
International Journal of Control and Automation

Vol.9, No.1 (2016), pp.445-458

http://dx.doi.org/10.14257/ijca.2016.9.1.38

ISSN: 2005-4297 IJCA

Copyright ⓒ 2016 SERSC

EfficientMemory Management for NVM-Based Hybrid Memory

Systems

Zhangling Wu
1,2

, Peiquan Jin
#1,2

, Chengcheng Yang
1,2

 and Lihua Yue
1,2

1
School of Computer Science and Technology, University of Science and

Technology of China, Hefei, 230027, China
2
Key Laboratory of Electromagnetic Space Information, Chinese Academy of

Sciences, Hefei 230027, China
jpq@ustc.edu.cn

Abstract

Non-volatile memory (NVM)such as phase change memory (PCM) has emerged as an

attractive type of next-generation memories. NVMcan be incorporated into memory

hierarchy to solve the problems of current DRAM instorage density and energy

consumption.NVM is byte addressable and its latency is close to main memory, it exhibits

higher density and lower idle power consumption than DRAM. However, NVM haslimited

write endurance and asymmetriclatency and energy consumption for read and write

operations. Therefore, hybrid memory systems involving both NVM and DRAM have been

proposed for better utilizing NVM and DRAM. In this paper, we present a novel hybrid

memory management schemecalled W-HCLOCK (Write-aware Hybrid CLOCK) that aims

to keep a high hit ratio and minimize writes to NVM. Particularly, we introduce the

concept of Recent-Rewrite-Distance (RRD), and combine it with recency of write

operations to estimate the write-hotness of pages. Then, weplacewrite-intensive pages in

DRAM to reduce NVM writes. In addition, we keepadditional information about the

writes to evicted pages to avoid unnecessary migrations between DRAM and PCM. We

conduct simulation experiments on four synthetic traces and one real OLTP trace. The

results suggest the efficiency of our proposal.

Keywords: Memory management, NVM, Hybrid memory system

1. Introduction

Currently, the I/O performance between DRAM and secondary storages has become

akey bottleneck ofmassive data storage [1]. Increasing memory capacity may alleviate this

problem, but it brings other problems such as scalability [2] and energy consumption

[3].Fortunately, A class of new memory technologies called non-volatile memory (NVM),

such as phase change memory, Magnetic RAM, Ferroelectric RAM, flash memory, are

being developed [4], which introduce opportunities for building efficient hybrid memory

systems involving DRAM and NVM.

NVM provides low latency reads and writes on the sameorder of magnitude as DRAM.

On the other side, NVMhas largestorage capacity like flash memory. The key properties

of NVM are non-volatile, byte-addressability, low idle energy consumption, read/write

asymmetry and limited write endurance.With these properties, NVM brings new

challenge in the memory hierarchy; one of the attempts is presenting both DRAM and

NVM at the same main memory level [5], which takes the advantage of the low latencies

of DRAM and the high capacity of NVM.This paper is based on this architecture, in

which NVM and DRAM are managed together under a single physical address space.

Traditional main memory management policies are not suitable for new memory

architecture due to the long write latency and limited lifespan of NVM. Several researches

to handle the read/write asymmetry and endurance problem of NVM have been proposed.

mailto:llyue%7d@ustc.edu.cn

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

446 Copyright ⓒ 2016 SERSC

Most of them ameliorate traditional CLOCK or LRU policy, utilizing DRAM to absorb

write requests.LRU-based algorithms, such as LRU-WPAM [6], MHR-LRU [7] and APP-

LRU [8], try to put read-tendency pages or cold pages to NVM and write-tendency pages

or hot pages to DRAM, but LRU-WPAM may evict a page from memory when migrating

page between two memory medium, which increases the probability of page fault, and the

latter two algorithms cannot migrate write-tendency page from NVM to DRAM in time

because migration only performs when page fault occurs. More importantly, relatively

complicated LRU-based policies cannot be used in virtual memory management because

of frequently list operations and hardware support. Therefore, the CLOCK-based policies,

approximate of LRU, become practical choices in virtual memory replacement. CLOCK-

DWF [9] and D-CLOCK [10] have been designed to length the lifetime of NVM in hybrid

memory system, which denote to make write-hot pages (pages which are frequently

written recently) be stored in DRAM and write-cold pages (pages that are rarely written)

be stored in NVM.However, both of them design migration strategies at a cost of hit ratio

reduction.

In this paper, we present a CLOCK-based hybrid virtual memory management policy

called write-aware hybrid CLOCK (W-HCLOCK).W-HCLOCKworks in a similar

fashion as CLOCK and tries to put write-hot pages in DRAM and write-cold pages in

NVM to reduce the total write count to NVM, the main contributions are as follows:

1) W-HCLOCKremains original data structure and page replacement policy of

CLOCK [11], hence can guarantee the same hit ratio as CLOCK.

