
International Journal of Control and Automation

Vol. 9, No. 5 (2016), pp. 207-218

http://dx.doi.org/10.14257/ijca.2016.9.5.20

ISSN: 2005-4297 IJCA

Copyright ⓒ2016 SERSC

A Test Generation Method for EFSM-based Protocols Using the

Transitions Feasibility Estimation

Ting Shu
1
, Tiantian Ye

1
, Xuesong Yin

2
, Jinsong Xia

1

1
School of Information and Science Technology, Zhejiang Sci-Tech University,

Hangzhou, 310018, China
2

Department of Computer Science & Technology, Zhejiang Radio & TV

University, Hangzhou, 310030, China

shuting@zstu.edu.cn

Abstract

Although extensive studies have been done on the protocol conformance testing based

on an extended finite state machine (EFSM) model, the automatic generation of feasible

test sequences is still a challenging task. A generated test sequence may be infeasible, due

to the conflicts among the transition conditions and context variables of EFSMs. This

paper proposed a test sequence generation approach for EFSM-based protocols

conformance test by using the transition feasibility estimation. Firstly, our method

generates candidate transition paths from a directed graph G which is derived from the

EFSM model under testing ignoring all the predicates; Then, we designed a fitness

function to guide the test generation with a trade-off among path feasibility, coverage

criterion and path length. Finally, an adaptive exploration algorithm is developed to

generate executable test sequences through expanding CPs. An experiment was designed

to validate the effectiveness of the proposed method with two classic EFSM models. The

experimental results show that our approach is more effective by comparing it to the TEA

method based on breadth-first search (BFS).

Keywords: Conformance testing, Adaptive exploration, EFSM, Test sequence, TEA

method

1. Introduction

Protocol implementations are the fundamental elements of network communication,

which plays a key role in running and performance of network [1]. Protocol conformance

testing is an experimental activity to determine whether the protocol implementation is

conformance to its formal specification or not. The implementation under testing (IUT) is

commonly regarded as a black box. Testers can only use a suite of external inputs and

corresponding observable outputs to give the test verdicts. These inputs and outputs are

called test sequences derived from the protocol specification. Unfortunately, generating

test sequences satisfying the specific coverage requirements manually is a time-

consuming work. Model-based test sequence generation greatly simplifies the protocol

testing work and shortens the development time of protocols.

Two most popular formal models for representing protocol specifications are FSMs [2]

and EFSMs [3]. An ocean of FSM-based test generation methods [4-6] have been

proposed in the last decades. The EFSM model extends the FSM model to enhance its

modeling capability concerning data part of a protocol with variables and predicates. In

EFSM-based protocol testing, the test sequences are generally denoted as transition paths.

Consequently, the existing conflicts among variables and predicates in transitions lead to

infeasible test sequences. Thus, the traditional test sequences generation methods for FSM

are not suitable for testing protocol specified in EFSMs [7]. In this paper, we focus on

deriving feasible protocol conformance testing sequences based on the EFSM model. A

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

208 Copyright ⓒ2016 SERSC

favorable method for test sequence generation should consider the following three

objectives: (1) Generate test sequences satisfying a test coverage criterion; (2) Guarantee

the executability of the generated test sequences; (3) Minimize the length of the test

sequences, thereby reducing test cost.

In recent years, genetic algorithm (GA) has been used to generate executable test

sequences [8]. Its working procedure is divided into two stages: the first phase generates

transition paths (TPs) to meet the specified coverage criterion; the second phase finds

input data to fire the TPs produced in the first phase. However, these GA-based methods

can’t guarantee the existence of input data which can fire candidate TPs. In contrast, test

sequence generation methods using transition executability analysis (TEA) [9] can ensure

the executability of the generated test sequence in only single step. What's more, the

restriction conditions of EFSM models under test for the TEA methods are less than GA-

based ones. However, TEA-based methods have also a deficiency: exploration in a huge

TEA tree is prone to a state explosion problem.

