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Abstract 

When system parameters falling into a certain area or under some working conditions, 

the permanent magnet synchronous motor (PMSM) will appear chaos phenomenon, 

which threatens the secure and stable operation of drive system. So this paper proposes a 

robust adaptive sliding mode control strategy aiming at the complex chaotic behavior of 

PMSM. Using the sliding mode control technique, a time varying surface is constructed. 

Then an adaptive gain of the robust control law is established considering uncertainties 

and external interference in PMSM. So the phenomenon of chaos in PMSM system will be 

eliminated using proposed controller. Finally, stability analysis will be given based on 

Lyapunov stability theory. Simulation results demonstrate the effectiveness of the 

proposed adaptive sliding mode control scheme. 
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1. Introduction 

The fundamental characteristic of a chaotic system is its sensitive dependence on initial 

conditions and systemic parameters. So a small shift in the initial states can lead to 

extraordinary and unpredictable perturbation in the system states. This will go against 

precise control of system. During the past two decades, chaos control study has attracted 

considerable attention among the scholars. Many different control methods of chaotic 

systems have been proposed such as linear state feedback control [1, 2], adaptive control 

[3], backstepping method [4, 5], sliding mode control [6-10], H∞ approach[11], PID 

control [12-13], fuzzy logic control [14-16], etc. In recent years, chaotic systems are also 

applied in secure communication, biological systems, power quality, information 

processing and chemical reaction analysis. 

Permanent magnet synchronous motors (PMSM) are intensively used in industrial 

applications due to their simple structure, high efficiency, high power density and large 

torque to inertia ratio. However, it is still a challenging problem to control the PMSM to 

get the perfect dynamic performance, because the dynamic model of PMSM is 

multivariable, nonlinear and parameters variable. Even PMSM system demonstrates 

chaotic behavior when systemic parameters fall into a certain area. The chaotic behavior 

in PMSM can destroy the stabilization of the motor even inducing the drive system to 

collapse. So the control of chaos in the PMSM have been an active research area in the 

field of nonlinear control of electric motors. Up to now, a lot of valid control methods 

have been successfully used to control chaos in PMSM. The OGY method [17] is the 

typical method of controlling chaos in PMSM. But the shortcoming of this method is not 

easy to determine system parameters. Time delay feedback control (TDFC) [18] was 
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successfully implemented to control the PMSM, but it is difficult to determine the time 

delay for the TDFC method given a specific target and is not suitable when the desired 

target is not an equilibrium or an unstable periodic orbit of the system. [19] used an 

adaptive fuzzy backstepping technology to control chaos in the PMSM. This method 

overcame the problem of "explosion of terms" caused by the repeated differentiations of 

virtual input, but the calculation process is more complicated. [20, 21] proposed sliding 

mode control (SMC) approach to realize the controlling of chaos in the PMSM. However, 

the uncertainties and external interference in PMSM were not taken into account. 

In this paper, a robust adaptive sliding mode controller is developed to suppress chaos 

in permanent magnet synchronous motor drive systems. The proposed scheme will give 

sufficient consideration to uncertainties and external interference in PMSM. Furthermore, 

the stability of the propose method is guaranteed using Lyapunov stability theory. Finally, 

simulation results demonstrate the effectiveness and robustness against the chaotic in 

PMSM drive system. 

 

2. Mathematical Model of Chaotic PMSM Drive System 

The mathematical model of the permanent magnet synchronous motor with smooth air 

gap is described as follows [22]: 
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where qd ii ,  and   are the state variables, which represent d-q axis currents and motor 

angular frequency. du  and qu  are the d-q axis stator voltage. LT  denotes the load 

torque.  and are non-negative system parameters. 

In system (1), the external inputs are set to zero, 0 dqL uuT , and the system 

dynamic becomes an unforced system as follows[16]: 
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The study found that the PMSM experiences chaotic behavior when the system 

parameters  and  fall in a certain range of values. For example, the PMSM displays 

chaos with 45.5 and 20 .A typical chaotic attractor is shown in Figure 1. 