2) Inspired by the concept of Inter-Reference-Recency (IRR) in the buffer cache

replacement algorithm, LIRS [12], W-HCLOCK introduces a new design ofRecent

Rewrite Distance (RRD) to decide the write hotness of pages.W-HCLOCK

maintains a write clock structure to record the history write information, and we

can judge the write hotness (whether a page is write-hot or write-cold) of pages

based on the information in the write clock. Meanwhile, when a page is evicted

from memory, we do not discard the corresponding write information immediately,

but reserve to predict its write hotness (hot or cold) in case of it is accessed in the

near future. By doing so, unnecessary page migration can be avoid.W-

HCLOCKdoes not count the write count of each page, so the size overhead used to

store the write information can be greatly minimized.

3) Page migrations are triggered when writing a page which is not in the right

device.W-HCLOCK always migrate write-cold pages to NVM. Particularly, W-

HCLOCK givesDRAM pages,which are frequently read but rarely written, much

higher priority to be selected as migration victims, this is handled by a swap clock

structure.

4) We conduct trace-driven experiments in a simulated NVM-based hybrid memory

system. We compare our proposed memory management policy with three

alternative methods, i.e., CLOCK [11], CLOCK-DWF [9], and D-CLOCK [10].

Through extensive experiments over several traces, we show that the proposed

mechanism can effectively reduce the total write count to NVM without reducing

the hit ratio.

Theremainder of this paper is organized as follows. Section 2 briefly describes the

problems of page management policy in NVM-based hybrid memory systems. In Section

3, we presents the details of the proposed W-HCLOCK virtual memory management

policies, including page partition, replacement and migration policies. Experimental

results are shown in Section 4. And finally, we conclude this paper in Section 5.

2. Related Work

Traditional virtual memory management policies, such as CLOCK [11], CLOCK-

pro[13]focus on how to improve the hit ratio. While in NVM-based hybrid memory

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 447

management, reducing the total write count to NVM should also be taken into

account. Several memory management policies have been proposed for NVM-based

hybrid memory systems.

RaPP [14] uses a modified version of the Multi-Queue [15] algorithm to manage

the pages and try to place performance-critical pages and frequently written pages in

DRAM, which relies on a sophisticated memory controller monitoring access

patterns and ranking pages according to access frequency and write intensity.APG

[16] is a page migration policy aiming at increasing energy efficiency and

minimizing performance degradation. APG maintains access information in page

table entry and moves adaptive number of pages which is decided bythe grouping

technique.

LRU-WPAM[6] uses four monitoring queues (DRAM read queue, DRAM write

queue, NVM read queue and NVM write queue) to monitor the write and read

operations of each pages, so that read-tendency pages are migrated to NVM and

write-tendency pages are migrated to DRAM, but the migrations may promote the

system to evict a page from the buffer and decrease the hit ratio. To this end, APP-

LRU [8] devotes to classifying pages into read-tendency group and write-tendency

group without affecting the hit ratio. When a page fault occurs, APP-LRU decides

whether the missed page is write-tendency or read-tendency based on a history

information table. MHR-LRU [7] records the write operations to DRAM using a

DRAM write list, write heat is judged by the location in the write list. If an empty

DRAM frame is needed, MHR-LRU migrate a write-cold page from DRAM to

NVM. However, both APP-LRU and MHR-LRU migrate pages only when page

faults occur, which cannot migrate pages to the right medium immediately when

access pattern changes.

Another group of memory management policies are designed based on CLOCK

algorithm. Basically, there is no frequently list operation in these algorithms. AIMR

[17] identifies write-intensive pages by virtue of two CLOCK lists, which manages

the pages with “recency” feature and pages with “frequency” feature,

separately.However,since the replacement policy replaces pages which are selected

from one of the CLOCK lists, there is a risk that the replaced pages are warmer than

some pages in the other CLOCK list. Lee et al. proposed CLOCK-DWF [9],

whichimplements an improved CLOCK policy and normal CLOCK policy to

manage DRAM pages and NVM pages, respectively. The improved CLOCK policy

utilizes the frequency and recency of write operations to classify pages. CLOCK-

DWF make sure that all the write operations are performed in DRAM, that means,

the pages should be copied to DRAM before being written. To make room for these

pages, write-cold DRAM pages are migrated to NVM, this action may beperformed

along with an eviction of PCM page. Similarly, D-CLOCK [10] takes the same

mechanism to deal with the write operations. Meanwhile, all the DRAM pages and

NVM pagesare managed by a global CLOCK list, so that all the pages of similar

access pattern have the same chance the be evicted. In addition, in order to limit the

writes to PCM incurred by page faults, D-CLOCK may force to evict a DRAM page

instead of PCM page. These policies put effort into reducing writes to PCM, but

they ignore another important goal of memory management, hit ratio.

3. W-HCLOCK

Higher hit ratio is the most important goal in all of the memory management

policies.Besides, when designingthe memory management policies for NVM-based

hybrid memory system, reducing the total writes to NVM must also be taken into

consideration.

