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Abstract 

To improve the accuracy and reduce the response time of traditional gas regulator, a 

Proportional Integral Derivative (PID) neural network controller of electric gas 

regulator is proposed by combining conventional digital PID with neural network. And 

the parallel architecture of the PID neural network is implemented by using Field 

Programmable Gate Array (FPGA). The neural network is demonstrated in a closed loop 

system of electric gas regulator and the ideal system output can be obtained by using this 

improved neural network algorithm. Theoretical analysis and simulation results show that 

the PID neural network pressure controller based on FPGA can achieve faster response 

speed and higher control accuracy compared with those based on software, and be 

obvious to improve the efficiency and security of the electric gas regulator.  
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1. Introduction 

In recent years, the development and utilization of gas have played an important role in 

social economic development and environmental protection [1, 2]. The existing gas 

distribution system usually adopts conventional mechanical (direct or indirect) gas 

regulators, which have low accuracy and are easy to be affected by the external 

environment. Low regulated pressure accuracy makes the actual outlet pressure to deviate 

from the predefined range, which result in insufficient burning of gas, causes 

consumption of energy sources, environmental pollution and even gas security of supply 

[3, 4]. To solve these problems, electric gas pressure regulator technology has been 

proposed to replace the conventional mechanical gas regulators. But how to improve the 

precision and reduce the reaction time is still difficult to realize, and it is a hot topic in this 

research field [5]. For these problems, the author has been made the research in [6] which 

proposed a scheme of multi-sensor information fusion based on the intelligent air pressure 

sensor array to detect the inlet and outlet pressure accurately of the electric gas pressure 

regulator to get the pressure value which is more reliable. 

The existing gas pressure regulator mainly adopts PID controller, is widely used in the 

industry closed loop control system, which has good robustness and easy to be 

implemented [7, 8]. Since artificial neural network can sufficiently approach any 

complicated nonlinear function, it is introduced to construct the infrastructure of the gas 

pressure regulator and has achieved greater fault tolerance and robustness [9, 10]. So far, 

the main realization method of artificial neural network is software programming. But it 

cannot reflect the characteristic of high-speed parallel information processing by using the 

serial method, and it is also unrealistic to guarantee the real-time control [11]. As the 

FPGA has rich programmable resource and the capacity of parallel processing, it is very 
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suitable for the realization of the artificial neural network [12, 13]. In this paper, we 

design a PID neural network controller for electric gas regulator by combining the neural 

network with digital PID. And we evaluate our scheme though plentiful simulations in the 

end. 

 

2. The Control System Model of Electric Gas Regulator 

The current gas pressure regulator is part of the mechanical pressure regulating. 

The basic principle of it is mechanical balance, and the internal structure is shown 

in Figure 1. When the outlet pressure of P2 (dark pink in Figure 1) applied the film 

is equal to the spring force, the outlet pressure P2 stay in balance. If the pressure P2 

decreases, the spring force is greater than the upward force of the film, the spring 

will move down and pull the valve to move upward to increase valve opening and 

the downstream flow, thereby increasing the gas outlet pressure until the system 

reaches a new mechanical equilibrium. Obviously, the realization of this mechanical 

pressure regulating method depends on adjusting the related parameters of the 

spring and the heavy block. As time goes on, the loss of accuracy of the regulator 

occurs because of the reduced elasticity of the spring and the friction ’s damage on 

diaphragm [3, 5]. 

Based on the disadvantages of mechanical pressure regulator, we replace the 

original self-operated pressure regulator (Figure 2) with stepping motor and driving 

system (Figure 2) thereby we rebuild the core parts of pressure regulator (part 1 

Figure 1), to further improve the accuracy of gas regulator by controlling stepping 

motor with optimized PID neural network. 