In order to alleviate the state explosion problem, this paper presents a new heuristic

method for generating executable test sequences based on transitions feasibility

estimation. Our approach makes a trade-off among path feasibility, coverage criterion and

path length. We also conduct experimental studies to investigate the performance of our

proposed method. Experimental results suggest that our method can effectively decrease

the probability of the state explosion problem and improve the efficiency of test

sequences generation.

In short, the main contributions of this paper are as follows:

1. A new test generation approach based on estimation of feasibility is presented to find

a shorter test sequence that meets the test criterion.

2. We introduce a new fitness function to make a trade off among path feasibility, TP

length, and coverage criterion.

3. An experiment is designed with two classic EFSM models. The experimental results

show that the approach is more effective by comparing it to BFS.

The rest of the paper is organized as follows. Section 2 provides some background

information. Section 3 describes the detail of test generation method for EFSM based on

estimation of the transition feasibility. Empirical results are discussed in Section 4.

Section 5 summarizes the related work of test sequence generation. Conclusion and

prospective are described in Section 6.

2. Preliminaries

An EFSM can be described as an eight-tuple <S, s0, I, P, A, O, V, T>, where S is a non-

empty finite set of logical states of the EFSM; s0 is the initial state; I is the finite set of

input; P is the set of predicates that operate on variables; A is the set of actions that

operate on variables; O is the finite set of output; V is the set of variables, i cV V V ,

where Vi and Vc represent the input variables and the context variable, respectively; T is

the set of transitions, T S V I S V O A ; A transition t can be represented by

the six-tuple (, , , , ,s t t t t es i p a o s), where ss is the start state of t, se is the end state of t, it is

the input and ot is output. A transition can be fired, when the condition part pt is satisfied

after receiving a given input it. When t is executed, the corresponding action ta A is

executed and logical state is switched from the state ss to the se.

To facilitate the description of the proposed approach, we will take the EFSM M1 [10]

shown in Figure 1 as an example throughout this paper. In M1, S = {Disconnect, Waiting,

Connected, Sending, Block}, Vc = {counter, input}, Vi = {optional, SDU, number, block,

olddata, NUM}. If, for example, M1 is at state S2, the value of counter satisfies the guard

of t4 (counter<4) then t4 is fired, the operation (counter =: counter +1;) is executed, and

the operation update the value of counter

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

Copyright ⓒ2016 SERSC 209

Figure 1. Inres Protocol as an EFSM (M1)

Before providing a detailed description of our method, we introduce the following

definitions:

Definition 1. State configuration (SC) can be represented as a tuple (,) i is v S V , where

si is the current state and
iv is the current value vector of variables, respectively. SC= si

(v1, v2, ..., vn).

Definition 2. Transition configuration (TC) can be represented as a tuple (,) j jt v T V ,

where tj is the name of current transition,
jv is same with the set of variables of se. TC= tj

(v1, v2, ..., vn).

Definition 3. A transition path (TP) of length n is a transition sequence that consists of n

continuous transitions end to end, TP= t1, t2, ... , tn. TP is feasible (an FTP) if and only if

the predicates p of each transition ti can be satisfied, where 1<i<n.

Definition 4. A path (t1, ..., tn) is a DP-path in respect to a variable v, if t1 has a

definition-use of v, tn has a predicate-use of v and the path is a def-clear path

regarding v. Then, t1, tn in this path is a definition-use pair. DP represents the

definition-p-use transition pair in an EFSM model. We use the value of v(DP) to

evaluate the feasibility of a specific transition path.