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

448 Copyright ⓒ 2016 SERSC

The researches for NVM-based hybrid memory system in the literaturelearned from

LRU policy, in which the write hotness of pagesis predicted bythe write recency and the

write count. Unfortunately, LRU behaves poorly when handling the access patterns with

low locality, such as sequential scan and cyclic pattern that the footprints are slightly

larger than the buffer size [12]. To fundamentally solve the problems of LRU, LIRS uses

IRR in the replacement decision, where IRR of a page refers to the number of other pages

accessed between two consecutive operations to the page.Similarly, the researches for

NVM-based hybrid memory system also suffer from memory missing when coping with

sequential writes and cyclic write patterns. Inspired by LIRS, W-HCLOCKintroduces a

new concept called Recent Rewrite Distance (RRD)to maintain the recorded history write

information of each pages. RRD of a page refers to the number of other pages written

between two recent write operations to the page, if a page has been written only once or

never been written, the RRD of that page is set to infinite.

W-HCLOCKclassifies pages either as write-hot pagesor write-cold pages based on the

RRD and recency of pages.Note that, it is meaningless to classify a page with low RRDto

write-hot group, which has not been written for a long time. Then we mark the status of

pages as write-hot or write-cold. The goal of the proposal is trying to place all write-hot

pages in DRAM, and write-cold pages in NVM. Therefore, the maximum number of

write-hot pages is set to the number of pages that DRAM can hold.

Table 1 shows an example of how a write-cold page becomesa write-hot one. Initially,

the recency of write-hot page D is larger than a write-cold page E, but the RRD of page D

is smaller than page E. Then, there is a write operation to page E, and the RRD of page E

is changed from 8 to 2, which is smaller than page D. Obviously, the new RRD of page E

is smaller than the recency of page D, which means even if page D is updated in the near

future, the new RRD of page D is still larger than the one of page E. Therefore, it is

believed thatpage E is warmer than page D in writing.W-HCLOCK records the write

information of pages, but maintaining the write recency of write-cold pages which is

larger than the one of write-hot pages is insignificantbecause these pages have no chance

to become write-hot. Therefore, we give the write-cold pages a chance to compete with

the write-hot pages.On the other hand, we also grant a write-cold page a test period. If a

write-cold page is not accessed during the test period, it is discarded. But if it is accessed

in the test period, the write-cold page can turn into write-hot.

Table 1. An Example of Write Hotness Change

Page id Before writing page E After writing page E

Write hotness Recency RRD Write hotness Recency RRD

A Write-hot 3 4 Write-hot 4 4

B Write-hot 2 3 Write-hot 3 3

C Write-hot 4 2 Write-hot 5 2

D Write-hot 5 5 Write-cold 6 5

E Write-cold 1 8 Write-hot 0 2

W-HCLOCK inherits traditional CLOCK replacement policy to replace pages when

page fault occurs. The difference is that W-HCLOCK maintains the write information of

pages even if they are evicted from the memory. If there is a page fault incurred by a read

operation, W-HCLOCK decides where to place the faulted page via the write hotness of

that pageshownin the historical write information. If the page is a write-hot page, it is

placed in DRAM. Otherwise, the page is placed in where the evicted page is. However,

W-HCLOCK places all the faulted pages which are incurred by write operations to

DRAM since there are two writes (one for loading to memory and one for write operation)

when such page fault occurs. It is also possible that the evicted page releases a NVM

frame, but the faulted page requires a DRAM frame. For such case, W-HCLOCK will

moveaDRAM write-cold page to NVM. If we store a faulted page which is incurred by a

write operation in NVM, there are two writes performed on NVM as mentioned above,

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 449

but if we store it in DRAM, there is only one write implemented on NVM at worse, which

is incurred by a migration from DRAM to NVM.If a write operation hits on NVM and the

historical write information of that hit page exists (the write information is in its test

period), W-HCLOCK regards it as a write-hot page and migrate it to DRAM.

3.1. Data Structure

W-HCLOCK maintains three clock-aware lists: general clock,writing clock and

DRAM swapping clock, as shown in Fig. 1. General clock maintains all the memory

pages (NVM and DRAM pages) and performs page replacement like traditional CLOCK

policy do (reference bit of a page is set or reset). Thus W-HCLOCK can ensure that there

is no hit ratio decrease. The write clock records the most recent writes information, which

is used to decide whether a page is write-hot or write-cold. In Fig. 1, shadowed circles

represent write-hot pages and white circles represent write-cold pages.In the write clock,

some of records belong to thepages stored in NVM or DRAM and the others belong to

pages not in the memory, which are marked with “D”, “N” or blank.Additionally,W-

HCLOCK designs a DRAM swapping clock to manage all the DRAM pages discarded

from write clock andthe totally clean DRAM pages. If a page in DRAM swapping clock

is hit by a write operation, we move that hit page to writing clock. Note that the DRAM

swapping clock may be empty if all the DRAM pages exist in writing clock, which means

all the DRAM pages have been accessed recently or all of them are write-hot pages.

