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Abstract 

Although extensive studies have been done on the protocol conformance testing based 

on an extended finite state machine (EFSM) model, the automatic generation of feasible 

test sequences is still a challenging task. A generated test sequence may be infeasible, due 

to the conflicts among the transition conditions and context variables of EFSMs. This 

paper proposed a test sequence generation approach for EFSM-based protocols 

conformance test by using the transition feasibility estimation. Firstly, our method 

generates candidate transition paths from a directed graph G which is derived from the 

EFSM model under testing ignoring all the predicates; Then, we designed a fitness 

function to guide the test generation with a trade-off among path feasibility, coverage 

criterion and path length. Finally, an adaptive exploration algorithm is developed to 

generate executable test sequences through expanding CPs. An experiment was designed 

to validate the effectiveness of the proposed method with two classic EFSM models. The 

experimental results show that our approach is more effective by comparing it to the TEA 

method based on breadth-first search (BFS). 

 

Keywords: Conformance testing, Adaptive exploration, EFSM, Test sequence, TEA 

method 

 

1. Introduction 

Protocol implementations are the fundamental elements of network communication, 

which plays a key role in running and performance of network [1]. Protocol conformance 

testing is an experimental activity to determine whether the protocol implementation is 

conformance to its formal specification or not. The implementation under testing (IUT) is 

commonly regarded as a black box. Testers can only use a suite of external inputs and 

corresponding observable outputs to give the test verdicts. These inputs and outputs are 

called test sequences derived from the protocol specification. Unfortunately, generating 

test sequences satisfying the specific coverage requirements manually is a time-

consuming work. Model-based test sequence generation greatly simplifies the protocol 

testing work and shortens the development time of protocols. 

Two most popular formal models for representing protocol specifications are FSMs [2] 

and EFSMs [3]. An ocean of FSM-based test generation methods [4-6] have been 

proposed in the last decades. The EFSM model extends the FSM model to enhance its 

modeling capability concerning data part of a protocol with variables and predicates. In 

EFSM-based protocol testing, the test sequences are generally denoted as transition paths. 

Consequently, the existing conflicts among variables and predicates in transitions lead to 

infeasible test sequences. Thus, the traditional test sequences generation methods for FSM 

are not suitable for testing protocol specified in EFSMs [7]. In this paper, we focus on 

deriving feasible protocol conformance testing sequences based on the EFSM model. A 
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favorable method for test sequence generation should consider the following three 

objectives: (1) Generate test sequences satisfying a test coverage criterion; (2) Guarantee 

the executability of the generated test sequences; (3) Minimize the length of the test 

sequences, thereby reducing test cost. 

In recent years, genetic algorithm (GA) has been used to generate executable test 

sequences [8]. Its working procedure is divided into two stages: the first phase generates 

transition paths (TPs) to meet the specified coverage criterion; the second phase finds 

input data to fire the TPs produced in the first phase. However, these GA-based methods 

can’t guarantee the existence of input data which can fire candidate TPs. In contrast, test 

sequence generation methods using transition executability analysis (TEA) [9] can ensure 

the executability of the generated test sequence in only single step. What's more, the 

restriction conditions of EFSM models under test for the TEA methods are less than GA-

based ones. However, TEA-based methods have also a deficiency: exploration in a huge 

TEA tree is prone to a state explosion problem. 

In order to alleviate the state explosion problem, this paper presents a new heuristic 

method for generating executable test sequences based on transitions feasibility 

estimation. Our approach makes a trade-off among path feasibility, coverage criterion and 

path length. We also conduct experimental studies to investigate the performance of our 

proposed method. Experimental results suggest that our method can effectively decrease 

the probability of the state explosion problem and improve the efficiency of test 

sequences generation. 

In short, the main contributions of this paper are as follows: 

1. A new test generation approach based on estimation of feasibility is presented to find 

a shorter test sequence that meets the test criterion. 

2. We introduce a new fitness function to make a trade off among path feasibility, TP 

length, and coverage criterion. 

3. An experiment is designed with two classic EFSM models. The experimental results 

show that the approach is more effective by comparing it to BFS. 

The rest of the paper is organized as follows. Section 2 provides some background 

information. Section 3 describes the detail of test generation method for EFSM based on 

estimation of the transition feasibility. Empirical results are discussed in Section 4. 