3. The Proposed Approach

In this section, we present a new test sequence generation approach based on feasibility

estimation of transitions. The proposed approach adaptive searches a relatively short FTP

regarding the given test criterion for the EFSM-specified protocol. The proposed method

descried in this paper consists of two procedures and the flowchart is shown in the Figure

2.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

210 Copyright ⓒ2016 SERSC

The procedure above the loop generates candidate paths (CPs) to satisfy the transition

coverage criteria. To estimate of feasibility of a TP, all DPs in this TP are found and

v(DP) is assigned to each DP, with the v(DP) depending on the relevant assignment and

guard. Before CPs generation, definitions and guards were classified and for each possible

combination of guard and definitions type, a pre-determined v(DP) assigned, which are

given in Section 3.1.

Figure 2. Flowchart of Test Sequence Generation Based on Transitions
Feasibility Estimation

The procedure in the loop generates test sequence by expanding the CPs generated in

Section 3.2. The fitness function used to guide the search is described in detail in Section

3.3.

3.1. DP Classification

The type of definitions and guards that occur in DPs determine the probability that a

path from definition transition to p-use transition can be executed. The feasibility of the

TP is evaluated by v(DP). Each definition can be normalized to a form of v:= EP,

where cv V , EP is an expression. And each p-use can be normalized to a form of rv EP ,

where cv V , EPr is an expression and is the operator.

Var(EP) and Var(EPr) represent the variables that appear in expression EP and EPr,

respectively. According to the types of Var(EP) and Var(EPr), the DPs through EFSM

can be classified, and the resultant v(DP) used in this work are shown in the Table 1.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

Copyright ⓒ2016 SERSC 211

Table 1. The Corresponding v(DP) Used in this Work

Type of EP and EPr
operator of guard

 = or < or >

()Var EP c and ()rVar EP c 0 if false and

100 otherwise

0 if false and

100 otherwise

0 if false and

100 otherwise

0 if false and

100 otherwise

()Var EP c and ()r iVar EP c V 12 24 12 18

()Var EP c and ()r cVar EP c V 24 60 48 36

()Var EP c and ()r i cVar EP c V V 18 48 36 30

() iVar EP c V and ()rVar EP c 12 24 12 18

() iVar EP c V and ()r iVar EP c V 2 8 4 6

() iVar EP c V and ()r cVar EP c V 8 20 12 16

() iVar EP c V and ()r i cVar EP c V V 6 16 8 12

() cVar EP c V and ()rVar EP c 24 60 48 36

() cVar EP c V and ()r iVar EP c V 4 16 8 12

() cVar EP c V and ()r cVar EP c V 16 40 24 32

 () cVar EP c V and ()r i cVar EP c V V 12 30 16 24

() c iVar EP c V V and ()rVar EP c 18 48 36 30

() c iVar EP c V V and ()r iVar EP c V 3 12 6 8

() c iVar EP c V V and ()r cVar EP c V 12 30 20 24

() c iVar EP c V V and

()r i cVar EP c V V

8 24 12 20

For example, in Table 1, () Var EP c is used to indicate that EP only includes

constants, where c is a constant. () iVar EP c V represents EP only includes

constants and input variables but no context variables.

3.2. Candidate Paths Generation

Ignoring all predicates in transitions, a directed graph G can be derived from the EFSM

model under testing. To illustrate how our method works, we consider the M1 shown in

Figure 1. First, we generate the shortest TPs which are more likely to be executed to

satisfy transition coverage criteria. G is conflict-free since it does not contain any guard.

So we can use the classical BFS algorithm with a pruning strategy to generate shortest

TPs that meet coverage requirement. However, the traditional state configuration pruning

strategy [9] may not generate TPs that we need. U denotes the transition coverage target.

Suppose that U = {t1, t2, t3, t4, t5}, for M1, BFS generates an expanding tree rooted in a

given state configuration of M1 when using the pruning strategy. Figure 3 shows part of

BFS tree, which is rooted in the initial state configuration of M1.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

212 Copyright ⓒ2016 SERSC

Figure 3. Part of a BFS Tree of the M1

In Figure 3, t1 is cut off for its tail state configuration existed in the current TPs, and

thus these two TPs are abandoned. So SC pruning strategy does not work well in this case.