NDD

N

D

N

D

D

N D D
N

N

D

N

N

N
N DN

N

N

N

D D

D
DN

D

DD

D

General clock Writing clock DRAM swapping clock

D

N

DRAM page

Out of memory

NVM page

Write-cold page

Write-hot page

P

P

P
P

P Read/write reference bit =1

P

Hswap

Test flag = 1

Figure 1. Data structure of W-HCLOCK

In W-HCLOCK, there are several hands that should be introduced. Hg in general clock

points to the least recently used pages, which equivalent to the hand in CLOCK. Hhot

points to the write-hot page with the largest write recency, which serves as a threshold of

being a write-hot page. The page pointed by Hhotis the tail of write clock list. We move

Hhot to turn a write-hot page into write-cold. Hcold points to the write-cold page which is

the nearest one toHhot in the clockwise direction.The page pointed by Hcold is the least

recently written cold page. We limit the number of write information to reduce space cost.

When the number of pages in the write clock exceeds a predetermined upper limit, we

sweepHcold to find a write-cold victim, and remove the victim from write clock, this also

means that we terminate the removed victim’s test period.HDcold points to theDRAM page

which is the nearest write-cold page from Hhot. This pointer is used to quickly locate a

DRAM write-cold page when a migration performs. But HDcold may be null if there is no

DRAM write-cold page.Hswappoints to the tail of DRAM swap clock, which is the least

recently accessed (read) page.

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

450 Copyright ⓒ 2016 SERSC

In CLOCK, there are no operations for page hits, only reference bits of the accessed

pages are set. Similarly,write clockalso introduces a write reference bit to approximate list

operations when write operations hit on it, so the pages whose write reference bit is set are

much warmer than the one whose write reference bit is not set, if their write hotness is the

same.Once a page in write clock is written, its write reference bit is set (marked by “P” in

Fig. 1), and page migration may happen if it is a NVM pages (this page is regarded as a

write-hot page, although we do not change its write hotness immediately). As mentioned

before, if a write-cold page is not accessed during the test period, it will be discarded from

write clock (i.e., it is out of test period); but we give the write-cold page whose write

reference bit is set a second chance to be discarded by using a test flag (set to “1”, the

page is filled with lattice in Fig. 1) since it has been accessed before.Note that, if a page is

not in the write clock or its test flag is set, that means it is out of its test period, and cannot

be turned into write-hot page. DRAM swap clock also uses a read reference bit to

distinguish hot pages from cold ones;if a page in DRAM swapping clock is read, its read

reference bit is set (marked by “P” in Fig. 1).

After inducing the test flag, we redefine Hcold as the nearest write-cold page to the list

tail, whose test flag is unset, and HDcold as the nearest DRAM write-cold page to the list

tail, whose write reference bit is unset or both write reference bit and test flag are set.

When Hcold is triggered, we keep moving it until it finds a write-cold page eligible for

discarding, and stop at the next write-cold page whose test flag is reset. During moving

Hcold, if the write reference bit of the write-cold page pointed by Hcold is set, we set its test

flag to mark this page out of test period. Otherwise, we found a write-cold page to discard.

3.2. Page Migration

Next we will describe how these hands are coordinated with each other to search a

write-cold page for migration.

If W-HCLOCK decides to put a page in DRAM, but there is no empty DRAM frame

for it, a migration from DRAM to NVM should be performed. First, we examine whether

the DRAM swap clock is empty. If it is not empty, the migrated victim is selected from

DRAM swap clock. We start from the counterclockwisedirection of Hswapto look for a

page whose read reference bit is set, since such page is more read intensive than others

(all of them are write-cold) and such migration benefits more (i.e., the probability of

migratingthe page back to DRAM is lower). If all the read reference bits in DRAM swap

clock are unset, the page before Hswap in the clockwise direction is selected as a victim.

Otherwise, if there is no page in DRAM swap clock, the migrated page is searched from

write clock. The purpose is to find a DRAM write-cold page, so we first check whether

HDcoldis null. If it is not null, the migrated victim is found and HDcold is moved to next

DRAM page which meets the requirement. Note that, if the write reference bit and test

flag of the victim are set, we reset them and move the victim to the head of the write clock

(immediately beforeHhot in the clockwise direction). If HDcoldis null, which means all the

pages in DRAM are write-hot or will soon be write-hot. At this moment, we start the

cold-to-hot procedure thatis used to find a write-cold page to turn into write-hot.

Cold-to-hot procedure enables a temporary hand, which starts from the position of

Hcoldand moves in the clockwise direction,to find the target page. The temporary hand

skips all the write-hot pages and the write-cold pages whose write reference bit is unset. If

the write reference bit of the page pointed by the temporary hand is set and the page is in

its test period (test flag is unset), we turn the page into write-hot page, reset its write

reference bit and move it to the head of the write clock. Meanwhile, if the number of

write-hot pages exceeds the size of DRAM memory, we ask Hhot for its actions and the

procedure ends. However, if both of the write reference bit and test flag are set, there is no

status change as well as Hhot actions, but the two bit are reset and we move the page to the

head of the write clock. The temporary hand keeps moving until it turns a write-cold page

into write-hot or meets with Hcoldagain. The situation that the temporary hand meets with

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 451

Hcoldmeans that no write-cold pages need to turn into write-hot (i.e., all the write-hot

pages are DRAM pages). When the temporary hand meets Hcoldagain, we ask Hhot for its

actions too.

