where initial condition 

𝑥(0) = 𝑥0 . Suppose a polytope  𝒫   is defined on (2), where 𝑥0 ∈ 𝒫 . Let the bilinear 

system (1) is approximated by the generalized TS fuzzy system (4) on polytope 𝒫 ⊂ ℝ𝑛 

where 𝑤𝑖(𝑧)  is a membership function on (3). There exists a 𝐻∞  robust controller 

𝒦 = {𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂}   on  𝔇 ⊆ 𝒫 ⊂ ℝ𝑛  with [𝐴̂ 𝐵̂
𝐶̂ 𝐷̂

] ≔ ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 [

𝐴̂𝑖 𝐵̂𝑖

𝐶̂𝑖 𝐷̂𝑖

],  𝑤𝑖(𝑧) ≥

0, ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 = 1, where  𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2, … , 𝑠 are solution of the BMI (12), 

such that closed loop system 

 

 𝑥̇𝑐(𝑡) = ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 (𝐴𝑐𝑖𝑥𝑐(𝑡) + 𝐵𝑐𝑖𝑤̂(𝑡)), 

 𝑞(𝑡) = ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 (𝐶𝑐𝑖𝑥𝑐(𝑡) + 𝐷𝑐𝑖𝑤̂(𝑡)),            (15) 

is asymptotically stable and has 𝐿2-gain ≤ 𝛾𝑖 , 𝛾𝑖 > 0, where  

 

𝐴𝑐𝑖 = [
𝐴 + 𝐵2𝑖𝐷̂𝑖𝐶2 𝐵2𝑖𝐶̂𝑖

𝐵̂𝑖𝐶2 𝐴̂𝑖

], 𝐵𝑐𝑖 = [
𝐵1 + 𝐵2𝑖𝐷̂𝑖𝐷21

𝐵̂𝑖𝐷21

],  𝐶𝑐𝑖 = [𝐶1 + 𝐷12𝐷̂𝑖𝐶2 𝐷12𝐶̂𝑖],   

and  𝐷𝑐𝑖 = [𝐷11 + 𝐷12𝐷̂𝑖𝐷21]. 
 

Proof. Because 𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2, … , 𝑠  are solution of BMI (12), then 

according to Definition 2 and Theorem 1, the local 𝐻∞  robust controllers 𝒦𝑖 =

{𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}  lead to the closed loop systems (7) is asymptotically stable and has 𝐿2- 

gain ≤ 𝛾𝑖 for each 𝑖 = 1,2, … , 𝑠 on polytope  𝒫 ⊂ ℝ𝑛. Hence  𝑅𝑒(𝜆𝑘(𝐴𝑐𝑖)) < 0,  for each 

i, where 𝜆𝑘(. ) denote eigenvalues 𝑘-th of (. ) matrix. Because of the bilinear system (1) is 

approximated by the generalized TS fuzzy system (4) on polytope  𝒫 ⊂ ℝ𝑛, where 𝑤𝑖(𝑧) 

is membership function on (3) then  

  𝑤𝑖(𝑧) = ℎ(𝑥1, 𝑥2, … , 𝑥𝑛) = ℎ(𝑥)  

for some function ℎ. Choose 𝑥̅ ∈ 𝒫 such that 

𝑅𝑒(𝜆𝑘(∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 𝐴𝑐𝑖)) < 0.  

Suppose 𝔇 = {𝑥̅} ⊂ 𝒫 then 𝔇 is attraction domain of closed loop system (15) where 

initial condition 𝑥(0) = 𝑥0.  Because 𝒦 = {𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂} is a convex linear combination of 

𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2, . . , 𝑠  where 𝑤𝑖(𝑧) = ℎ(𝑥̅), 𝑥̅ ∈ 𝔇  then 

𝑅𝑒(𝜆𝑘(∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 𝐴𝑐𝑖)) < 0.  Another word,  the closed loop system (15) is 

asymptotically stable and has 𝐿2-gain ≤ 𝛾, 𝛾 > 0 for some  𝑤𝑖(𝑧) ≥ 0, ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 = 1 on 

𝔇, and  𝛾 = min𝑖=1,2,3,..,s{𝛾𝑖}. 
Furthermore, the following algorithm is proposed to obtain the robust 𝐻∞ controller for 

bilinear systems. 

Input: Generalized bilinear system consist of 𝐴, 𝐵1, 𝐵2(𝑥), 𝐶1, 𝐷11, 𝐷12, 𝐶2, 𝐷21.  
Process:  

Construct the TS fuzzy system by the sector nonlinearity approach.   