Figure2-4 are the time graph of ω, dq ii ,  under chaos. For simplicity, the following 

notations are introduced: qiyx  , and diz  . Taking into account the uncertainties of 

system and adding the input )(tu , the differential equation (2) is rewritten as 
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where )(tu is the input and ),,( zyxf is the uncertainty, the rang of uncertainty is in 

 ),,( zyxf . 
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Figure 1. The Chaotic Attractors of PMSM 
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Figure 2. The Time Graph of ω Under Chaos 
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Figure 3. The Time Graph of qi Under Chaos 
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Figure 4. The Time Graph of di Under Chaos 
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3. Adaptive Sliding Mode Control Strategy 
 

3.1. Adaptive Sliding Mode Controller Design 

The adaptive sliding surface is described as follow: 

)()()( ttxts   (4) 

where )(t  is given by 

xxy  
 (5) 

where 0 . 

When the system reaches the sliding surface, Eq. (5) will satisfy the following 

equation: 

0)()()(  ttxts
 (6) 

The time derivative of (6) is given by 
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According to equations (3) and (7), the system of PMSM be rewritten as follows: 

x y x x

y y xz x

z z xy

  



   


   
   

  (8) 

In order to analyze the stability of equations (8), the Lyapunov function can be defined 

as 

. Taking the derivative of (8), we find 
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 (9) 

According to Lyapunov stability theory, it can be concluded that system is 

asymptotically stable and all state variables would converge to the origin. 

To guarantee the system state on sliding mode surface, the equivalent control law is 

designed as following: 

),,( zyxfxxyueq  
 (10) 

The switching control law is designed as following: 

)sgn(sKusw   (11) 

where K  is the switching gain, achieved by following adaptive law: 

slK 
 (12) 

where l  is a positive constant number. So the control law of PMSM becomes 

2
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eq swu u u   

)sgn(),,( sKzyxfxxy  
 (13) 

In order to control chaos in PMSM using Eq. (13), the function ),,( zyxf  must be 

known. However, ),,( zyxf  is the uncertainties and external disturbances in the 

system. To overcome this, the control law of PMSM is modified to 

)sgn(sKxxyu  
 (14) 

 

3.2. Stability Analyses 

In order to prove the stability of the scheme presented in (14), the Lyapunov function V 

can be defined as 

2 21 1
( )

2 2
V s K K

l
  

 (15) 

Taking the derivative of (15), we find 
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Considering 
1

0K s
l

   , the scalar K
~

 can be chosen in such a way that the value 

of  -
~
 K  remains negative. Inequality (16) can be rewrited as 

sV 
 (17) 

Therefore, the condition of global asymptotic stability 0)()( tsts   is satisfied. 

 

4. Simulation Results 

The parameters of the PMSM is listed in Tables 1. The overall block diagram of 

controlling chaos in PMSM is shown in Figure 5. In order to illustrate the effectiveness of 

the proposed method, the simulation will be conducted to control chaos in the PMSM 

drive system under the initial condition of    TT
zyx 2,4,3,,   and system parameters of 

2045.5   ， , 009.0,7  l . The uncertainty term is 

)3sin()2sin()sin(5.0),,( zyxzyxf  . Figure 6 is the block diagram of chaos in 

PMSM with simulink. Figure 7 shows the state variables of PMSM system when the input 

control u  is added to the system at the time 20t  second. 
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Table 1. Parameters of PMSM 

 

Figure 5. Diagram of Controlling Chaos in PMSM 

 

Figure 6. The Block Diagram of Chaos in PMSM with Simulink 

Parameter Value 

Stator Resistance 0.7  

Stator Inductor 0.00484 H  

Flux 0.0556Wb  

Rotor Inertia 0.74e-4 kg m
2
 

poles 4 
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Figure 7. The State Variables of the Controlled PMSM System 

It can be seen that the system will get rid of the chaotic motion and the state variables 

will gradually converge to equilibrium point after the time of 20s. The curve of control 

signal u  is showed in Figure 8. 
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Figure 8. The Curve of Control Signal u(t) 

5. Conclusion 

In this paper, an adaptive sliding mode control scheme was proposed for eliminating 

complex chaotic behavior of PMSM. The propose scheme will give sufficient 

consideration to uncertainties and external interference in PMSM and guarantee that the 

state variables of PMSM can converge to equilibrium point from chaotic. Finally, stability 

analysis will be given based on Lyapunov stability theory. Simulation results are provided 

to demonstrate the effectiveness and robustness against parameter uncertainties in the 

chaotic drive system. 
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