We trigger the movement of Hhot when a write-cold page turns into write-hot and the

number of write-hot pages exceeds the determined upper limit. The duty of moving Hhot is

to turns a write-hot page with the largest write recency into a write-cold one. If the write

reference bit of the hot page swept by Hhot is unset, we simply change its write hotness to

write-cold and stop Hhot at the next write-hot page. Otherwise, if its bit has been set before,

we keep it as write-hot page, but reset the write reference bit. However, the test period of

any write-cold pages swept by Hhot will be terminated, which means Hhotremoves the

write-cold pages from write clock whose write reference bits are unset, or sets the test

flags if their write reference bits are set, just like Hcold does.

All of the actions described before are to find a DRAM write-cold page for migration.

We trigger the cold-to-hot procedure and the movement of Hhot when all the pages in

DRAM are write-hot or will soon be write-hot. Figure 2 shows an example of status

change and page migration. Initially, the DRAM memory size and the maximize number

of write-hot pages is 6;HDcold is null sinceall the pages in DRAM are write-hot or will

soon be write-hot (shown in Fig. 2(a)); Hhot points to page B. Then a write request on page

A is implemented (its write reference bit is set as shown in Fig. 2(b)). Since page A is

accessed during its test period, we think it is a write-hot page and should be put into

DRAM. However, there is no empty DRAM frame for it, so a DRAM write-cold page

should be migrated to NVM. The cold-to-hot procedure changes the write-cold page C to

write-hot, and put it after page B in the clockwise direction which is pointed by Hhotat that

moment. But the number of write-hot pages exceeds 6, the movements of Hhot are

triggered. As a result, page B turns to write-cold page and is pointed by HDcold, Hhot and

Hcold stop at write-hot page F and write-cold page A, respectively, as shown in Fig. 2(b).

Note that write-cold page E is discarded by Hhot because it is out of test period. Finally,

we have found a DRAM write-cold page B(pointed by HDcold), and swap it with the NVM

page A (shown in Fig. 2(c)).

Since the page replacement of memory is controlled by the general clock, some of the

write-hot pages may be evicted from the memory, thus the situation may takes place that

Hhot turns a non-resident write-hot page into write-cold one. As shown in Fig. 2(d), the

writing operation on page G triggers the cold-to-hot procedure and the movements of Hhot.

So page A turns into write-hot page and is moved to the head of write clock (after page F

in the clockwise direction),the non-resident page F pointed by Hhot before turns to write-

cold page. Unfortunately, we fail to find a DRAM write-cold page to swap with page G.

The migration of page G is delayed until it is written again during its test period in the

future. Figure 2(d) also shows that we set the test flag of page H, rather than discard this

page like we did in Fig. 2(b), this is because page H has been written before during its test

period, but have not had time to turns to write-hot.

3.3. Page Management

This section we will introduce the page management policy in details, including when

to migrate pages and how to change status bits.

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

452 Copyright ⓒ 2016 SERSC

DD

N

N

N

D

D

N D

N

N

D

D

N

DRAM page

Out of memory

NVM page

Write-cold page

Write-hot page

P Write reference bit =1

P

P

Page B

(a)

HDcold=null

Page C DD

N

N

N

D

D

N D

N

P Page C

(b)

Page A
P

D
Page B

Page E

Page A
P

P

DD

N

N

N

D

D

N D

D

P Page C

(c)

Page A
P

N
Page B

P

HDcold=null

DD

N

N

N

D

D

N D

D

P

P Page C

(d)

Page A

N
Page B

P

Page F

Page F
Page FPage F

Page G

Test flag = 1

HDcold=null

Page GPage GPage G

Page H Page H Page H

Page H

Figure 2. An Example of Page Migration

Algorithm 1: page hit policy

Input: requested page p, operation type op

1 p.reference_bit=1;

2 if(op is read and p exists in DRAM swap clock)then

3 p.read_reference_bit=1;

4 else if (op is write)then

5 if (p exists in write clock)then

6 p.write_reference_bit =1;

7 if(p is stored in NVM)then

8 call the page migration procedure to find a DRAM write-cold page q;

9 if (q≠null)then swap q and p;

10 else/*p does not exist in write clock*/

11 if (p exists in DRAM swap clock) then remove p from DRAM swap clock;

12 add p to the head of the write clock ;

/*immediately before Hhot in the clockwise direction)*/

13 set p to write-cold; p.write_reference_bit=0; p.test_flag=0;Nwrite_clock++;

14 if (Nwrite_clock>upper limit) then trigger the movements of Hcold;

Algorithm 1 shows the processing procedure when a request hits on memory. When a

page is accessed, W-HCLOCK first set its reference bit (line 1). If the operation type is

read and the requested page exists in DRAM swap clock (it is a write-cold page), the read

reference bit of that page is set (line 2-3), which indicates that the page is more read

intensive than other write-cold pages. If a write operation hits on memory, W-HCLOCK

first check whether the requested page p exists in write clock. If not, we add it to the head

of write clock and initial its status bits (line 12-13). Before that, page p is removed from

