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Abstract 

Non-volatile memory (NVM)such as phase change memory (PCM) has emerged as an 

attractive type of next-generation memories. NVMcan be incorporated into memory 

hierarchy to solve the problems of current DRAM instorage density and energy 

consumption.NVM is byte addressable and its latency is close to main memory, it exhibits 

higher density and lower idle power consumption than DRAM. However, NVM haslimited 

write endurance and asymmetriclatency and energy consumption for read and write 

operations. Therefore, hybrid memory systems involving both NVM and DRAM have been 

proposed for better utilizing NVM and DRAM. In this paper, we present a novel hybrid 

memory management schemecalled W-HCLOCK (Write-aware Hybrid CLOCK) that aims 

to keep a high hit ratio and minimize writes to NVM. Particularly, we introduce the 

concept of Recent-Rewrite-Distance (RRD), and combine it with recency of write 

operations to estimate the write-hotness of pages. Then, weplacewrite-intensive pages in 

DRAM to reduce NVM writes. In addition, we keepadditional information about the 

writes to evicted pages to avoid unnecessary migrations between DRAM and PCM. We 

conduct simulation experiments on four synthetic traces and one real OLTP trace. The 

results suggest the efficiency of our proposal. 

 

Keywords: Memory management, NVM, Hybrid memory system 

 

1. Introduction 

Currently, the I/O performance between DRAM and secondary storages has become 

akey bottleneck ofmassive data storage [1]. Increasing memory capacity may alleviate this 

problem, but it brings other problems such as scalability [2] and energy consumption 

[3].Fortunately, A class of new memory technologies called non-volatile memory (NVM), 

such as phase change memory, Magnetic RAM, Ferroelectric RAM, flash memory, are 

being developed [4], which introduce opportunities for building efficient hybrid memory 

systems involving DRAM and NVM.  

NVM provides low latency reads and writes on the sameorder of magnitude as DRAM. 

On the other side, NVMhas largestorage capacity like flash memory. The key properties 

of NVM are non-volatile, byte-addressability, low idle energy consumption, read/write 

asymmetry and limited write endurance.With these properties, NVM brings new 

challenge in the memory hierarchy; one of the attempts is presenting both DRAM and 

NVM at the same main memory level [5], which takes the advantage of the low latencies 

of DRAM and the high capacity of NVM.This paper is based on this architecture, in 

which NVM and DRAM are managed together under a single physical address space. 

Traditional main memory management policies are not suitable for new memory 

architecture due to the long write latency and limited lifespan of NVM. Several researches 

to handle the read/write asymmetry and endurance problem of NVM have been proposed. 
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Most of them ameliorate traditional CLOCK or LRU policy, utilizing DRAM to absorb 

write requests.LRU-based algorithms, such as LRU-WPAM [6], MHR-LRU [7] and APP-

LRU [8], try to put read-tendency pages or cold pages to NVM and write-tendency pages 

or hot pages to DRAM, but LRU-WPAM may evict a page from memory when migrating 

page between two memory medium, which increases the probability of page fault, and the 

latter two algorithms cannot migrate write-tendency page from NVM to DRAM in time 

because migration only performs when page fault occurs. More importantly, relatively 

complicated LRU-based policies cannot be used in virtual memory management because 

of frequently list operations and hardware support. Therefore, the CLOCK-based policies, 

approximate of LRU, become practical choices in virtual memory replacement. CLOCK-

DWF [9] and D-CLOCK [10] have been designed to length the lifetime of NVM in hybrid 

memory system, which denote to make write-hot pages (pages which are frequently 

written recently) be stored in DRAM and write-cold pages (pages that are rarely written) 

be stored in NVM.However, both of them design migration strategies at a cost of hit ratio 

reduction. 

In this paper, we present a CLOCK-based hybrid virtual memory management policy 

called write-aware hybrid CLOCK (W-HCLOCK).W-HCLOCKworks in a similar 

fashion as CLOCK and tries to put write-hot pages in DRAM and write-cold pages in 

NVM to reduce the total write count to NVM, the main contributions are as follows: 

1) W-HCLOCKremains original data structure and page replacement policy of 

CLOCK [11], hence can guarantee the same hit ratio as CLOCK.  

2) Inspired by the concept of Inter-Reference-Recency (IRR) in the buffer cache 

replacement algorithm, LIRS [12], W-HCLOCK introduces a new design ofRecent 

Rewrite Distance (RRD) to decide the write hotness of pages.W-HCLOCK 

maintains a write clock structure to record the history write information, and we 

can judge the write hotness (whether a page is write-hot or write-cold) of pages 

based on the information in the write clock. Meanwhile, when a page is evicted 

from memory, we do not discard the corresponding write information immediately, 

but reserve to predict its write hotness (hot or cold) in case of it is accessed in the 

near future. By doing so, unnecessary page migration can be avoid.W-

HCLOCKdoes not count the write count of each page, so the size overhead used to 

store the write information can be greatly minimized.  