 

 

Figure 1. The Module of the Self-Operated Pressure Regulator 

The self-regulating valve part 1 shown as in Figure 2, is replaced by the electric 

pressure value to form a linear motion electric pressure regulator. It converts the rotary 

motion of the gear to the nut into the linear motion of the screw shaft. And then it drives 

the valve to run up-and-down motion through the linear motion of screw shaft, achieving 

the purpose of changing the valve opening to regulate pressure. When the actual detected 

value is less than the pressure set point, the motor rotate is forward to increase the 

opening of the pressure regulating valve, and when the actual detected value is larger than 

the pressure set point, the motor rotate in reverse reduces the opening of the pressure 

regulating valve, thereby maintaining the dynamic balance of the regulator outlet pressure 

around the set point. How to reduce the dynamic range of dynamic equilibrium is the 

main research of this paper. 
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In order to analyze the response characteristics of the electric pressure controller 

system, and validate subsequent control algorithm, we need to establish corresponding 

mathematical models for the entire electric pressure controller system. According to its 

working principles, the drive motor and the control system of electric pressure regulator 

should be modeled, respectively. 

 

 

Figure 2. Electric Actuator Sketch 

2.1. The Mathematical Model of Driving Motor  

In this paper, driving motor adopts two phase hybrid stepping motor which has the 

advantages of high step frequency and fast response speed, especially it has obvious zero 

current position torque. 

The dynamic equation of the stepping motor consists of motion equation and voltage 

balance equation. Assumption the number of phases of the motor is m , we can get 

1

L

k k k

T T J

i R U k m



  

  


   
                                                 (1) 

where T is the electromagnetic torque of the motor which consists of synchronous 

torque 1eT  and asynchronous torque 2eT , that is 1 2e eT T T  . 
LT  is load torque, 

11 12 13LT T T T   , 
11T  is dry friction torque, 

12T  is the load torque of fixed direction, 
13T  

is external damping torque. J  is the moment of inertia of the motor. 
k  is the k  phases 

magnetic linkage. 
ki  is k  phases current. R  is phase winding resistance. 

kU  is k  phases 

voltage. 

In the dynamic equation of the stepping motor, we assume that the flux of the 

permanent magnet motor hinge is 
m , so we can get when A phase is connected with 

electricity, torque formula of A and B phase tooth are as follows [14,15]. 

sin( )A r m A rT E i E                    (2) 

sin[ ( )]B r m B rT E i E                                              (3) 

where 
rE  is the number of motor rotor teeth. 

Then the equation of motion of the rotor is 
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A BJ D T T                                                                  (4) 

sin( ) sin[ ( )] 0r m A r r m B rJ D E i E E i E                       (5) 

where D is the viscous friction coefficient. 
Ai  and 

Bi  are the winding phase currents of 

A phase and B phase.   is the output angle of the rotor.   is the polar angle. 

The voltage balance equations of A and B are as follows 

sin( ) 0

sin[( ( )] 0

A A B m r r

B B A m r r

U Ri Li Mi E E

U Ri Li Mi E E

 

  

     


     

                                                (6) 

where U  is the phase winding voltage. L  is the phase winding self-induction. M  is 

the mutual induction between A and B phase. R  is the phase winding resistance. 

The above description is divided into two phase electricity condition. When single-

phase of the stepper motor power is on, the energized sequence is given as A B B A    

and we suppose 0  , the constant current which flows through A phase and B phase is 

0  , (5) can be rewritten in the following form 

02 sin( ) 0r m rJ D E i E                                                 (7) 

Let 0 i    ,sin( )r rE E  , then (7) can be rewritten as 

2 2

0 0 02 2r m r r m iJ D E i E E i                                        (8) 

where 
i  is target mechanical angle of the stepping motor, which was illustrated as the 

input value. 
0  is mechanical angle of the controlled quantity, is given as the output value 

of the stepping motor. 

In the zero initial conditions, we use Laplasse transform to (8) 
2 2 2

0 0 0( 2 ) ( ) 2 ( )r m r m is J sD E i s E i s                         (9) 

So we can get the transfer function of motor as follows 
2

0

2 2

( )
( )

( )

n

i n n

s
G s

s s s








 
 

 
                                                  (10) 

where 
n  is natural angular frequency of the system, and 

2

D

J



  is attenuation 

coefficient. 

 

2.2. The Control System Model of Electric Gas Regulator 
According to the model of driving motor and other system model, we can get the system of electric 

pressure regulator for the open-loop transfer function. 

                                                                            (11) 

The model of pressure regulating valve is shown in Figure 3. In the system model, the 

pressure sensor is mainly used for monitoring the output gas pressure of the electric gas 

regulator and then converts the measured pressure parameter into electrical parameters. 