DRAM swap clock if it exists in DRAM swap clock (line 11). We keep track of the total

number of pages in write clock (Nwrite_clock). Once it exceeds 2*m, where m is the memory

size in the number of pages, the movements of Hcold are triggered and a page will be

discarded from the write clock (line 14). If the discarded page is a DRAM page, we added

it to the head of DRAM swap clock and its read reference bit is reset. If page p already

exists in write clock, its write reference bit is set. W-HCLOCK regards such page as

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 453

write-hot page (although it may have not been changed to write-hot). If it is an NVM page,

W-HCLOCK tries to find a DRAM write-cold pageqby activating the page migration

procedure, and swap q with p if found (line 8-9). Since we may fail to find the DRAM

write-cold page, the swapping may not be performed.

Algorithm 2 describes how to manage pages when a page fault occurs. When a page

fault occurs,first, W-HCLOCK selects a victim qfrom the general clock to replace based

on traditional CLOCK algorithm (line 1). Second, W-HCLOCK decides where to place

the faulted based on the write information in write clock.

If it is a read operation and the requested page p is a write-hot page, we place it to

DRAM, which can avoid unnecessary migration since there may be many write

operations to page p in the future. However, if the evicted page q is a NVM page, W-

HCLOCK tries to call the page migration procedure to find a DRAM write-cold page r,

and migratesr to q if found (line 4-6). Then we load the requested page p from disk to rif

the migration from DRAM to q is performed successfully or to q if the migration fails

(line 7). If the requested page is a write-cold page, we simply store it in where the evicted

page is (line 9).

Algorithm 2: page fault policy

Input: requested page p, operation type op

1 Replace a page q from general clock using CLOCK policy;

2 if(op is read) then

3 if (p exists in write clock and p is a write-hot page) then

4 if (qbelongs to NVM) then

5 call the page migration procedure to find a DRAM write-cold page r;

6 if (r≠null) then migrate r from DRAM to q;

7 load p to r or q; /*load to the frame where r or q is stored before*/

8 else

9 load p to q;

10 else /*write operation*/

11 if (p exists in write clock) then

12 p.write_reference_bit =1;

13 else

14 add p to the head of the write clock;

15 set p to write-cold; p.write_reference_bit=0; p.test_flag=0; Nwrite_clock++;

16 if (Nwrite_clock>upper limit) then trigger the movements of Hcold;

17 if (q belongs to NVM)then

18 call the page migration procedure until W-HCLOCK finds a write-cold page r;

19 migrate r from DRAM to q;

20 load p to DRAM;

21 add p to the head of general clock; p.reference_bit=1;

If the operation is a write request, we need to store it in DRAM since there are two

operations as mentioned before. If the requested page q exists in the write clock, its write

reference bit is set (line 11-12). Otherwise, W-HCLOCK adds it to the head of the write

clock, reset the status flags and activated the movements of Hcold to discard a write-cold

page from the write clock if needed (line 13-16). Here, we force to store page p in DRAM,

which make us call the page migration procedure repeatedly until a DRAM write-cold

page r is found, if the evicted page q belongs to NVM (line 18). After finding page r, we

move it from DRAM to the NVM frame where page q was stored before (line 19). The

requested page pis loaded to DRAM. Finally, we add page p to the head of general clock

(immediately before Hg in the clockwise direction) and set its reference bit (line 21).

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

454 Copyright ⓒ 2016 SERSC

4. Experiments

In this section, we present the evaluation results of our proposal described in Section 3.

We first introduce the experimental setting on the workloads and competitive algorithms.

Then we present the comparative results with these competitive algorithms.

4.1. Experimental Setup

We have implemented a simulated NVM based hybrid memory system, which adopts

unified addressing mode, DRAM takesthe low-end addresses and PCM takes the high-end

addresses. The page size is set to 4KB. We compare our proposal with four alternatives:

CLOCK [11], CLOCK-DWF [9], and D-CLOCK [10]. Both CLOCK-DWF and D-

CLOCK are designed based on CLOCK

Both synthetic and realistic traces in the following experiments are used, which have

been shown in table 2. We use DiskSim [18] to generate two groups of traces, i.e., T5582

and T5555, by setting different read/write ratio and locality. For the four ZIPF traces [19],

the probability of accessing the i
th
 page among a totality of N pages, piis calculated based

on the following formula:

(1)

 and
 is the N

th
 harmonic number of order . Whena is 0.6

and b is 0.4, the distribution means that 60% of the references are located on the most

active 40% of the pages. There are total 10000 different pages for each synthetic trace.

The locality of 80%/20% means that 20% of pages absorb 80% of requests. The other

group of trace, OLTP, is collected from a real bank database system, which has also been

used in APP-LRU [8] and ADLRU [20]. This trace contains 607390 references to a

CODASYL database with a total size of 20 Gigabytes.