To address this problem, we adopt TC pruning strategy instead of SC in the process of

BFS.

If we can estimate the feasible probability in advance, it will greatly improve the

performance of test sequence generation. Our method generates one or more short TPs

and then sorts them with the aim to direct the choice of TPs towards those to feasible as

CPs. For this reason, a path with more definition-p-use transition pairs has higher

probability that it is infeasible. Thus, it is used to estimate the feasibility of a given path,

where n is the number of DP in the path. The smaller sum of v(DP) on the path

1
()

n

ii
v DP states that the path has better feasible probability. We sort shortest TPs by

1
()

n

ii
v DP in ascending order.

Suppose that U={t1,t2,t3,t4,t5}, we can derive the candidate paths

CPs={TP1=t1,t2,t3,t2,t4,t5, TP2=t1,t2,t4,t3,t5,t2, t4, ...}.Given the initial state configuration SC0

and target transition set U for an EFSM, Algorithm 1 generates candidate paths shown in

the Figure 4.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

Copyright ⓒ2016 SERSC 213

Figure 4. Algorithm of Candidate Paths Generation

3.3. Test Sequence Generation

Once CPs have been generated, we should check their feasibility. Firstly, we choose

the first one in CPs to expand, and traverse each transition ti in the sequential order in this

CP. If ti is feasible, we continue to traverse the following transitions in the CPi. We have

to adjust the original CPi to construct new '

iCP , otherwise. In the above example, the CP1=

t1, t2, t3, t2, t4, t5, is not a FTP since after executing t1, t2, counter is 0, less than 4 and t3

requires counter to be equal to 4. Therefore, we should stop expanding the remaining

transitions in this CP. And now, the current test sequence is t1, t2 and the current state is

s2, which is se of t2, and U = {t3, t4, t5}. We have to choose another executable outgoing

transition of s2 instead of t3.

Intend to find the test sequence, which has shorter path length and goodness of

feasibility to cover all transitions of EFSM model from U, we present the metric as

follows:

1

()
()

| |

n
i

j

i

v PD
f t n

TP

 (1)

In the formula (1), n is the number of transitions which are uncovered in the U. |TP| is

the length of TP that has traversed. is a constant which is used to tune the weight of

path length in the metric. v(PDi) represents the value of PD that constructed by tj and

transitions that have not been covered in U. The new algorithm selects the transition with

minimum f as next transition to expand.

t5 is our choice for f(t4)>f(t5) , thus current test sequence is t1, t2, t5, U={t3, t4} and initial

SC is s1 (counter, input, optional, SDU, number, block, olddata, NUM). Gen_CPs(SC0,U)

is used to generate new CPs. The above procedure is repeated until all the transitions in

the U are covered and the generated test sequence is executable.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

214 Copyright ⓒ2016 SERSC

Test generation method based on estimation of feasibility is described in the Algorithm 2

which is shown in Figure 5.

Figure 5. Algorithm of Transition Sequence Generation

4. Empirical Results and Discussion

In this section, we outline experiments in which the proposed technique was used to

generate test sequences from two EFSMs and the results compared with BFS approach.

Two EFSMs were used in the experiments: M1 [10] and M2 [11]. In order to evaluate the

effectiveness of the proposed approach, we consider two factors: the count of nodes

traversed and the length of the test sequences. The set of target transitions to be covered in

M1 and M2 are shown in the Table 2.

To generate the test sequence includes all the transitions in the U, everytime we choose

the first CP in the CPs to expand. The CPs which are used to expand in our approach

across each of the EFSMs under study are listed in Table 3.

Table 2. The Set of Target Transitions to be Covered in M1 and M2.