The pressure measurement is mainly used to convert the electrical parameters into the 

corresponding pressure value. After we send both the pressure value and the preset 

number into the PID neural network, the output of the PID neural network controls the 

rotation of the driving motor. It realizes the control of air pressure by adjusting angle of 

the rotor and then control valve opening through transmission system so as to reduce the 

gas outlet pressure in a preset value to ensure a stable air/fuel ratio in the downstream of 

the gas system. Finally, we realize the module of the intelligence pressure regulation of 

the gas to make ensure that the regulator generates a steady pressure. 
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Figure 3. The Model of Electric Gas Regulator Control System 

 

3. The PID Controller based on the Neural Network 

The electric gas pressure regulator system is a typical nonlinear, time-varying and 

unstable system, which is unrealistic to tune the parameters. The incremental digital PID 

controller is difficult to achieve the ideal control effect because of the bad parameters 

tuning, the poor performance and the poor operation conditions adaptability [16, 17]. 

Therefore, we use Back Propagation (BP) neural network to tune the digital PID 

parameters online, which can increase the accuracy and stability of the control system. 

 

3.1. The Back Propagation Algorithm of PID Neural Network 

BP network is a kind of multilayer feedforward neural network with back propagation 

learning algorithm. Network not only has input and output nodes, but also owns one or 

more hidden layer nodes. The hidden layer nodes in the same layer don’t have any 

coupling [18, 19]. PID neural network has a good nonlinear mapping ability, which is 

primarily used to constitute the control system to complete the control task of all kinds of 

systems. The electric gas pressure regulator system designed by using PID neural network, 

which is a three layers feedforward neural network with nonlinear characteristics. And it 

is formed by integrating the PID control law into the BP neural network [20]. 

The output of the electric gas regulator is an accurate and reliable pressure regulating 

signal to drive the electric pressure regulator to work, so the number of neuron nodes in 

the output layer is 1. The neurons in the hidden layer are made of proportional (P), 

integral (I) and derivative (D) which complete proportional, integral and derivative 

operation, so the number of nodes in the hidden layer neurons is 3. The input of the PID 

neural network is the combination of preset pressure of the electric gas pressure regulator 

and the actual value of the pressure detection, so the input layer has 2 neural nodes. 

Therefore, the structure of PID neural network is determined as 2×3×1, which is shown in 

Figure 4. In the input layer, )(kr
 
is the preset value and )(ky

 
is the practical detection 

value of the controlled system. In the hidden layer, P, I and D are to complete the 

proportion, integral and derivative operation. In the output layer, ( )u k is formed to be an 

accurate and reliable pressure regulating signal by PID neural network control to 

complete a comprehensive of control law and output. S  is the actual controlled system 

that is electric pressure regulator. 
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Figure 4. The Model of PID Neural Network 

 

3.1.1. Positive Propagation of the Working Signal: (1) Input Layer 

The input of the neural of the input layer, that is, the preset pressure value and the 

actual detection pressure value of the system are )(kr  and )(ky , respectively.
 

1( ) ( )Net k r k                                           (12) 

2( ) ( )Net k y k                                                (13) 

( ) ( )i iI k Net k        1, 2i 
                                    

(14) 

The output of the input layer neurons is 

1, ( ) 1

( ) ( ), 1 ( ) 1

1. ( ) 1

i

i i i

i

Net k

O k Net k Net k

Net k

  


   
 

                             (15) 

(2) Hidden Layer 

The input of the hidden layer neurons is 
2

1

( ) ( )H

j ij i

i

I k O k


      1,2,3j                                        (16) 

where 
ij  is the weight between input layer and hidden layer, j  

is the serial number 

of the hidden layer. Three nodes of the hidden layer are proportional, integral and 

derivative, respectively. 

The state of proportion： 

1

1 1 1

1

1, ( ) 1

( ) ( ), 1 ( ) 1

1. ( ) 1

H

H H H

H

O k

O k I k O k

O k

  


   
 

                               (17) 

The state of integral： 

2

2 2 2 2

2

1, ( ) 1

( ) ( 1) ( ), 1 ( ) 1

1. ( ) 1

H

H H H H

H

O k

O k O k I k O k

O k

  


     
 

                                                     (18) 

The state of derivative： 

3

3 3 3 3

3

1, ( ) 1

( ) ( ) ( 1), 1 ( ) 1

1. ( ) 1

H

H H H H

H

O k

O k I k I k O k

O k

  


     
 

.                                (19) 
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(3) Output Layer 

The output layer contains only one neuron and its input is the weighted sum of the 

output of the hidden layer nodes. 
3

0

1

Net ( ) ( ),H H

j j

j

k O k


   1,2,3j 
                             

(20) 

where 
H

j
  is the weight between the hidden layer and the output layer, j  is the serial 

number of the hidden layer. 