Table 1. Parameters of the Zipf and OLTP Traces

Traces Footprints Read/write ratio Locality Total Requests

Zipf1982 10000 10%/90% 80%/20% 400000

Zipf1955 10000 10%/90% 50%/50% 400000

Zipf2873 10000 20%/80% 70%/30% 400000

Zipf4682 10000 40%/60% 80%/20% 400000

OLTP 10000 53%/47% ~ 607390

4.2. NVM Write Count with Zipf Traces

Figure 3 shows the effect of different NVM size ratio with a fixed memory size, to

investigate the feasibility of different memory management policies, since NVM includes

several new memory devices, which have different scalability. The y-axis denotes to the

total write count on NVM and the x-axis shows the different proportion of DRAM and

NVM. The total size of memory is set to 2000 pages, and the write count is induced by

page faults, write operations of traces and migrations from DRAM to NVM. When

increasing the size of DRAM, the write count on NVM increases for different traces and

different policies, since NVM becomes larger than before. Figure 3 also shows that the

write count on NVM is less when implementing the proposed W-HCLOCK in most cases,

which means our proposal can adapt to a variety of hybrid memory configuration and

perform well in reducing the NVM write count. However, when the ratio of DRAM

becomes smaller (such as 1:5 and 1:6), the NVM write count of W-HCLOCK is larger

than D-CLOCK for Zipf1982 and Zipf4682. Since W-HCLOCK sets the maximum

number of write-hot pages as the size of DRAM memory, which is smaller than the actual

number of write-hot pages, thus some of the write-hot pages are migrated between NVM

and DRAM, frequently.

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 455

Figure 3. NVM write Count for Different DRAM/NVM Size Ratio

Figure 4. NVM Write Count for Different Memory Size

Reducing the total write count on NVM is one of the most important goal in NVM-

based hybrid memory management design. Figure 4 shows the total write count on NVM

induced by page faults, write operations of traces and migrations from DRAM to NVM.

In the experiment, the ratio of DRAM and NVM is kept to 1:4. We make two

observations. First, a large memory size yields less NVM write count for the four memory

management policies. This is because as the memory size increases, the DRAM size

increases too, which serves more write operations than before. Second, the write count of

our proposed W-HCLOCK is consistently smaller than the other three competitors over

all traces and with different buffer sizes. Actually, the NVM write count of W-HCLOCK

is only about 55%-66% of the one of CLOCK, while both D-CLOCK and CLOCK-DWF

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

456 Copyright ⓒ 2016 SERSC

incur more NVM write count than the proposal. This is because,in D-CLOCK and

CLOCK-DWF, each time the write operation hits on NVM, page migration between

NVM and DRAM will be performed, which can incur a large number of page migrations.

However, W-HCLOCK decides whether to move pages from NVM to DRAM based on

the write hotness (write-hot or write-cold) of the pages, so that unnecessary page

migrations can be avoided.

4.3. Page Faults with Zipf Traces

Another goal of NVM-base hybrid memory management design is keeping or

improving the hit ratio of memory. Figure 5 shows the number of page fault for the four

memory management policies when varying the memory size. We make four observations.

First, with a larger memory size, the page fault number decreases, as expected. Second,

the page faults of W-HCLOCK keep the same with CLOCK. Third, CLOCK-DWF incurs

more page faults when the references concentrate on a small number of pages (such as

Zipf1982, Zipf4682 and Zipf2873). The reason is that, when CLOCK-DWF moves pages

from DRAM to NVM and there is no empty frame for the migrated pages, CLOCK-DWF

will call CLOCK policy to evited a NVM pages out of memory, which increase the page

faults. Fourth,actually the experimental data also shows that, the page faults of D-CLOCK

is nearly the same with other three policies in most cases, but D-CLOCK has a little more

page faults than CLOCK in some cases. Since D-CLOCK will replace DRAM pages

forcibly to store the pages loaded from disk and prevent these pages from writing NVM

frequently, which may evict a warmer page from memory.

Figure 5. Page Faults for Different Memory Size

4.4. Experimental Result withthe OLTP trace

This section describes the experimental comparative results with the OLTP trace.

Figure 6(a) and Fig. 6(b) describe comparative results of NVM write count and page fault,

separately. We make several observations. First, from Fig. 5(a), we can see that NVM

write count of D-CLOCK is smaller than other three policies. This is because the memory

size is not large enough to accommodate the total memory footprint of OLTP, thus there

are a large number of page faults. Meanwhile, there are a lot of read requests, W-

HCLOCK will not place write-cold pages to DRAM forcibly, but in order to prevent new

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

Copyright ⓒ 2016 SERSC 457

pages loaded from disk being written to NVM too often, D-CLOCK will place them in

DRAM by evicting DRAM pages forcibly, which will lower the hit ratio of memory.

Therefore, the second observation is both D-CLOCK and CLOCK-DWF have higher

page faults than other two policies, as shown in Fig. 6(b). When there is no empty frame

in target memory medium, D-CLOCK and CLOCK-DWF will replace pages by forcibly.