Section 5 summarizes the related work of test sequence generation. Conclusion and 

prospective are described in Section 6. 

 

2. Preliminaries 

An EFSM can be described as an eight-tuple <S, s0, I, P, A, O, V, T>, where S is a non-

empty finite set of logical states of the EFSM; s0 is the initial state; I is the finite set of 

input; P is the set of predicates that operate on variables; A is the set of actions that 

operate on variables; O is the finite set of output; V is the set of variables,  i cV V V  , 

where Vi and Vc represent the input variables and the context variable, respectively; T is 

the set of transitions,       T S V I S V O A ; A transition t can be represented by 

the six-tuple ( , , , , ,s t t t t es i p a o s  ), where ss is the start state of t, se is the end state of t, it is 

the input and ot is output. A transition can be fired, when the condition part pt is satisfied 

after receiving a given input it. When t is executed, the corresponding action ta A  is 

executed and logical state is switched from the state ss to the se. 

To facilitate the description of the proposed approach, we will take the EFSM M1 [10] 

shown in Figure 1 as an example throughout this paper. In M1, S = {Disconnect, Waiting, 

Connected, Sending, Block}, Vc = {counter, input}, Vi = {optional, SDU, number, block, 

olddata, NUM}. If, for example, M1 is at state S2, the value of counter satisfies the guard 

of t4 (counter<4) then t4 is fired, the operation (counter =: counter +1;) is executed, and 

the operation update the value of counter 
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Figure 1. Inres Protocol as an EFSM (M1) 

Before providing a detailed description of our method, we introduce the following 

definitions: 

Definition 1. State configuration (SC) can be represented as a tuple ( , ) i is v S V , where 

si is the current state and 
iv  is the current value vector of variables, respectively. SC= si 

(v1, v2, ..., vn ). 

Definition 2. Transition configuration (TC) can be represented as a tuple ( , ) j jt v T V , 

where tj is the name of current transition, 
jv  is same with the set of variables of se. TC= tj 

(v1, v2, ..., vn ). 

Definition 3. A transition path (TP) of length n is a transition sequence that consists of n 

continuous transitions end to end, TP= t1, t2, ... , tn. TP is feasible (an FTP) if and only if 

the predicates p of each transition ti can be satisfied, where 1<i<n. 

Definition 4. A path (t1, ..., tn) is a DP-path in respect to a variable v, if t1 has a 

definition-use of v, tn has a predicate-use of v and the path is a def-clear path 

regarding v. Then, t1, tn in this path is a definition-use pair. DP represents the 

definition-p-use transition pair in an EFSM model. We use the value of v(DP) to 

evaluate the feasibility of a specific transition path. 

 

3. The Proposed Approach 

In this section, we present a new test sequence generation approach based on feasibility 

estimation of transitions. The proposed approach adaptive searches a relatively short FTP 

regarding the given test criterion for the EFSM-specified protocol. The proposed method 

descried in this paper consists of  two procedures and the flowchart is shown in the Figure 

2. 
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The procedure above the loop generates candidate paths (CPs) to satisfy the transition 

coverage criteria. To estimate of feasibility of a TP, all DPs in this TP are found and 

v(DP) is assigned to each DP, with the v(DP) depending on the relevant assignment and 

guard. Before CPs generation, definitions and guards were classified and for each possible 

combination of guard and definitions type, a pre-determined v(DP) assigned, which are 

given in Section 3.1. 

 

Figure 2. Flowchart of Test Sequence Generation Based on Transitions 
Feasibility Estimation 

The procedure in the loop generates test sequence by expanding the CPs generated in 

Section 3.2. The fitness function used to guide the search is described in detail in Section 

3.3. 

 

3.1. DP Classification 

The type of definitions and guards that occur in DPs determine the probability that a 

path from definition transition to p-use transition can be executed. The feasibility of the 

TP is evaluated by v(DP). Each definition can be normalized to a form of v:= EP, 

where  cv V , EP is an expression. And each p-use can be normalized to a form of  rv EP , 

where  cv V , EPr is an expression and   is the operator. 