The output of the output layer is the output of the whole neural network, that is, its 

output value is a accurate and reliable pressure regulating signal to control the electric gas 

pressure regulator to work, which is shown as followes 

0

0 0

0

1, ( ) 1

( ) ( ), 1 ( ) 1

1. ( ) 1

Net k

u k Net k Net k

Net k

  


   
 

                                        (21) 

The error of the output layer neural in j
 
is expressed as follows 

( ) ( ) ( )j j jE k r k y k                                           (22) 

The total error of the network is expressed as follows 

2 2

1 1

1 1
( ) [ ( ) ( )]

2 2

L L

k k

J E k r k y k
 

                                     (23) 

 

3.1.2. Back Propagation of the Error Signal  

PID neural network uses BP learning algorithm, which is to reversely calculate the 

error signal(the difference between the sample output and the network output)according to 

its original connection route to adjust the weight or threshold value of the neuron of each 

layer by using the gradient decent method, to reduce the error signal.  

The back propagation learning algorithm is used for adjusting PID parameters and the 

performance indicators of the tuning of PID parameters are to make the total error 

function of network within the limit, that is, J  is given by 

2

1 1

1
( ) [ ( ) ( )]

2

L L

k k

J E k r k y k 
 

                  (24) 

(1) First of all, we adjust the weight H
j  

between the hidden layer and the output layer. 

According to gradient descent, we should calculate the gradient 
H

j

J






, which is error to 

H

j , and then reverse adjust along the direction, which are shown as follows 

2

H

j H

j

J
 




  


                          (25) 

2( 1) ( ) ( ) ( )H H H H

j j j jH

j

J
k k k k    




      


                             

(26) 

where k  is learning step, 2  is the learning rate. 

Gradient can be obtained by partial derivative and according to the chain rule of 

derivative we can get 

0

0

H H

j j

NetJ J y u

y u Net 

   
   

    
                   (27) 
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Due to the characteristics of the object is unknown, 
u

y





 

can be expressed as follows  

( ) ( 1)
sgn

( 1) ( 2)

y y k y k

u u k u k

  


   
                     (28) 

Its positive and negative result can affect the convergence direction, substitute it into 

formula (27), we can get gradient which is shown as follows 

2

1

( ) ( )
L

H

jH
kj

J
k O k

 


 


                           (29) 

where 

2 ( ) ( 1)
( ) ( )sgn

( 1) ( 2)

y k y k
k r y

u k u k


 
 

  
                    (30) 

Therefore, the value of weight modification is 

)()(
1

2

2 kOk H

j

L

k

H

j 


                      (31) 

(2) The error signal propagates forward and we adjust algorithms of weight between 

input layer and hidden layer, similarly, we have 

1ij

ij

J
 




  


                         (32) 

1( 1) ( ) ( ) ( )ij ij ij ij

ij

J
k k k k    




      


                        (33) 

where k  is learning step, 1  is the learning rate. 

0

0

H H

j j

H H

ij j j ij

O INetJ J y u

y u Net O I 

    
     

      
                 (34) 

where 

( ) ( 1)
sgn

( 1) ( 2)

H H H

j j j

H H H

j j j

O O k O k

I I k I k

  


   
                (35) 

The formula (34) can be rewritten as 

1

1

( ) ( )
L

kij

J
k r k

 


 


                            (36) 

where 

1 2
( ) ( 1)

( ) ( ) sgn
( 1) ( 2)

H H

j jH

j H H

j j

O k O k
k k

I k I k
  

 
  

  
             (37) 

Therefore, the value of weight modification is 

)()(
1

1

1 krk
L

k

ij 


                  (38) 

So far, we have completed a round weights adjustment of BP network. The 

performance indicators of PID that is network total error of the system have been further 

reduced, which is further close to the preset goal and ultimately forms an accurate and 

reliable pressure regulating signal.  
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3.2. The Structure of PID Control System based on the BP Neural Network 

The structure of the PID control system based on the BP neural network is shown in 

Figure 5. The controller consists of the incremental digital PID controller and the BP 

neural network. The PID controller directly controls the driving motor to realize closed 

loop control and tune , ,p i dK K K  the three parameters online. In order to optimize a 

certain performance index, neural network on the basis of running state of the system 

adjusts the parameters of PID controller to make the output state of the output layer 

neurons correspond to the three adjustable parameters , ,p i dK K K  of PID controller [21]. 