Since there are several order of magnitudes between memory and secondary storages, a

larger number page faults will seriously hinder the system performance.

Figure 6. Page Fault Count and NVM Write Count for the OLTP Trace

5. Conclusions

In this paper, we propose a CLOCK-based virtual memory management policy called

W-HCLOCK for NVM-based hybrid memory system. W-HCLOCK introduces RRD to

decide the write hotness(write-hot or write-cold) of pages, so that write-hot pages can be

placed to DRAM in time and the writes on NVM can be reduced substantially.

Meanwhile, when a page is evicted from memory, W-HCLOCK maintainsthe

corresponding write information of that page for a while, which can be used to predict the

page’s write hotness in case of it is accessed in the near future. Therefore, based on the

predicted write hotness, W-HCLOCK determines to put pages in NVM or DRAM, and

unnecessary page migration can be avoided. W-HCLOCK uses CLOCK policy to perform

page replacement, thus NVM writes can be reduced without lowering the hit ratio of

memory. Through comprehensive experiments on several traces, we demonstrate that W-

HCLOCK can reduce NVM write count without hit ratio degradation, by accurately

predicting pages’ write hotness and moving them between NVM and DRAM.

Acknowledgments

This paper is partially supported by the National Science Foundation of China under

grant (61379037 and 61472376) and the Fundamental Research Funds for the Central

Universities.

References

[1] R. Fang, H. Hsiao, B. He, C. Mohan and Y. Wang, “High performance database logging using

storage class memory”, Proceeding of ICDE, (2011); Hannover.

[2] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Divakaruni, Y. Li and C.

J. Radens, “Challenges and future directions for the scaling of dynamic random-access

memory (DRAM)”, IBM Journal of Research and Development, vol. 46, no. 2, (2002), pp.

187-212.

[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler and T. W. Keller, “Energy

management for commercial servers”, Computer, vol. 36, no. 12, (2003), pp. 39-48

[4] S. Viglas, “Data Management in Non-Volatile Memory”, Proceedings of SIGMOD, (2015).

[5] S. Chen, P. Gibbons, and S. Nath, “Rethinking database algorithms for phase change

memory”, Proceedings of CIDR, (2011).

International Journal of Control and Automation

Vol. 29, No. 1,(2016)

458 Copyright ⓒ 2016 SERSC

[6] H. Seok, Y. Park, K. W. Park and K. H. Park, “Efficient page caching algorithm with

prediction and migration for a hybrid main memory”, ACM SIGAPP Applied Computing

Review, vol. 11, no. 4, (2011), pp. 38-48.

[7] K. Chen, P. Jin and L. Yue, “A novel page replacement algorithm for the hybrid memory

architecture involving PCM and DRAM”, Proceedings of NPC, LNCS 8707, (2014).

[8] Z. Wu, P. Jin P, C. Yang and L. Yue, “APP-LRU: A New Page Re-placement Method for

PCM/DRAM-Based Hybrid Memory Systems”, Proceedings of NPC, LNCS 8707, (2014).

[9] S. Lee, H. Bahn and S. H. Noh, “CLOCK-DWF: A write history-aware page replacement

algorithm for hybrid PCM and DRAM memory architectures”, IEEE Transactions on

Computers, vol. 63, no. 9, (2014), pp. 2187-2200.

[10] K. Chen, P. Jin and L. Yue, “Efficient Buffer Management for PCM-Enhanced Hybrid

Memory Architecture”, Proceedings of APWeb, LNCS 9313, (2015).

[11] F. J. Corbato, “A Paging Experiment with the Multics System”, MIT Project MAC Report

MAC-M-384, (1968).

[12] S. Jiang and X. Zhang, “LIRS: an efficient low inter-reference recency set replacement policy

to improve buffer cache performance”, ACM SIGMETRICS Performance Evaluation Review,

vol. 30, no. 1, (2002), pp. 31-42.

[13] S. Jiang, F. Chen and X. Zhang, “CLOCK-pro: An effective improvement of the CLOCK

replacement”, Proceedings of USENIX ATC, (2005).

[14] L. E. Ramos, E. Gorbatov and R. Bianchini, “Page placement in hybrid memory systems”,

Proceedings of SC, (2011).

[15] Y. Zhou, P. Chen and K. Li, “The Multi-Queue Replacement Algorithm for Second-Level

Buffer Caches”, Proceedings of USENIX ATC, (2001).

[16] D. Shin, S. K. Park, S. Kim and K. H. Park, “Adaptive page grouping for energy efficiency in

hybrid PRAM-DRAM main memory”, Proceedings of SAC, (2012).

[17] Z. Sun, Z. Jia, X. Cai, Z. Zhang and L. Ju, “AIMR: an adaptive page management policy for

hybrid memory architecture with NVM and DRAM”, Proceedings of HPCC/CSS/ICESS,

(2015).

[18] DiskSim, Available at Hyperlink, http://www.pdl.cmu.edu/DiskSim.

[19] D. Knuth, “The Art of Computer Programming”, Volume 3: Sorting and Searching, Addison-

Wesley, (1973).