Var(EP) and Var(EPr) represent the variables that appear in expression EP and EPr, 

respectively. According to the types of Var(EP) and Var(EPr),  the DPs through EFSM  

can be classified, and the resultant v(DP) used in this work are shown in the Table 1. 
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Table 1. The Corresponding v(DP) Used in this Work 

Type of EP and EPr 
operator of guard 

  =   or  < or > 

( )Var EP c  and ( )rVar EP c   0 if false and 

100 otherwise 

0 if false and 

100 otherwise 

0 if false and 

100 otherwise 

0 if false and 

100 otherwise 

( )Var EP c  and ( )r iVar EP c V    12 24 12 18 

( )Var EP c  and ( )r cVar EP c V    24 60 48 36 

( )Var EP c  and ( )r i cVar EP c V V     18 48 36 30 

( ) iVar EP c V    and ( )rVar EP c   12 24 12 18 

( ) iVar EP c V    and ( )r iVar EP c V    2 8 4 6 

( ) iVar EP c V    and ( )r cVar EP c V    8 20 12 16 

( ) iVar EP c V    and ( )r i cVar EP c V V     6 16 8 12 

( ) cVar EP c V    and ( )rVar EP c   24 60 48 36 

( ) cVar EP c V    and ( )r iVar EP c V    4 16 8 12 

( ) cVar EP c V    and ( )r cVar EP c V    16 40 24 32 

 ( ) cVar EP c V    and ( )r i cVar EP c V V     12 30 16 24 

( ) c iVar EP c V V     and ( )rVar EP c   18 48 36 30 

( ) c iVar EP c V V     and ( )r iVar EP c V    3 12 6 8 

( ) c iVar EP c V V     and ( )r cVar EP c V    12 30 20 24 

( ) c iVar EP c V V     and 

( )r i cVar EP c V V     

8 24 12 20 

For example, in Table 1, ( ) Var EP c  is used to indicate that EP only includes 

constants, where c is a constant. ( )  iVar EP c V  represents EP only includes 

constants and input variables but no context variables. 

 

3.2. Candidate Paths Generation 

Ignoring all predicates in transitions, a directed graph G can be derived from the EFSM 

model under testing. To illustrate how our method works, we consider the M1 shown in 

Figure 1. First, we generate the shortest TPs which are more likely to be executed to 

satisfy transition coverage criteria. G is conflict-free since it does not contain any guard. 

So we can use the classical BFS algorithm with a pruning strategy to generate shortest 

TPs that meet coverage requirement. However, the traditional state configuration pruning 

strategy [9] may not generate TPs that we need. U denotes the transition coverage target. 

Suppose that U = {t1, t2, t3, t4, t5}, for M1, BFS generates an expanding tree rooted in a 

given state configuration of M1 when using the pruning strategy. Figure 3 shows part of 

BFS tree, which is rooted in the initial state configuration of M1. 
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Figure 3. Part of a BFS Tree of the M1 

In Figure 3, t1 is cut off for its tail state configuration existed in the current TPs, and 

thus these two TPs are abandoned. So SC pruning strategy does not work well in this case. 

To address this problem, we adopt TC pruning strategy instead of SC in the process of 

BFS. 

If we can estimate the feasible probability in advance, it will greatly improve the 

performance of test sequence generation. Our method generates one or more short TPs 

and then sorts them with the aim to direct the choice of TPs towards those to feasible as 

CPs. For this reason, a path with more definition-p-use transition pairs has higher 

probability that it is infeasible. Thus, it is used to estimate the feasibility of a given path, 

where n is the number of DP in the path. The smaller sum of v(DP) on the path 

1
( )


n

ii
v DP  states that the path has better feasible probability. We sort shortest TPs by 

1
( )


n

ii
v DP  in ascending order. 

Suppose that U={t1,t2,t3,t4,t5}, we can derive the candidate paths 

CPs={TP1=t1,t2,t3,t2,t4,t5, TP2=t1,t2,t4,t3,t5,t2, t4, ...}.Given the initial state configuration SC0 

and target transition set U for an EFSM, Algorithm 1 generates candidate paths  shown in 

the Figure 4. 
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Figure 4. Algorithm of Candidate Paths Generation 

3.3. Test Sequence Generation 

Once CPs have been generated, we should check their feasibility. Firstly, we choose 

the first one in CPs to expand, and traverse each transition ti in the sequential order in this 

CP. If ti is feasible, we continue to traverse the following transitions in the CPi.  We have 

to adjust the original CPi to construct new '

iCP , otherwise. In the above example, the CP1= 

t1, t2, t3, t2, t4, t5, is not a FTP since after executing t1, t2, counter is 0, less than 4 and t3 

requires counter to be equal to 4. Therefore, we should stop expanding the remaining 

transitions in this CP. And now, the current test sequence is t1, t2 and the current state is 

s2, which is se of t2, and U = {t3, t4, t5}. We have to choose another executable outgoing 

transition of s2 instead of t3. 

