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Abstract 

In this work an adaptive sliding mode controller in the presence of uncertainty, as 

well as the external disturbance is considered. A concise introduction and 

investigation of the dynamic behavior of a novel class of chaotic systems with 

fractional order derivatives for synchronization is presented. It is supposed that the 

high bounds of uncertainty and external disturbance are unknown. The proposed 

controller is designed based on error dynamics and acceptable adaptive laws. The 

sliding mode dynamic stability and the condition to start sliding are proved by 

Lyapunov stability theory. With this new proposed approach, Chen and Lorenz system 

with fractional order derivatives are synchronized. Finally, simulation results with 

MATLAB software showed that the designed comparative sliding mode controller was 

able to synchronize chaotic systems with fractional order derivatives in the presence 

of the mentioned adverse factors. The main characteristic of the proposed method 

compared to other methods is providing acceptable adaptive laws for satisfactory 

functioning against uncertainty and external disturbance and eliminate the chattering 

phenomenon for synchronization of non-identical chaotic systems with fractional 

order derivatives.  

 

Keywords: synchronization, fractional-order chaotic systems, adaptive sliding 

mode control, uncertainty, external disturbance 

 

1. Introduction 

Chaos phenomenon is one of the growing areas of study and research. Among 

its high usage and widely popular contexts are laser fields [1-3], medical fields 

[4-6], earthquake [7], chemical reactors [8], mathematics [9-11], economic 

systems [12-14], and so on. 

Today, the control of chaos phenomenon can be regarded as an interesting 

subject, attracting wide attention from the researchers. 

Fractional calculus can be called either a new or an old science. Until 

recently, most of the researchers have not been aware of the existence of such a 

branch of science; however, nowadays, due to the interest of the scientists and 

mathematicians in the science, the related research speed has increased 

dramatically. Among the areas that are of interest to researchers in fractional 

order science are mechanics, electricity, mathematics, biology and so on [15-
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18]. Controlling chaotic systems with fractional order derivatives is also one of 

the most popular areas of fractional order science. 

Examples include investigations into the chaotic behavior of fractional -order 

horizontal platform systems [19] and many published articles on fractional -order 

chaotic systems [20-23]. Among the hottest topics that have been investigated 

and explored widely in the field of nonlinear science are synchronization and 

control of chaotic systems. For example, a sliding mode controller is designed in 

[24] for the synchronization of chaotic systems in the presence of uncertainty 

and external disturbance. Article [25] defines an adaptive hybrid complex 

projective synchronization method to synchronize two chaotic complex systems. 

Finite-time hybrid projective synchronization for the unified chaotic system has 

been provided in [26]. The finite-time master–slave synchronization and 

parameter identification problem for uncertain Lurie systems based on the finite -

time stability theory and the adaptive control method have been investigated in 

[27]. Faieghi and Delavari studied chaotic synchronization of Genesio-Tesi 

system utilizing two strategies; active control and sliding mode [28].  

This paper is organized as follows: First, a new class of chaotic systems with 

fractional order derivatives is introduced then, an adaptive sliding mode 

controller is designed to synchronize fractional-order chaotic systems in master-

slave structure. In addition, in the following parts, adaptive sliding mode 

controller asymptotic stability is investigated in the presence of uncertainty and 

external disturbances. The simulation results finally proved the effectiveness of 

the proposed controller against the mentioned adverse factors.  