NO. M1 NO. M2

1 U={t1,t2,t3,t4,t5} 1 U={t1,t2,t3,t4,t5,t6}

2 U={t1,t2,t4,t5,t6,t7,t8,t9} 2 U={t1,t2,t3,t4,t5,t6,t7}

3 U={t6,t7,t9,t11,t12,t13,t15} 3 U={t1,t2,t3,t4,t5,t6,t8,t9,t10,t11}

4 U={t6,t7,t9,t11,t12,t14,t16,t18} 4 U={t1,t2,t3,t4,t5,t6,t8,t9,t10,t11,t12,t13}

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

Copyright ⓒ2016 SERSC 215

Table 3. The CPs that are Expanded to Generate Test Sequences in M1 and
M2

M1 M2

U CP U CP

1 CP1=t1,t2,t3,t2,t4,t5

CP2=t2,t4,t3

CP3=t4,t3

1 CP1=t1,t2,t3,t5,t4,t6

2 CP1=t1,t2,t5,t2,t4,t6,t7,t9,t10,t8

CP2=t10,t8

CP3=t8

2 CP1=t1,t2,t3,t5,t4,t6,t4,t7

CP2=t8,t7

3 CP1=t6,t7,t9,t11,t9,t12,t13,t15

CP2=t11,t9,t13,t15

CP3=t15

CP4=t15

CP5=t15

CP6=t15

3 CP1=t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t11

CP2=t9,t11

CP3=t9,t11

4 CP1=t6,t7,t9,t11,t9,t12,t14,t18,t16

CP2=t11,t9,t14,t18,t16

CP3=t13

CP4=t13

CP5=t13

4 CP1=t1,t2,t3,t4,t8,t9,t10,t9,t11,t13,t14

CP2=t9,t11,t13,t14

CP3=t9,t11,t13,t14

Table 4 shows the results for the two EFSMs. Compared to the BFS algorithm, the

average number of nodes which are searched in the process of test sequence generation in

the new algorithm is reduced by 45.5%. Figure 6 clearly indicates the superiority of new

technique over the BFS with respect to the number of states explored. Data are also

provided in Table 4.

Table 4. Comparison of the Number of Traverse Nodes

M1 BFS Our method M2 BFS Our method

1 1204 141 1 18 25

2 5770 5046 2 105 79

3 3536 1470 3 23723 4012

4 6895 3540 4 19351 3373

Figure 6. Reduce Rate of Explored Nodes

Our approach performs almost as well as BFS with regard to the length of test

sequence which is consistent with our observations from Table 5 and Table 6.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

216 Copyright ⓒ2016 SERSC

Table 5. Comparison of the Length of Test Sequences Generated

M1 BFS Our method

1 t1,t2,t5,t2,t4,t4,t4,t3 t1,t2,t5,t2,t4,t4,t4,t3

2 t1,t2,t5,t2,t4,t6,t7,t9,t12,t11,t8 t1,t2,t5,t2,t4,t6,t7,t9,t12,t11,t8

3 t6,t7,t9,t12,t11,t9,t13,t13,t13,t13,t15 t6,t7,t9,t12,t11,t9,t13,t13,t13,t13,t15

4 t6,t7,t9,t12,t11,t9,t13,t12,t13,t14,t18,t16 t6,t7,t9,t12,t11,t9,t14,t18,t13,t13,t13,t16

Table 6. Comparison of the Length of Test Sequences Generated

M2 BFS Our method

1 t1,t2,t3,t5,t4,t6 t1,t2,t3,t5,t4,t6

2 t1,t2,t3,t5,t4,t6,t4,t8,t7 t1,t2,t3,t5,t4,t6,t4,t8,t7

3 t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11 t1,t2,t3,t5,t4,t6,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11

4 t1,t2,t3,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11,t13,t14 t1,t2,t3,t4,t8,t9,t10,t9,t10,t9,t10,t9,t11,t13,t14

5. Related Work.

Currently, there are many works regarding test generation methods for EFSM models

[12-14]. Huang [11] proposed a test sequence generation method by constructing a TEA

tree. The main idea of the method is deriving the shortest executable test sequence

through expanding the TEA tree, which is rooted in a given state configuration in the

breadth-first-search way. However it easily leads to the state explosion problem. Duale

[15] introduced a method to generate tests for EFSM models which converts a class of

EFSMs into EFSMs in which all TPs are feasible with detection and elimination of

conflicts. It is hard to produce test cases that satisfy a test criterion expressed in terms of

the original EFSM.