Choose 𝑤𝑖(𝑧) ≥ 0, ∑ 𝑤𝑖(𝑧)𝑠
𝑖=1 = 1, such that the error of impulse response between 
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the bilinear system and TS fuzzy system as small as possible.  

Design the local robust 𝐻∞ controller on each the local linear system by using Theorem 

1. 

Output: The total controller is stated by Corollary 1.  

The process is repeated until the robust 𝐻∞ controller lead to the closed-loop system 

(15) which is asymptotically stable. While the 𝐿2-gain of the closed-loop system (15) is 

the minimum of 𝐿2-gains at the local closed-loop systems.  

 

4. Numerical Simulations 

The examples of the robust 𝐻∞ control design for the bilinear systems are presented. 

Consider the stable bilinear system of chemical reactor [2,16] with uncertainty 𝑤̂ as 

follows 

 [
𝑥̇1

𝑥̇2
] = [

3

16

5

12

−
50

3
−

8

3

] [
𝑥1

𝑥2
] + [

0.1
0

] 𝑤̂ + [
−

1

8
− 𝑥1

𝑥2

] 𝑢, 

 𝑞 = [1 2] [
𝑥1

𝑥2
] + 0.5𝑤̂ + 0.02𝑢,      (16) 

 𝑦 = [3 1] [
𝑥1

𝑥2
] + 𝑤̂, 

where 𝑥1 and 𝑥2 represent the temperature and the concentration of the initial product 

of the chemical reactor, while 𝑢 represents the cooling flow rate in a jacket around the 

reactor.  

The scheduling variables of the nonconstant elements in the matrix function [
−

1

8
− 𝑥1

𝑥2

] 

are 𝑧1 = −
1

8
− 𝑥1  and 𝑧2 = 𝑥2.  Suppose 𝑥1 ∈ [−3,3]  and 𝑥2 ∈ [−1,4].  Two conditions 

will perform the polytope 𝒫 that is 

 𝒫 = [−3,3] × [−1,4]. 
For each of these two terms, the two weighting functions and the corresponding matrix 

elements are computed as follows: 

1. 𝑧1 = −
1

8
− 𝑥1 ∈ [−3.125,2.875].  

The first weighting function is 𝛽1
0 =

2.875−(−
1

8
−𝑥1)

2.875−(−3.125)
=

1

2
+

𝑥1

6
,  and 𝑧1 = −3.125.  The 

second weighting function is 𝛽1
1 = 1 − 𝛽1

0 =
1

2
−

𝑥1

6
,  and 𝑧1 = 2.875.  Then, the 

scheduling variable 𝑧1 is represented as the weighted sum 

 𝑧1 = 𝑧1𝛽1
0(𝑧1) + 𝑧1𝛽1

1(𝑧1). 
2. 𝑧2 = 𝑥2 ∈ [−1,4].  

The first weighting function is 𝛽2
0 =

2−𝑥2

4−(−1)
=

2

5
−

𝑥2

5
,  and 𝑧2 = −1.  The second 

weighting function is 𝛽2
1 = 1 − 𝛽2

0 =
3

5
+

𝑥2

5
, and 𝑧2 = 4. Then, the scheduling variable 𝑧2 

is represented as the weighted sum 

 𝑧2 = 𝑧2𝛽2
0(𝑧2) + 𝑧2𝛽2

1(𝑧2). 

For each weighting function, denote the corresponding fuzzy set by 𝑍̅𝑗
𝑖, 𝑖 = 0,1, 𝑗 =

1,2.  The fuzzy set  corresponding to 𝛽1
0, 𝛽1

1, 𝛽2
0, 𝛽2

1  is denoted by 𝑍̅1
0 ,  𝑍̅1

1 ,  𝑍̅2
0 ,  𝑍̅2

1 , 

respectively. Therefore, the TS fuzzy model having 𝑠 = 22 = 4 rules can be written as 

Model rule 1: 

 If 𝑧1 is about −3.125 and 𝑧2 is about −1 then 

  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) +  𝐵21𝑢(𝑡),                             
    𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),                                                 
  𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡), 

and the membership function of the rule is computed as 𝑤1(𝑧) = 𝛽1
0𝛽2

0. 
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Model rule 2: 