 

2. Preliminaries 

Derivative operator - integrator is characterized by 
q

a tD
, a combination of 

differential-integral operator used in the calculations. The operator is a symbol to 

represent the fractional integral and fractional derivative expressed in a phrase, which 

is defined as follows: 

0
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where 
q

 is the fractional order. There are various definitions for fractional 

derivative and integral. The most common definitions are Grunwald–Letnikov 

definition, Riemann–Liouville definition and Caputo definition. In the rest of this 

paper, Riemann-Liouville (RL) definition of derivative is used. RL derivative in the 

order of q is explained below ([30]): 
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where m  is the first integer which is not less than q, i.e. 
  1m q m  

  and 

(.)  is the well-known Euler’s gamma function 

1

0
( ) ; ( 1) ( )p tP t e dt P P P


                           (3) 
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Lemma 2.1 (Barbalat’s lemma [35]). If :R R   is a uniformly continuous 

function for 0t  and if the limit of the integral 0
( )

t

d    exists and is finite, then 

lim ( ) 0.
t

t



 

Lemma 2.2. The following equality is valid for every positive scalar  and given 

scalar  . 

tanh( ) tanh( ) tanh( ) 0.       
                           (4) 

Proof. From the definition of 

tanh( )
e e

e e

 

 









  then tanh( )   is as follows:  
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And given that 
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      so it can be obtained  
2( 1) 0e    . 

So the following inequality is true 
2

2

( 1)
tanh( ) 0.
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e

e






 


 

                                                  (6) 

 

Because of the fact that if 0ab  for every scalars a and b , 
0ab ab a b  

 

holds, the following inequality can be obtained; 

 

tanh( ) tanh( ) tanh( ) 0.       
                                                 (7) 

 

3. System Description 

 
A class of three-dimensional fractional-order chaotic systems is given by [30-33]: 
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                                         (8) 

 

where 

( 1,2,3)iq i 

are fractional orders satisfying 
0 1; ,iq x y 

 and z

are state variables. Each of the four functions 
(.), (.), (.)f g h

 and 
(.)

 is considered 

as continuation nonlinear vector functions belonging to 
3R R  space, and 

, ,  
 

are known constants, for any negative or positive values. 
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Remark 3.1. If 1 2 3q q q q  
, fractional-order system (8), is called a 

commensurate fractional-order system. Otherwise, it is called incommensurate 

fractional-order system.  

Remark 3.2. Note that many fractional-order chaotic systems belong to the class 

characterized by (8). Examples include the fractional-order financial system and the 

unified chaotic system of fractional-order version (including the fractional-order Chen 

system, fractional-order Lu’s system). Table 1 shows that these fractional-order 

chaotic models can be described by the proposed system (8). 

In this paper, The master system in the presence of uncertainty 1 2 3( , , )g x x x
 and   

external disturbances 1( )d t
 is considered as follows:  

1

1
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(9) 

 

Where 1 2 3, ,x x x
 are state variables. Also, adding a control input ( )u t , 

uncertainty 1 2 3( , , )g y y y
 and external disturbances 2 ( )d t

  to the second state 

equation of system (8), the slave system would be as follows: 
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(10) 

where 1 2 3, y , yy
 are state variables. 

Remark 3.3. Throughout this paper, it is assumed that 
(.), (.), (.)f g h

 and 
(.)

 

are required to ensure that the fractional-order system (10) with control input 
( )u t

 

has a unique solution in the time interval 
[ , ],T 

 0T   for any given initial 

conditions. 

Assumption 3.1. Uncertainties of 1 2 3( , , )g x x x
 and 1 2 3( , , )g y y y

 together with 

external disturbances 1( )d t
 and 2 ( )d t

 were presumed to be bounded. Then, there 

exist 1 1 2
ˆ ˆˆ, ,  

and 2̂  positive constants are as following: 

1 2 3 1 1 1 1 2 3 2 2 2

1 2 3 1 2 3

ˆ ˆˆ ˆ( , , ) , ( ) , ( , , ) , ( )

, , , , , , [0, )

g x x x d t g y y y d t

x x x y y y R t

        

    

              (11) 
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Assumption 3.2. The constants 1 1 2
ˆ ˆˆ, ,  

and 2̂  are unknown. 

4. Synchronization via Adaptive Sliding Mode Controller  

Control the state of sliding mode contains three steps:  

Reaching to the surface level (the required time to surface collide), the sliding level 

(the required time to sliding on a stable surface) and the stable state level (the origin). 

