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Abstract 

This paper addresses the trajectory tracking problem of underactuated autonomous 

underwater vehicles (AUVs) in the presence of ocean currents on the horizontal plane. 

The tracking control problem is reduced the problem of stabilizing the nonlinear tracking 

error system to two separate problems. The backstepping technique is applied to design 

tracking controller, and the conditions of control gains are derived such that the AUV can 

track a reference AUV. Simulations results show the effectiveness of the proposed 

trajectory tracking controller. 
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1. Introduction 

Autonomous Underwater Vehicles (AUVs) depicted in Figure 1, are playing a crucial 

role in exploration and exploitation of resources located at deep oceanic environments. 

They are employed in risky missions such as oceanographic observations, military 

applications, recovery of lost man-made objects, etc 
[1]

. AUVs present a challenging 

control problem since most of them are underactuated they have less actuator than state 

variables to be tracked, imposing nonintegrable acceleration constraints. However, AUVs‟ 

models are highly nonlinear, making control problem a hard task. 
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Figure1. The Underactuated AUV Model 

Recently, trajectory tracking control problem of underactuated AUVs has received a lot 

of attention for the control community. Trajectory tracking issue refers to the case where 

the vehicle tracks a reference trajectory generated by a suitable virtual vehicle a geometric 

path on which a time law is specified. Note that when moving on a horizontal plane, 
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AUVs present similar dynamic behavior to underactuated surface vessels 
[2]

. A high gain 

based, local exponential tracking result was obtained by applying the recursive technique 

for the standard chain form systems 
[3]

. Based on Lyapunov‟s direct method and passivity 

approach, two constructive tracking solutions were proposed for an underactuated surface 

ship 
[4]

. The trajectory tracking problems of underactuated systems were solved based on 

cascaded systems by many scholars. A full state feedback control law that make the 

underactuated ship follow a straight line is developed using a cascaded approach 
[5]

. A 

new cascade approach for global  -exponential tracking of underactuacted ships was 

derived 
[6]

. Based on sliding mode with eigenvalue decomposition and cascaded theory, a 

control scheme for a line of sight guidance law of an underactuated AUV was proposed 
[7]

. 

The control problem of tracking a desired continuous trajectory for an AUV in the 

presence of gravity, buoyancy and fluid dynamic forces and moments was studied 
[8]

. The 

hybrid control law is developed by combining sliding mode (SMC) and classical 

proportional-integral-derivative (PID) control methods for the tracking control of an 

underactuated AUV 
[9]

. A adaptive switching control combined with a nonlinear 

Lyapunov-based tracking control are applied to solve the problem of position trajectory 

tracking control for an underactuated AUV in the presence of possibly large modeling 

parametric uncertainty 
[10]

. Based on the variable structure systems (VSS) theory and, in 

particular, on the second-order sliding-mode (2-SM) methodology, a tracking controller is 

designed for the AUV which includes the unmodelled actuator dynamics and the presence 

of external uncertain disturbances 
[11]

. 

In practice, an AUV must often operate in the presence of ocean currents. Motivated by 

the considerations, this paper presents a solution to the trajectory tracking problem of the 

underactuated AUV in the presence of ocean currents. We divide the tracking error system 

into two simple subsystems which we can stabilize independently of each other. The 

control algorithm proposed builds on Lyapunov stability theory and backstepping design 

techniques. 

The organization of the paper is as follows. Section 2 presents the AUV model and 

problem formulation. Section 3 is devoted to the control design. Some simulations are 

given in Section 4 to demonstrate the effectiveness of the proposed controller. Section 5 

concludes the paper. 

 

2. AUV Model and Problem Formulation 

This section describes the kinematic and dynamic equations of motion of the AUV of 

Figure 2 on the horizontal plane and formulates the problem of controlling it to track a 

desired trajectory in the presence of ocean currents. Following standard practice, the 

general kinematic and dynamic equations of motion of the AUV can be developed using a 

global coordinate frame { }I and a body-fixed coordinate frame { }B that are depicted in 

Figure 1. 
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Figure 2. The Model of AUV on the Horizontal Plane in the Presence of 
Ocean Currents 
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Furthermore, we assume that the inertia, added mass and damping matrices are 

diagonal. In the presence of ocean currents, the model of the AUV on the horizontal plane 

can be described by 
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                      (1) 

where ( , )x y  denotes the coordinates of the AUV in the earth-fixed frame,   is the 

heading angle of the AUV, and ,u v  and r  denote the velocity in surge, sway and yaw 

respectively, the surge force 
uF  and the yaw torque 

rF  are consider as the control 

inputs. In the presence of a constant and un-rotational ocean currents,  , 0c cu v  , u  

and v  are given by r cu u u   and 
r cv v v  , where  ,r ru v  is the relative 

body-current linear velocity vector. The positive constant terms , 1 3iim i   denote the 

AUV inertia including added mass. The positive constant terms , 1 3jjd j   represent 

the hydrodynamic damping in surge, sway and yaw 
[12]

. For simplicity, we ignore the 

higher nonlinear damping terms. Since the only two propellers are the force in surge and 

the control torque in yaw, AUV model (1) is underactuated. In the equations, and for 

clarity of presentation, it is assumed that the AUV is neutrally buoyant and that the centre 

of buoyancy coincides with the centre of gravity. 
For system (1), we assume that a feasible reference trajectory 

 , , , , , , ,d d d d d d d dx y u v r X N  is given,  a trajectory satisfying 
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Where  , ,d d dx y   denotes the desired position and orientation of the virtual AUV. 