 If 𝑧1 is about −3.125 and 𝑧2 is about 4 then 

  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) +  𝐵22𝑢(𝑡),                             
    𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),                                                 
  𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡), 

and the membership function of the rule is computed as   𝑤2(𝑧) = 𝛽1
0𝛽2

1. 
Model rule 3: 

 If 𝑧1 is about 2.875 and 𝑧2 is about −1 then 

  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) +  𝐵23𝑢(𝑡),                             
    𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),                                                 
 𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡), 

and the membership function of the rule is computed as  𝑤3(𝑧) = 𝛽1
1𝛽2

0. 
Model rule 4: 

 If 𝑧1 is about 2.875 and 𝑧2 is about 4 then 

  𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑤̂(𝑡) +  𝐵24𝑢(𝑡),                             
    𝑞(𝑡) = 𝐶1𝑥(𝑡) + 𝐷11𝑤̂(𝑡) + 𝐷12𝑢(𝑡),                                                 
  𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤̂(𝑡), 

and the membership function of the rule is computed as 𝑤4(𝑧) = 𝛽1
1𝛽2

1.  
Let 𝑥1 = −0.5  and 𝑥2 = 0.01  then 𝛽1

0 = 0.4167,  𝛽1
1 = 0.5833,  𝛽2

0 = 0.7980,  and 

𝛽2
1 = 0.2020. Hence, the membership functions of the rules are 

𝑤1(𝑧) = 0.3325, 𝑤2(𝑧) = 0.0842, 𝑤3(𝑧) = 0.4655,  

and 𝑤4(𝑧) = 0.1178. These membership functions lead to the error of the impulse 

response between the bilinear system and the TS fuzzy system as small as possible. The 

bilinear system can be represented as a convex linear combination of the generalized 

linear system as on (4) where 

 𝐴 = [
0.1875 0.4167

−16.667 −2.667
] , 𝐵1 = [

0.1
0

] , 𝐵21 = [
−3.125

−1
] ,  𝐵22 =

[
−3.125

4
] , 𝐵23 = [

2.875
−1

],     𝐵24  = [
2.875

4
],  𝐶1 = [1 2],   𝐶2 = [3 1],   𝐷11 = 0.5,

𝐷12 = 0.02, and 𝐷21 = 1 . 

By using the proposed algorithm and initial state 𝑥0 = [
−0.4
0.02

] then it can be obtained 

the local robust 𝐻∞ controller  𝒦𝑖 = {𝐴̂𝑖, 𝐵̂𝑖, 𝐶̂𝑖, 𝐷̂𝑖}, 𝑖 = 1,2,3,4  as follow 

 𝐴̂1 = [
 −20.0672 15.2638
 −26.3669 1.0134

] ,  𝐵̂1 = [
3.3446
2.1438

] , 𝐶̂1 = [6.4074 −4.7758],  

 𝐷̂1 = [−1.0456], 

 𝐴̂2 = [
−6.4453  5.1301

−10.1342 −9.3521
] , 𝐵̂2 = [

2.1059
−2.0419

] , 𝐶̂2 = [2.0496 −1.5326], 

  𝐷̂2 = [−0.6496], 

 𝐴̂3 = [
29.8193 47.4821

−30.9622 −20.3664
] , 𝐵̂3 = [

−6.1805
3.4791

] , 𝐶̂3 = [10.3796 16.3949], 

 𝐷̂3[−2.1740] 
and 

 𝐴̂4 = [
16.1321 18.0186
6.5955  22.1836

], 𝐵̂4 = [
−11.1588
−15.8856

], 𝐶̂4 = [5.6118 6.1443], 

 𝐷̂4 = [−3.9033].  
According to Corollary 1, the robust 𝐻∞  controller for bilinear system is 𝒦 =

{𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂} given by 

 𝐴̂ = [
8.5670 29.7331

−23.2557 −7.3168
],  𝐵̂ = [

−2.9026
0.2886

],  𝐶̂ = [7.7959 6.6389], 

𝐷̂ = [−1.8743]. 
The 𝐿2-gains of the local closed-loop systems are  𝛾1 = 1.0014, 𝛾2 = 0.0161, 𝛾3 =

1.0019, 
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and 𝛾4 = 0.9497. Hence the closed-loop system (15) has  𝐿2-gain ≤ min𝑖=1,2,3,4{𝛾𝑖} =

0.0161.  

 

Figure 2. The Temperature of the Initial Product of the Chemical 
Reaction 

The 1st and 2nd states of the bilinear system before and after the controller are given in 

Figure 2 and Figure 3, respectively. Figure 2 and Figure 3 show that the behavior of state 

variables of the temperature and the concentration of the initial product of the chemical 

reactor before and after the system is given by the controller. The temperature of the 

initial product by the controller is smaller than without the controller. The concentration 

of the initial product by the controller is more concentrated than without the controller. 