 In this paper, an adaptive sliding mode controller was designed based on error 

dynamics that guarantees the synchronization of two chaotic systems in the master-

slave structure. 

4.1 Design of switching surface 

The most important issue of the sliding mode method is how to define the 

switching surface, 

Table 1. List of Published Fractional-order Chaotic Systems, which can be 
Described by the Proposed General Model 

Name Model ( , , )f x y z

 

( , , )g x y z

 

( , , )h x y z

 

( , , )x y z

 

Chen’s 
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1

2

3

( )
q

q

q

D x a y x

D y dx xz cy

D z xy bz

  


  
  

  

a   dx xz
 

x 0
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1

2

3

( )

( )

q

q

q

D x a y x

D y x b z y

D z xy cz

  


  
  

 

a  ( )x b z

 

x 0
 

Financ

ial system 

1

2

3

2

( )

1

q

q

q

D x z y a x

D y by x

D z x cz

   


  
   

 

x  21 x 
0

 
1 

Lu’s 
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1

2

3

( )
q

q

q
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D y xz cy
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a  xz x 0
 

Liu 
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q

D x ax ey
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D z mxy cz

   


  
  

 

ey
 kxz

 

mx 0
 

that represents the desired system dynamics To propose an adaptive sliding mode 

control scheme, the sliding surface is defined as; 

2 1

2( ) ( )
q

s t D e t
 

                          (12) 

Where 
2 1

2

qD e

 and 
( )t

 functions are described; 

2 2 2
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1 1 1 2 3 2 3 1 2 3 2

1 1 1 2 3 2 3 1 2 3 2

( ) [c ( , , ) c ( , , ) ]

[c ( , , ) c ( , , ) ]

t x f x x x x h x x x kx

y f y y y y h y y y ky

   

  
                         (14) 

in which k is assumed to be an arbitrary positive constant, 1c
 and 2c

 can be 

chosen to make the system converge to the sliding surface faster. 

Remark 4.1. Adding 2kx
 and 2ky

 in (14), we have one degree of freedom 

choosing any arbitrary positive k as one of our controller gain. Comparing using only 

 in [32], having k instead of  , we can ensure that the dynamic of the system on 

the sliding surface will be stabilized quickly. 

Two conditions of 
( ) 0s t 

 and 
( ) 0s t 

 are met if the system situation variables 

be provided on the sliding surface, leading to establish the relation (15). 
2

2s( ) ( ) 0
q

t D e t  
                               (15) 

So, the following equation can be derived 
2 2

2 2 1 1 1 2 3 2 3 1 2 3 2
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( ) [c ( , , ) c ( , , ) ]

[c ( , , ) c ( , , ) ]

q q
D y D x t x f x x x x h x x x kx

y f y y y y h y y y ky

    

  
                  

(16) 

According to the master system (10) and slave system (9) equation and sliding 

surface derivative (9), the control law equation is as below. 

1 2 3 1 2 3 2 2 1 2 3 1 2 3
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     (17) 

The next step is to develop a switching control law to satisfy the sliding condition. 

The discontinuous reaching law is chosen as follows: 

( ) ( )ru t sign s
                                                                            (18) 

Where 

1 0

( ) 0 0

1 0

s

sign s s

s




 
     and 


 is the switching gain achieved by the 

following adaptive law; 

0; (0)l s   
                       (19) 

where l  is a positive constant and  0  is the initial value of the update vector 

parameter 


. Using equation (17) and (18), we design the following controller; 

1 2 3 1 2 3 2 2 1 2 3 1 2 3

2 1 1 1 1 2 3 2 3 1 2 3 2
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(t) ( ) ( )
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x f x x x x h x x x kx sign s
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Although the uncertainty of 1 2 3( , , )g x x x
 and 1 2 3( , , )g y y y