Through self-learning of the neural network and adjusting the weighting coefficients, we 

make it steady correspond to a certain optimal combination of PID control. 

 

 Controlled 

objects

BP network

Incremental digital 

PID controller
Χ

( )u k( )r k ( )y k

d
K

iKpK

Feedback loop

Learning algorithm

-
+

 

Figure 5. The Structure of PID Control System based on the BP Neural 
Network 

4. The Realization of PID Neural Network based on FPGA 

Based on FPGA hardware platform this paper designs a PID neural network controller 

of electric gas regulator and simulation analysis, and uses FPGA to realize the parallel 

structure of PID neural network. The adders, multipliers, triggers in the PID neural 

network are used in 32-bit with the standard IEEE754 single precision floating point 

number. 

For the FPGA implementation of the PID neural network, we use EP1S20F484C5 of 

Stratix series. The input layer, hidden layer and output layer are designed respectively in a 

top-down approach based on the structure of the neural network. Each layer is integrated 

into an IP core for the overall design. The synthesized Register-Transfer-Level (RTL) 

structure is shown in Figure 6. 

 

Figure 6. The RTL Structure of PID Neural Network 
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In Figure 6, 1clk , 2clk  and 3clk  are system clock input, [31..0]rin  is the preset 

value, [31..0]yo  is the feedback value, [31..0]wi  is the weight input between the input 

layer and hidden layer, [31..0]wo  is the weight output between the hidden layer and 

output layer, [31..0]out  is system output. The value [31..0]wrp  of the Input Layer is the 

output value which is the preset value after the weighted calculation sends to the 

proportional neurons,
 

[31..0]wri
 
is the output value which is the preset value after the 

weighted calculation sends to the integration neurons,
 

[31..0]wrd  is the output value 

which is the preset value after the weighted calculation sends to the derivative neurons,
 

[31..0]wyp  is the output value which is the detection value after the weighted calculation 

sends to the proportional neurons,
 

[31..0]wyi  is the output value which is the detection 

value after the weighted calculation sends to the integration neurons,
 

[31..0]wyd  is the 

output value which is the detection value after the weighted calculation sends to the 

derivative neurons. The input layer module mainly completes the data input of the neural 

network, and the weighted operation on input data, outputs the value to the next module. 

In the hidden layer, [31..0]wrp  receives the result of the preset value and the input 

weight, [31..0]wyp
 
receives the result of the detection value and the input weight, and 

then the data is sent to the proportional neuron to complete the calculation, furthermore 

the proportional calculation is output through the [31..0]outputp to the next 

module. [31..0]wri  receives the result of the preset value and the input weight, 

[31..0]wyi  receives the result of the detection value and the input weight, and the data is 

sent to the integral neuron to complete the calculation, besides the integral calculation is 

output through the [31..0]outputi to the next module.
 

[31..0]wrd
 
receives the result of 

the preset value and the input weight, [31..0]wyd  receives the result of the detection 

value and the input weight, and the data is sent to the derivative neuron to complete the 

calculation, and then the derivative calculation is output through the [31..0]outputd
 
to 

the next module. In the Output Layer (OutLayer), [31..0]wo  is the input of the output 

weight value,
 

[31..0]Pinput
 
is used to receive the proportional output of the hidden 

layer.
 

[31..0]Iinput  is used to receive the integral output of the hidden layer. 

[31..0]Dinput  is used to receive the derivative output of the hidden layer. After 

operations of the output layer, [31..0]out  is to accomplish the output of the whole PID 

neural network and to control the pressure regulating system. The resource consumption 

of PID neural network controller is shown in Figure 7. 