 , ,d d du v r  denotes the desired velocities.  ,ud rdF F  is the reference inputs in surge 

and yaw. 

Define the tracking errors 
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In this way, the closed-loop tracking error system can be expressed as shown in the 

following equation 
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        (2) 

The tracking control problem of the AUV is transformed to a stabilization one of (2). 

Then, the problem considered in this paper can be formulated as follows:  

Consider the underactuated AUV with the kinematic and dynamic equation given by 

(1). Derive a feedback control law for 
uF  and 

rF  such that closed-loop system (2) is 

input-to-state stable in the presence of known ocean currents. 

 

3 Controller Design 

As mentioned above, the control objective now is to stabilize error system (2). Our 

main goal is to subdivide the tracking control problem into two simpler and „independent‟ 

problems: position and orientation tracking, then we design the controllers for the two 

subsystems independently. Specially, the velocity of ocean current is considered with 

bounded input for the position tracking system. For simplicity, the reference velocity dr  

is considered with constant value.  

Theroem 1. Consider underactuated AUV system (2) with the control law 

22 11 22 11 2 11 3 11( )
e e eu ud e x d d e x uF F m v m z m vr v r d u k m z k m z             (3) 

  11 22 33 33 4 33r rd d d e e eF F m m uv u r d r m k m r                      (4) 

where ik  ( 1,2,3,4i  ） satisfies 
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and the velocity of ocean currents 
CV  is bounded, then trajectory tracking error 

system (2) is input-to-state stable. 

Proof. The specific implementation process is divided into three steps:  

Step 1: error system (2) can be written into the subsystem  
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and the subsystem 
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Based on Lyapunov theory, the stability of 1  is identified with the following system 
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Then, the next aim is to design control input uF  and rF  that stabilize the system 

2 and 3 . 
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Step 2: Let 
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Let (3) holds, (8) becomes    
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For simplicity, we choose the parameters as 
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Then, taking into account equation (10), we have 
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At this result, if 2 12 ( )
ex C dz V k k r   ，

2 0V  ，the system 3  is input-to-state 

stable. 

Step 3: Considering the subsystem 2  and choosing Lyapunov 
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Let (4) holds, then the previous derivative becomes
2
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ex C dz V k k r   . So system (2) is input-to-state stable. 

 

4. Simulation Results 

In order to illustrate the performance of the proposed control scheme in the presence of 

a constant ocean current disturbance, simulations are carried out with a model of an AUV.  

The AUV parameters are:  

11 50m  kg, 22 31.43m  kg, 33 30m  kg m
2
, 

11 30d  kg/s, 22 262d  kg/s, 33 80d  kg m
2
/s. 

The initial conditions for reference AUV are chosen as:  

(0) 3dx  m, (0) 5dy  m, 0 6d （） rad, 

(0) 5du  m/s, (0) 0dv  m/s, (0) 0.4dr  rad/s 
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and the requirement  

( ) 0.4dr t  rad/s, ( ) 5du t  m/s. 

The initial states for the controlled AUV are chosen as:  

(0) 1x  m, (0) 2y  m, 0 0 （ ） rad, 

(0) 1ru  m/s, (0) 0rv  m/s, (0) 1r  rad/s. 

The velocity of ocean currents is 0.01CV  m/s, orientation 3C  rad. The 

following results are obtained with controller gains chosen as 

1 1k  , 
2 1 11 22k k m m , 

3 3k  , 
4 2k  . 

In Figure 3, the reference and the resulting trajectory of the AUV in the inertial X-Y 

plane are displayed. From Figure 4 it can be seen that the errors of positions and 

orientation converge to a very small neighborhood of zero,  the AUV is not out of 

control. The errors in velocities are depicted in Figure 5. After a short period of time, the 

errors of velocities converge smoothly to zero. Figure 6 shows the control force 
uF and 

the control torque 
rF  needed for tracking. 
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Figure 3. AUV Reference and Actual Trajectory 
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Figure 4. Positions and Orientation Errors 
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Figure 5. Velocity Tracking Errors 
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Figure 6. Control Surge Force and Yaw Torque 

5 Conclusions 

In this paper, the trajectory tracking control problem for an underactuated AUV has been 

addressed in the presence of a constant ocean current disturbance. The resulting control laws 

have guaranteed input-to-state stability of the tracking error dynamics. The proposed approach 

has reduced the problem of stabilizing the nonlinear tracking error system to two separate 

problems of stabilizing simpler systems. The conditions of control gains that ensure the AUV 

track a reference AUV have been given. Simulations have demonstrated the validity of the 

designed trajectory tracking control scheme. 
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