 , together with the 

external turbulences 1( )d t
 and 2 ( )d t

 are practically unknown functions, they must 

be known to apply the control law (20). To overcome this problem, the control law 

(20) is assumed to be rewritten with the help of assumption 3.2 as follows: 

1 2 3 1 2 3 2 2 1 1 1 2 3

2 3 1 2 3 2 1 1 1 2 3 2 3 1 2 3 2

2 2 1 1

( ) ( , , ) ( , , ) ( ) c ( , , )

c ( , , ) c ( , , ) c ( , , )

( ) ( ) ( ) ( ) ( )

u t g y y y g x x x x y y f y y y

y h y y y ky x f x x x x h x x x kx

sign s sign s sign s



    

    

    

    
               

(21) 

Where 1 2 1 2, , ,   
 are estimations for 1 2 1 2

ˆ ˆ ˆ ˆ, , ,   
 respectively. To tackle 

1 2 3( , , )g x x x
 , 1 2 3( , , )g y y y

, 1( )d t
 and 2 ( )d t

 appropriate adaptive laws can be 

proposed as; 

0 0

0 0

1 1 1 2 3 21 2

1 2 1 2 4 21 2

; (0) , ; (0)

; (0) , ; (0)

s s

s s

       

       

   

   
                        

(22) 

Where 1 , 2 , 3 and 4  are positive constants and  01


, , 01


 , 02


 and 02


 are 

the initial values of the update parameters 1 1 2 2, , ,   
. 

Remark 4.2. In this study, the system has been disrupted by the negative factors, 

uncertainty and external disturbances, which are assumed to be bounded. The purpose 

behind the various conducted research was the application of known bounds which 

were believed to have a given constant [32,34]. However, it is not always possible to 

assume that the uncertainty and external disturbance are bounded with known 

constants. In this case, the bounds of the uncertainty and external disturbance are 

estimated by the adaptive laws (22). This is the solution to this problem that bounds 

are unknown.  

Theorem 4.1. The proposed sliding surface is asymptotically stable by applying the 

controller (21) and adaptive rules (19), (22), and in the presence of uncertainty and 

external disturbance if 1 1 1 1
ˆ ˆ ˆ0 , 0 , 0 , 0 , 0        

 be 

chosen.  

Proof. By adopting Lyapunov function 

2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 2 3 4

1 1 1 1 1ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( )V s
l

         
   

          

, it is 

guaranteed that the state jumps at the switching instants. 

1 1 1 1 1 1 2 2 2 2 2 2

1 2 3 4

1 1 1 1 1ˆ ˆˆ ˆ ˆ2 ( ) ( ) ( ) ( ) ( )V ss
l

              
   

 
           

 

    (23) 

With the comparative rule application of (19) and (20), and the controller (21) in 

equation (23) we have; 
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1 2 3 2 1 2 3 2 1 2 3 1 2 3 2 2

1 1 1 2 3 2 3 1 2 3 2 1 1 1 2 3 2 3 1 2 3 2
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c ( , , ) c ( , , ) c ( , , ) c ( , , )

( ) ( ) ( ) ( ) ( ) ( , ,

V s g y y y y g y y y d t g y y y g x x x x y

y f y y y y h y y y ky x f x x x x h x x x kx

sign s sign s sign s g x x x

 

    

        

     

      2 1 2 3 1

1 1 1 2 3 2 3 1 2 3 2 1 1 1 2 3 2 3 1 2 3 2

1 1 1 1 2 2 2 2

1 2 3 2 1 2 3 1 2

) ( , , ) ( )

c ( , , ) c ( , , ) c ( , , ) c ( , , ) ]

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) }

2{ [( ( , , ) ( )) ( ( , , ) ( )] (

x g x x x d t

x f x x x x h x x x kx y f y y y y h y y y ky

s s s s s

s g y y y d t g x x x d t
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1 1 1 1 2 2 2 2

) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) }

s s s

s s s s s

   

         

   

         

(24) 