Intend to find the test sequence, which has shorter path length and goodness of 

feasibility to cover all transitions of EFSM model from U, we present the metric as 

follows: 

1

( )
( )

| |

n
i

j

i

v PD
f t n

TP




                                                        (1) 

In the formula (1), n is the number of transitions which are uncovered in the U. |TP| is 

the length of TP that has traversed.   is a constant which is used to tune the weight of 

path length in the metric. v(PDi) represents the value of PD that constructed by tj and 

transitions that have not been covered in U. The new algorithm selects the transition with 

minimum f as next transition to expand. 

t5 is our choice for f(t4)>f(t5) , thus current test sequence is t1, t2, t5, U={t3, t4} and initial 

SC is s1 (counter, input, optional, SDU, number, block, olddata, NUM). Gen_CPs(SC0,U) 

is used to generate new CPs. The above procedure is repeated until all the transitions in 

the U are covered and the generated test sequence is executable. 
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Test generation method based on estimation of feasibility is described in the Algorithm 2 

which is shown in Figure 5. 

 

 

Figure 5. Algorithm of Transition Sequence Generation 

4. Empirical Results and Discussion 

In this section, we outline experiments in which the proposed technique was used to 

generate test sequences from two EFSMs and the results compared with BFS approach. 

Two EFSMs were used in the experiments: M1 [10] and M2 [11]. In order to evaluate the 

effectiveness of the proposed approach, we consider two factors: the count of nodes 

traversed and the length of the test sequences. The set of target transitions to be covered in 

M1 and M2 are shown in the Table 2. 

To generate the test sequence includes all the transitions in the U, everytime we choose 

the first CP in the CPs to expand. The CPs which are used to expand in our approach 

across each of the EFSMs under study are listed in Table 3. 

Table 2. The Set of Target Transitions to be Covered in M1 and M2. 

NO. M1 NO. M2 

1 U={t1,t2,t3,t4,t5} 1 U={t1,t2,t3,t4,t5,t6} 

2 U={t1,t2,t4,t5,t6,t7,t8,t9} 2 U={t1,t2,t3,t4,t5,t6,t7} 

3 U={t6,t7,t9,t11,t12,t13,t15} 3 U={t1,t2,t3,t4,t5,t6,t8,t9,t10,t11} 

4 U={t6,t7,t9,t11,t12,t14,t16,t18} 4 U={t1,t2,t3,t4,t5,t6,t8,t9,t10,t11,t12,t13} 
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Table 3. The CPs that are Expanded to Generate Test Sequences in M1 and 
M2 

M1 M2 

U CP U CP 

1 CP1=t1,t2,t3,t2,t4,t5 

CP2=t2,t4,t3 

CP3=t4,t3 

1 CP1=t1,t2,t3,t5,t4,t6 

2 CP1=t1,t2,t5,t2,t4,t6,t7,t9,t10,t8 

CP2=t10,t8 

CP3=t8 

2 CP1=t1,t2,t3,t5,t4,t6,t4,t7 

CP2=t8,t7 

3 CP1=t6,t7,t9,t11,t9,t12,t13,t15 

CP2=t11,t9,t13,t15 

CP3=t15 

CP4=t15 

CP5=t15 

CP6=t15 

3 CP1=t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t11 

CP2=t9,t11 

CP3=t9,t11 

4 CP1=t6,t7,t9,t11,t9,t12,t14,t18,t16 

CP2=t11,t9,t14,t18,t16 

CP3=t13 

CP4=t13 

CP5=t13 

4 CP1=t1,t2,t3,t4,t8,t9,t10,t9,t11,t13,t14 

CP2=t9,t11,t13,t14 

CP3=t9,t11,t13,t14 

Table 4 shows the results for the two EFSMs. Compared to the BFS algorithm, the 

average number of nodes which are searched in the process of test sequence generation in 

the new algorithm is reduced by 45.5%. Figure 6 clearly indicates the superiority of new 

technique over the BFS with respect to the number of states explored. Data are also 

provided in Table 4. 