The temperature and the concentration of the initial product converge to a steady state 

asymptotically. The basin of attraction of TS fuzzy system (16) is polytope 𝒫 = [−3,3] ×
[−1,4]. 
 

 

Figure 3. The Concentration of the Initial Product of the Chemical 
Reaction 

2. Consider the bilinear system with multi inputs as follow 

 [
𝑥̇1

𝑥̇2
] = [

3

16

5

12

−
50

3
−

8

3

] [
𝑥1

𝑥2
] + [

0.1
0

] 𝑤̂ + [
−

1

8
− 𝑥1 0

𝑥2 0.15𝑥1

] [
𝑢1

𝑢2
], 
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 𝑞 = [1 2] [
𝑥1

𝑥2
] + 0.5𝑤̂ + [0.02 0.01] [

𝑢1

𝑢2
],            (17) 

 𝑦 = [3 1] [
𝑥1

𝑥2
] + 𝑤̂, 

 

where 𝑥1 and 𝑥2 represent the temperature and the concentration of the initial product 

of the chemical reactor, while 𝑢1 represents the cooling flow rate in a jacket around the 

reactor and 𝑢2  represents the velocity of the impeller agitator. The impeller stirs the 

reagents to ensure proper mixing. 

 

 

Figure 4. The Temperature of the Initial Product of the Chemical 
Reaction 

The scheduling variables of the nonconstant elements in the matrix function 

[
−

1

8
− 𝑥1 0

𝑥2 0.15𝑥1

] are 𝑧1 = −
1

8
− 𝑥1, 𝑧2 = 𝑥2 and 𝑧3 = 0.15𝑥1. Therefore, the TS fuzzy 

model having 𝑠 = 23 = 8 rules. Suppose 𝑥1 ∈ [−3,3] and 𝑥2 ∈ [−1,4]. Two conditions 

will perform the polytope 𝒫 that is 𝒫 = [−3,3] × [−1,4]. By the same procedure, where 

initial state 𝑥0 = [
−0.4
0.02

]  and 𝑤1 = 0.2706,  𝑤2 = 0.0685, 𝑤3 = 0.0685,  𝑤4 = 0.0173,

𝑤5 = 0.3662, 𝑤6 = 0.0927, 𝑤7 = 0.09 and 𝑤8 = 0.0235, the robust 𝐻∞  controller for 

bilinear system is  𝒦 = {𝐴̂, 𝐵̂, 𝐶̂, 𝐷̂}  given by  

𝐴̂ = [
−3.5208 15.9175

−13.2244 −5.7906
] ,  𝐵̂ = [

1.1297
2.1170

], 𝐶̂ = [
−1.5426 −1.4109

−102.5160 −60.0878
],   

and 

𝐷̂ = [
0.4788
5.2459

].  

The 𝐿2 -gains of the local closed-loop systems are  𝛾1 = 0.0951,  𝛾2 = 0.08,  𝛾3 =
0.0442,  𝛾4 = 0.0151,  𝛾5 = 0.0426,  𝛾6 = 0.0671,  𝛾7 = 0.0379,  and   𝛾8 = 0.0347. 
Hence the closed-loop system (15) has  𝐿2-gain ≤ min𝑖=1,2,…,8{𝛾𝑖} = 0.0151. The 1st and 

2nd states of the bilinear system before and after the controller are given in Figure 4 and 

Figure 5, respectively. 
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Figure 5. The Concentration of the Initial Product of the Chemical 
Reaction 

              𝑥2 
From the numerical experiment, there are some points which closed loop system 

is not stable (horizontal and vertical axis are 𝑥1 and 𝑥2, respectively). For example, 

the black area in Figure 6 is a region which the closed loop system is not stable. 

 

5. Conclusion 

The sector nonlinearity approach for the TS fuzzy system provided complementary and 

advantage in control design because TS fuzzy systems can describe the nonlinear 

phenomena. The formulation of the robust 𝐻∞ control design in LMIs is way towards the 

numerical solution. The robust 𝐻∞ controller for the bilinear system can be obtained by 

designing the local controllers for each the local linear systems on a polytope. The local 

controllers were obtained by solving the set of LMIs on the polytope. Furthermore, the 

robust 𝐻∞ controller for the bilinear system was obtained on a subset of the polytope 

which a convex linear combination of the local robust 𝐻∞  controllers. A numerical 

example confirmed the proposed method for designing the robust 𝐻∞ controller of the 

bilinear system. 
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Figure 6. Region which the Closed Loop System is not Stable 
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