It is obvious that 

1 2 3 2 1 2 3 1 2 2

1 1 1 1 1 1 2 2 2 2

2{ [( ( , , ) ( ) ) ( ( , , ) ( ) )] ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) }

V s g y y y d t g x x x d t s

s s s s s s s

 

            

       

            

   (25) 

By Assumptions 3.1 and 3.2, one can derive: 

 

2 2 1 1 2 2 1 1

1 1 1 1 2 2 2 2

1 1 1 1

ˆ ˆˆ ˆ2{( ) ( ) ( ) ( )

ˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) }

ˆ ˆ ˆ2 2 2 2 2 0

V s s s s s

s s s s s

s s s s s

        

         

    

        

         

      
                              

(26) 

As it was observed, to obtain 0V   , choose the gains  

1 1 1 1
ˆ ˆ ˆ0 , 0 , 0 , 0, 0        

. 

Remark 4.3. Since the designed controller here is an adaptive sliding mode, 

tanh( )s  function is applied rather than ( )sign s
 function to avoid the adverse 

chattering phenomenon where   is a positive scalar. So the adaptive sliding mode 

controller law can be proposed as: 

1 2 3 1 2 3 2 2 1 1 1 2 3

2 3 1 2 3 2 1 1 1 2 3 2 3 1 2 3 2

2 2 1 1

( ) ( , , ) ( , , ) ( ) c ( , , )

c ( , , ) c ( , , ) c ( , , )

( ) ( ) ( ) ( ) tanh( s)

u t g y y y g x x x x y y f y y y

y h y y y ky x f x x x x h x x x kx

sign s sign s



     

     

   

    
                 

(27) 

With 

1 0tanh( s) ; (0)l s    
                                                                         

(28) 

where 1l  is a positive constant and 0  is the initial value of the update vector 

parameter 


. 

Theorem 4.2. The proposed sliding surface is asymptotically stable with the 

application of controller (27) and adaptive laws (22), (28), and in the presence of 

uncertainty and external disturbance if 

1 1 1
ˆ0 , 0 , 0 , 0      

  is chosen. 

Proof. Let’s consider the following Lyapunov candidate: 
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2 2 2 2 2 2

1 1 1 1 2 2 2 2

1 2 3 4 1

1 1 1 1 1ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( )V s
l

         
   

          

           (29) 

Like the proof of Theorem 4.1, we can derive; 

2 2 1 1 2 2 1 1

1 1 1 1 2 2 2 2

ˆ ˆˆ ˆ2{( ) ( ) ( ) ( ) tanh( )

ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) tanh( )}

V s s s s s s

s s s s s s

         

          

        

         
                      

(30) 

Equation (30) is rewritten using Lemma 2.2 as follows; 

1 1 1

1 1 1

ˆ2{ 2 2 2 tanh( ) ( ) tanh( )}

ˆ2{ 2 2 2 tanh( )} 0

V s s s s s s s

s s s s s

       

    

      

     
                          

(31) 

It means that the designed sliding surface is asymptotically stable with an 

appropriate selection of adaptive gains. Thus, the proof is achieved completely.  

 

5. Simulation Results 

In this section, fractional-order Chen systems and fractional-order Lorenz systems 

were examined using two proposed examples of the adaptive sliding mode controller 

performance. The output results support theoretical ones. 

Example1. 

Fractional-order chen chaotic system is a subset of chaotic systems mentioned in 

Table 1. The related state equation is as follows: 

1

2

3

( )
q

q

q

D x a y x

D y dx xz cy

D z xy bz

 

  

 
                                                 (32) 

Where 
( , , , ) (35,3,28, 7).a b c d  

 