Table 4. Comparison of the Number of Traverse Nodes 

M1 BFS Our method M2 BFS Our method 

1 1204 141 1 18 25 

2 5770 5046 2 105 79 

3 3536 1470 3 23723 4012 

4 6895 3540 4 19351 3373 

 

Figure 6. Reduce Rate of Explored Nodes 

Our approach performs almost as well as BFS with regard to the length of test 

sequence which is consistent with our observations from Table 5 and Table 6. 
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Table 5. Comparison of the Length of Test Sequences Generated 

M1 BFS Our method 

1 t1,t2,t5,t2,t4,t4,t4,t3 t1,t2,t5,t2,t4,t4,t4,t3 

2 t1,t2,t5,t2,t4,t6,t7,t9,t12,t11,t8 t1,t2,t5,t2,t4,t6,t7,t9,t12,t11,t8 

3 t6,t7,t9,t12,t11,t9,t13,t13,t13,t13,t15 t6,t7,t9,t12,t11,t9,t13,t13,t13,t13,t15  

4 t6,t7,t9,t12,t11,t9,t13,t12,t13,t14,t18,t16 t6,t7,t9,t12,t11,t9,t14,t18,t13,t13,t13,t16  

Table 6. Comparison of the Length of Test Sequences Generated 

M2 BFS Our method 

1 t1,t2,t3,t5,t4,t6  t1,t2,t3,t5,t4,t6  

2 t1,t2,t3,t5,t4,t6,t4,t8,t7 t1,t2,t3,t5,t4,t6,t4,t8,t7 

3 t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11 t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11 

4 t1,t2,t3,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11,t13,t14 t1,t2,t3,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11,t13,t14 

 

5. Related Work. 

Currently, there are many works regarding test generation methods for EFSM models 

[12-14]. Huang [11] proposed a test sequence generation method by constructing a TEA 

tree. The main idea of the method is deriving the shortest executable test sequence 

through expanding the TEA tree, which is rooted in a given state configuration in the 

breadth-first-search way. However it easily leads to the state explosion problem. Duale 

[15] introduced a method to generate tests for EFSM models which converts a class of 

EFSMs into EFSMs in which all TPs are feasible with detection and elimination of 

conflicts. It is hard to produce test cases that satisfy a test criterion expressed in terms of 

the original EFSM. 

Kalaji [8] presented a novel fitness metric to estimate the feasibility of a path, which is 

evaluated by being used in a genetic algorithm to guide the search towards TPs that are 

likely to be FTPs. Lefticaru [16] used independent component-based fitness (ICF) for path 

data generation from EFSMs. This new approach takes the independent sub-paths into 

account and uses a global, evolutionary inspired search. However in these methods, the 

choice of initial candidate test sequences as the parents is usually random, thus it easily 

leads to blindness search in the subsequent process. 

Li [17] applied symbolic execution in generating configuration-oriented executable test 

sequences from EFSM models. The inputs are given in in symbolic form, thus the values 

of the context variables are symbols. Expressions over these symbols are exploited to 

guide the derivation of the test sequences. 

Shu [10] studied a test generation method using adaptive and heuristic methods. They 

analysis intrinsic characteristics of variables and predicates of transitions in a EFSM 

model and defined a adjacency transition dependence graph based on relationship among 

transitions. The approach expands a TEA tree with the heuristic guidance to ensure the 

feasibility of test sequences generated. 

 

6. Conclusion and Prospective 

In this paper, we proposed a new executable test sequence generation algorithm for 

EFSM-based protocol conformance test using the transitions feasibility estimation. 

Firstly, the new algorithm classifies DPs according to the type of variables they include. 

Then, it expands CPs which are derived from G by the adaptive exploration function to 

aid the generation of executable test sequence that satisfies a test criterion. The 

experimental results suggest that our approach can effectively alleviate the state explosion 

problem usually occurring in the BFS-based TEA test generation methods. 
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We use BFS with TC pruning strategy to generate CPs. Hence, the future research 

direction is to reduce the number of states explored in the process of CPs generation. For 

example, we can derive the CPs by using one of FSM-based methods presented in the 

literature [4-6]. 
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