Kalaji [8] presented a novel fitness metric to estimate the feasibility of a path, which is

evaluated by being used in a genetic algorithm to guide the search towards TPs that are

likely to be FTPs. Lefticaru [16] used independent component-based fitness (ICF) for path

data generation from EFSMs. This new approach takes the independent sub-paths into

account and uses a global, evolutionary inspired search. However in these methods, the

choice of initial candidate test sequences as the parents is usually random, thus it easily

leads to blindness search in the subsequent process.

Li [17] applied symbolic execution in generating configuration-oriented executable test

sequences from EFSM models. The inputs are given in in symbolic form, thus the values

of the context variables are symbols. Expressions over these symbols are exploited to

guide the derivation of the test sequences.

Shu [10] studied a test generation method using adaptive and heuristic methods. They

analysis intrinsic characteristics of variables and predicates of transitions in a EFSM

model and defined a adjacency transition dependence graph based on relationship among

transitions. The approach expands a TEA tree with the heuristic guidance to ensure the

feasibility of test sequences generated.

6. Conclusion and Prospective

In this paper, we proposed a new executable test sequence generation algorithm for

EFSM-based protocol conformance test using the transitions feasibility estimation.

Firstly, the new algorithm classifies DPs according to the type of variables they include.

Then, it expands CPs which are derived from G by the adaptive exploration function to

aid the generation of executable test sequence that satisfies a test criterion. The

experimental results suggest that our approach can effectively alleviate the state explosion

problem usually occurring in the BFS-based TEA test generation methods.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

Copyright ⓒ2016 SERSC 217

We use BFS with TC pruning strategy to generate CPs. Hence, the future research

direction is to reduce the number of states explored in the process of CPs generation. For

example, we can derive the CPs by using one of FSM-based methods presented in the

literature [4-6].

Acknowledgements

We would like to appreciate the anonymous reviewers for their constructive comments

and suggestions to improve the quality of this paper. This work is partially supported by

the National Natural Science Foundation of China (No. 61101111), Science Foundation of

Zhejiang Sci-Tech University（ZSTU）under Grant No.1004839-Y, Public Project of

Zhejiang Province under Grant No. 2013C33087.

References

[1] Y. Fu and O. Kone, “Security and robustness by protocol testing”, IEEE Systems Journal, vol.8, no.3,

(2012), pp.699-707.

[2] T. S. Chow, “Testing software design modeled by finite-state machines”, IEEE Transaction on Software

Engineering vol.4, no.3, (1978), pp.178-187.

[3] A. Cavalli, C. Gervy and S. Prokopenko, “New approaches for passive testing using an extended finite

state machine specification”, Information and Software Technology, vol.45, no.12, (2003), pp.837-852.

[4] A. V. Aho, A. T. Dahbura, D. Lee and M. U. Uyar, “An optimization technique for protocol

conformance test generation based on UIO sequences and rural Chinese postman tours”, IEEE

Transactions on Communications, vol.39, no.11, (1991), pp.1604-1615.

[5] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli and N. Yevtushenko, “FSM-based conformance

testing methods: a survey annotated with experimental evaluation”, Information and Software

Technology, vol.52, no.12, (2010), pp.1286-1297.

[6] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman, M. J. Harrold

and P. McMinn, “An orchestrated survey of methodologies for automated software test case generation’,

Journal of Systems and Software, vol.86, no.8, (2013), pp.1978-2001.