Chaotic behavior has been shown without uncertainty, external disturbance and 

input in Fig.1. Systems of Master (9) in the presence of uncertainty 

1 2 3 2( , , ) 0.5cos(3 )g x x x x 
and external disturbance 1( ) 0.7sin3td t 

 , and 

systems of slave (10) in the presence of uncertainty 1 2 3 2( , , y ) 0.6sin( )g y y y 
 and 

external disturbance 2 ( ) 0.8cos 2 td t 
  and controller (27) were considered. To 

synchronize two fractional order, chen systems in the master-slave structure for 

master system with the initial conditions of 

1 2 3

0.1 0.1 0.05

0 0 0(0), (0), (0)
T

t t tD x D x D x
     [ 9, 5,14]

T
    ,and the slave system 

with initial conditions of 1 2 3

0.1 0.1 0.05

0 0 0(0), (0), (0)
T

t t tD D Dy y y     [1,7, 8]
T

 
 , 

and fractional-order 
[0.9,0.9,0.95]q 

 for both systems were proposed. As it was 

noted above in Remark 3.2, systems of (9) and (10) are called incommensurate 

fractional-order systems. There exist appropriate positive constants 1 2 1 2
ˆ ˆ ˆ ˆ, , ,   

 such 

that; 
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1 2 3 1 1 1 1 2 3 2 2 2
ˆ ˆˆ ˆ( , , ) , ( ) , ( , , ) , ( )g x x x d t g y y y d t        

                  (33) 

Based on the sliding surface (12) and the proposed controller law (27) for 

synchronization, the following functions are achieved: 
2 1

2( ) ( )
q

s t D e t
 

                                                      (34) 

1 1 2 1 3 2 1 1 2 1 3 2( ) [c c ] [c c ]t ax x x kx ay y y ky      
                                       

(35) 

1 1 3 2 1 1 3 2 2 2 1 1 2 1 3 2

1 1 2 1 3 2 2 2 1 1

( ) ( ) c c

c c ( ) ( ) ( ) ( ) tanh(0.1s)

u t dy y y cy dx x x cx x y ay y y ky

ax x x kx sign s sign s



    

          

       

                     (36) 

 So, adaptive laws as 1 0.1 s 
, 1 0.4 s 

, 2 0.3 s 
, 2 0.7 s 

, 

0.6 tanh(0.1s)s 
 and  1 2 1c c 

are determined. Vectors 1 2 1 2, , ,   
 are 

also updated to the initial condition
[2.1, 2.1, 2.1, 2.1]

. Simulation results for 

3.976k   are shown in Figs 2-5. Fig.2 shows the convergence of the errors to zero. 

Fig. 3 shows synchronization of system variable via effective adaptive sliding mode 

controller 1 2 3 1 2 3, , , , ,x x x y y y
. The time responses of the update vector parameters 

1 2 1 2, , , ,    
 are shown in Fig.4. The adaptive parameter values are clearly seen 

to be bounded. The time histories of the applied control input (27) are plotted in Fig.5.  

                                  

Figure 1. Phase Diagram of Chen System with Fractional Order                            
q= [0.9, 0.9, 0.95] 
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 Figure 2. The State Trajectories of Error  

 
             Figure 3.  Synchronization of the State Variables 
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             Figure 4. The Time Responses of the Update Vector Parameters 

1 2 1 2, , , ,    
 

 

 Figure 5.  Control Function in Synchronization Procedure 

Example 2. 
The proposed controller effectiveness in the presence of external disturbance and 

uncertainty for fractional-order Lorenz chaotic system taken from table 1 are 

examined in this example. Fractional-order Lorenz chaotic system equations are as 

follows: 
1

2

3

( )

( )

q

q

q

D x a y x

D y x b z y

D z xy cz

 

  

 
                                            (37) 
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Where 

8
( , , ) (10,28, ).

3
a b c 

 

Chaotic behavior has been shown without uncertainty, external disturbance and 

input in Fig.6. 