The chip EP1S20F484C5 includes 18460 logic elements (LE), 362 I/O pins, 1669248 

RAMs, 80 DSPs, consuming 9412(51%), 163(45%), 2162(<1%) and 72(90%), phase-

locked loop PLL and DLL are not needed [22]. 
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Figure 7. Resource Consumption of PID Neural Network Controller 

5. Analysis and Comparison of Simulation  

The frequency of three clocks ( 1clk , 2clk and 3clk ) is set to 10 ns, and then is 

simulated by a no-load way, which is shown in Figure 8.  

 

 

Figure 8. The Waveform No-load Simulation 

Since it is a no-load simulation, the input value yo  is 0. The preset value rin  is 

01000000110110000000000000000000, and according to the 32-bit float counting rules, 

its decimal number is 6.75. The weight wi  between the input layer and the hidden layer is 

00111111101101000000000000000000, and its decimal number is 1.40625. The weight 

wo  between the hidden layer and output layer is 00111111011011000000000000000000, 

and its decimal number is 0.921875. 

At 0ns, PID neural network inputs data, and outputs after 703.548ns. Since it is a no- 

load simulation, the connection weights of the whole neural network are constant, so the 

derivative value is 0. The output value depends only on proportional element and integral 

element, and the theoretical output value should be 

2 6.75 1.40625 0.921875 17.5012207    . The actual output value is 

01000001100010000000000000000000, and its decimal number is 17.5. The error 

between the theoretical value and the actual value is 

17.5012207 17.5 0.001220703  . Because of the cumulative effect of integral 

element, the second theoretical output should be 

3 6.75 1.40625 0.921875 26.25183105    , and the actual output is 

01000001110100100000001111000000. Its decimal number is 26.2520752, so the error is 
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26.25183105 26.2520752 0.00024415   . The third theoretical output should be 

4 6.75 1.40625 0.921875 35.00244141    , while the actual output is 

01000010000011000000001010000000, its decimal number is 35.00244141, so the error 

is 0. 

According to the comparison of simulation data and the theoretical analysis, PID neural 

networks can satisfy the design requirements. As achieves good real-time effect and small 

error, it can control the air pressure quickly and accurately. 

 

 

Figure 9. The Waveform of Global Simulation 

In Figure 9, the preset value rin  is 01000010101111010000000000000000, and its 

decimal number is 0.03125. The weight wi  between the input layer and the hidden layer 

is identical with the weight wo  between the hidden layer and the output layer, and both 

are 00111110001000000000000000000000, and their decimal number is 94.5. At 

approximately 17.5 seconds, the value yo is 01000010101111110100001101111000, and 

its decimal number is 95.15234375. 

In Table 1, the PID neural network that is designed in this paper has a higher precision 

pressure regulator and closed precision pressure regulator than the traditional gas pressure 

regulator. In terms of response speed, the traditional gas pressure regulator is generally 

1~3s, while in Figure 9, the PID neural networks which is based on FPGA hardware 

platform can quickly make changes to feedback data, and the response speed is generally 

less than 1s. 

Table 1. Performance Comparison Regulator 

Type Regulating Accuray (%) Closing Accuray (%) 

Reno ±（10~20） 15~20 

T-type ±10 20~25 

Self-operated ±（5~10） 20 

Direct Acting ±5 10 

PID Neural Network ±（1~5） 5 

 

6. Conclusion 

The existing electric gas pressure regulator widely adopts conventional incremental 

control model which is simple and easy to be implemented. Since the system of the whole 

pressure regulator is nonlinear and time-varying, it is difficult to establish an accurate 

mathematical model. The application of current neural networks is mostly realized 

through software or DSP, and it is difficult to be implemented in a large-scale application 

due to the low processing speed of the microprocessor. In this paper, we realize PID 
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neural networks controller by combining PID control with neural networks, employing 

the original digital incremental PID control mode based on FPGA hardware platform. Our 

scheme achieves high accuracy, and it comprehensively reflects the parallel computing 

speed of neural networks as its running speed is ten times even hundred times faster than 

that of software or microcomputer. At the same time, the accuracy and the response speed 

of the electric gas pressure regulator are improved. PID controller that we designed is not 

only extensively used in electric gas pressure regulator, but also provides an efficient and 

viable solution for the intelligent control of the industry in the future. 
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