[7] R. Yang, Z. Chen, B. Xu, W. E. Wong and J. Zhang, “Improve the effectiveness of test case generation

on efsm via automatic path feasibility analysis”, Proceedings of the 13th International Symposium on

High-Assurance Systems Engineering, (2011), pp.17-24.

[8] A.S. Kalaji, R.M. Hierons and S. Swift, “An integrated search-based approach for automatic testing

from extended finite state machine (EFSM) models”, Information and Software Technology, vol.53,

no.12, (2011), pp.1297-1318.

[9] C.M. Huang, M.S. Chiang and M.Y. Jang, “UIOE: a protocol test sequence generation method using the

transition executability analysis (TEA)”, Computer Communications, vol.21, no.16, (1998), pp. 1462-

1475.

[10] T. Shu, L.G. Liu and W.Q. Xu, “Adaptive Executable Test Sequences Generation from an Extended

Finite State Machine’, Journal of Computer Research and Development, vol. 49, no. 6, (2012), pp.1211-

1219.

[11] C.M. Huang, M.Y. Jang and M.S. Chiang, “Executable EFSM-based data flow and control flow

protocol test sequence generation using reachability analysis”, Journal of the Chinese Institute of

Engineers, vol.22, no.5, (1999), pp.593-615.

[12] W.E. Wong, A. Restrepo and B. Choi, “Validation of SDL specifications using EFSM-based test

generation”, Information and Software Technology, vol.51, no.11, (2009), pp.1505-1519.

[13] A.S. Kalaji, R.M. Hierons and S. Swift, “Generating feasible transition paths for testing from an

extended finite state machine (EFSM)”, Proceedings of the 2009 ICST international conference on

Software Testing Verification and Validation, (2009), pp.230-239.

[14] K. Derderian, R.M. Hierons, M. Harman and Q. Guo, “Estimating the feasibility of transition paths in

extended finite state machines”, Automated Software Engineering, vol.17, no.1, (2010), pp.33-56.

[15] A.Y. Duale and M.U. Uyar, “A method enabling feasible conformance test sequence generation for

EFSM models”, IEEE Transactions on Computers, vol.53, no.5, (2004), pp.614-627.

[16] R. Lefticaru and F. Ipate, “An improved test generation approach from extended finite state machines

using genetic algorithms”, Proceedings of the 10th international conference on Software Engineering

and Formal Methods,(2012), pp.293-307.

[17] S. Li, J. Wang, X. Wang and Z.C. Qi, “Configuration-oriented symbolic test sequence construction

method for EFSM”, Proceedings of the 2th Annual International Computer Software and Applications

Conference, (2005), pp.13-18.

International Journal of Control and Automation

Vol. 9 No. 5 (2016)

218 Copyright ⓒ2016 SERSC

Authors

Ting Shu. He received the Ph.D. degree in Computer Science

from Zhejiang University in 2010. He is now an associate professor

with the School of Information Science and Technology, Zhejiang

Sci-Tech University, 310018, Hangzhou, China. His current research

interests include software testing and network protocol testing.

Tiantian Ye. She is a Master Degree candidate in Computer

Science at Zhejiang Sci-Tech University, She received her B.S.

degree in information and computer science from Zhejiang Sci-Tech

University in 2013. Her research interests are mainly in software

testing and protocol conformance testing.

Xuesong Yin. He received the Ph.D. degree in computer

science from Nanjing University of Aeronautics and

Astronautics, Nanjing, China, in 2010. He is currently a

Professor in the School of Information and Engineering,

Zhejiang Radio and TV University, Hangzhou, China. His

current research interests include machine learning, data mining,

and pattern recognition.

Jinsong Xia. He is a Ph.D. candidate in Control Theory and

Control Engineering at School of Mechanical Engineering &

Automation and a lecturer at the School of Information Science and

Technology, Zhejiang Sci-Tech University,310018, Hangzhou,

China. He received his M.S. in computer science from Zhejiang

University in 2006. His current research interests are mainly in

software testing.