Systems of Master (9) in the presence of uncertainty 

1 2 3 1( , , ) 0.7sin(2 )g x x x x 
and external disturbance 1( ) 0.1cos3td t 

 , and 

systems of slave  (10) in the presence of uncertainty 1 2 3 3( , , y ) 0.4cos( )g y y y 
 

and external disturbance 2 ( ) 0.9sin 4 td t 
  and controller (27) are considered. To 

synchronize, two fractional order Lorenz systems in the master-slave structure for 

master system with the initial conditions of 

1 2 3

0.003 0.002 0.001

0 0 0(0), (0), (0)
T

t t tD x D x D x
     [ 8,9, 9]

T
    ,and the slave 

system with initial conditions of 1 2 3

0.003 0.002 0.001

0 0 0(0), (0), (0)
T

t t tD D Dy y y    

[7, 15,14]
T

 
 , and fractional-order 

[0.997,0.998,0.999]q 
 for both systems 

are presented. As it was noted above in Remark 3.2, systems of (9) and (10) are called 

incommensurate fractional-order systems. There exist appropriate positive constants 

1 2 1 2
ˆ ˆ ˆ ˆ, , ,   

 such that; 

1 2 3 1 1 1 1 2 3 2 2 2
ˆ ˆˆ ˆ( , , ) , ( ) , ( , , ) , ( )g x x x d t g y y y d t        

                  (33) 

Based on the sliding surface (12) and the proposed controller law (27) for 

synchronization, the following functions are obtained: 
2 1

2( ) ( )
q

s t D e t
 

                                                      (38) 

1 1 2 1 3 2 1 1 2 1 3 2( ) [c c ] [c c ]t ax x x kx ay y y ky      
                                       

(39) 

1 1 3 1 1 3 2 2 1 1 2 1 3 2

1 1 2 1 3 2 2 2 1 1

( ) ( ) c c

c c ( ) ( ) ( ) ( ) tanh(0.1s)

u t by y y bx x x x y ay y y ky

ax x x kx sign s sign s



    

        

       
                     

(40) 

So, adaptive laws as 1 0.1 s 
, 1 0.4 s 

, 2 0.3 s 
, 2 0.7 s 

, 

0.6 tanh(0.1s)s 
 and  1 2 1c c 

were determined. Vectors 1 2 1 2, , ,   
 

were also updated to the initial condition
[2.1, 2.1, 2.1, 2.1]

. Simulation results for 

1.143k   were shown in Figs 7-10. Fig.7 shows the convergence of the errors to 

zero. In Fig. 8 the effectiveness of the adaptive sliding mode controller to synchronize 

of system variables 1 2 3 1 2 3, , , , ,x x x y y y
is verified. The time responses of the 

update vector parameters 1 2 1 2, , , ,    
 are shown in Fig.9. The adaptive 

parameter values are clearly seen to be bounded. The time histories of the applied 

control input (27) are plotted in Fig.10. 

For performance validation of proposed operation scenario using Matlab/Simulink. 

According to the above examples, the proper functioning of the designed controller to 

uncertainty and external disturbance is obvious. 
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Figure 6. Phase Diagram of Lorenz System with Fractional Order                   
q= [0.997, 0.998, 0.999]  

 

 

 

Figure 7. The State Trajectories of Error System 
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        Figure 8. Result of Synchronizatin of the State Variables 

 

   Figure 9. The Time Responses of the Update Vector Parameters 
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Figure 10.  Control Function in Synchronization Procedure 

6. Conclusion  

In this paper, an innovative adaptive sliding mode synchronizer controller is 

proposed for fractional-order chaotic system in master-slave structure in the presence 

of uncertainty and external disturbance. Sliding surface and adaptive laws are applied 

to design this controller. Moreover, a novel class of fractional-order systems has been 

introduced. Proper adaptive laws are designed here to counter against uncertainty and 

external disturbance, helping the system to do synchronization more appropriately. 

It is also assumed that the bounds of uncertainties and external disturbance are 

unknown. 

The optimal performance of the controller in mitigating the chattering phenomenon is 

quite evident with proving the proposed adaptive sliding mode controller stability. 
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