3) Page migrations are triggered when writing a page which is not in the right 

device.W-HCLOCK always migrate write-cold pages to NVM. Particularly, W-

HCLOCK givesDRAM pages,which are frequently read but rarely written, much 

higher priority to be selected as migration victims, this is handled by a swap clock 

structure. 

4) We conduct trace-driven experiments in a simulated NVM-based hybrid memory 

system. We compare our proposed memory management policy with three 

alternative methods, i.e., CLOCK [11], CLOCK-DWF [9], and D-CLOCK [10]. 

Through extensive experiments over several traces, we show that the proposed 

mechanism can effectively reduce the total write count to NVM without reducing 

the hit ratio. 

Theremainder of this paper is organized as follows. Section 2 briefly describes the 

problems of page management policy in NVM-based hybrid memory systems. In Section 

3, we presents the details of the proposed W-HCLOCK virtual memory management 

policies, including page partition, replacement and migration policies. Experimental 

results are shown in Section 4. And finally, we conclude this paper in Section 5. 

 

2. Related Work 

Traditional virtual memory management policies, such as CLOCK [11], CLOCK-

pro[13]focus on how to improve the hit ratio. While in NVM-based hybrid memory 
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management, reducing the total write count to NVM should also be taken into 

account. Several memory management policies have been proposed for NVM-based 

hybrid memory systems. 

RaPP [14] uses a modified version of the Multi-Queue [15] algorithm to manage 

the pages and try to place performance-critical pages and frequently written pages in 

DRAM, which relies on a sophisticated memory controller monitoring access 

patterns and ranking pages according to access frequency and write intensity.APG 

[16] is a page migration policy aiming at increasing energy efficiency and 

minimizing performance degradation. APG maintains access information in page 

table entry and moves adaptive number of pages which is decided bythe grouping 

technique. 

LRU-WPAM[6] uses four monitoring queues (DRAM read queue, DRAM write 

queue, NVM read queue and NVM write queue) to monitor the write and read 

operations of each pages, so that read-tendency pages are migrated to NVM and 

write-tendency pages are migrated to DRAM, but the migrations may promote the 

system to evict a page from the buffer and decrease the hit ratio. To this end, APP-

LRU [8] devotes to classifying pages into read-tendency group and write-tendency 

group without affecting the hit ratio. When a page fault occurs, APP-LRU decides 

whether the missed page is write-tendency or read-tendency based on a history 

information table. MHR-LRU [7] records the write operations to DRAM using a 

DRAM write list, write heat is judged by the location in the write list. If an empty 

DRAM frame is needed, MHR-LRU migrate a write-cold page from DRAM to 

NVM. However, both APP-LRU and MHR-LRU migrate pages only when page 

faults occur, which cannot migrate pages to the right medium immediately when 

access pattern changes. 

Another group of memory management policies are designed based on CLOCK 

algorithm. Basically, there is no frequently list operation in these algorithms.  AIMR 

[17] identifies write-intensive pages by virtue of two CLOCK lists, which manages 

the pages with “recency” feature and pages with “frequency” feature, 

separately.However,since the replacement policy replaces pages which are selected 

from one of the CLOCK lists, there is a risk that the replaced pages are warmer than 

some pages in the other CLOCK list. Lee et al. proposed CLOCK-DWF [9], 

whichimplements an improved CLOCK policy and normal CLOCK policy to 

manage DRAM pages and NVM pages, respectively. The improved CLOCK policy 

utilizes the frequency and recency of write operations to classify pages.  CLOCK-

DWF make sure that all the write operations are performed in DRAM, that means, 

the pages should be copied to DRAM before being written. To make room for these 

pages, write-cold DRAM pages are migrated to NVM, this action may beperformed 

along with an eviction of PCM page. Similarly, D-CLOCK [10] takes the same 

mechanism to deal with the write operations. Meanwhile, all the DRAM pages and 

NVM pagesare managed by a global CLOCK list, so that all the pages of similar 

access pattern have the same chance the be evicted. In addition, in order to limit the 

writes to PCM incurred by page faults, D-CLOCK may force to evict a DRAM page 

instead of PCM page. These policies put effort into reducing writes to PCM, but 

they ignore another important goal of memory management, hit ratio. 

 

3. W-HCLOCK 

Higher hit ratio is the most important goal in all of the memory management 

policies.Besides, when designingthe memory management policies for NVM-based 

hybrid memory system, reducing the total writes to NVM must also be taken into 

consideration. 
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The researches for NVM-based hybrid memory system in the literaturelearned from 

LRU policy, in which the write hotness of pagesis predicted bythe write recency and the 

write count. Unfortunately, LRU behaves poorly when handling the access patterns with 

low locality, such as sequential scan and cyclic pattern that the footprints are slightly 

larger than the buffer size [12]. To fundamentally solve the problems of LRU, LIRS uses 

IRR in the replacement decision, where IRR of a page refers to the number of other pages 

accessed between two consecutive operations to the page.Similarly, the researches for 

NVM-based hybrid memory system also suffer from memory missing when coping with 

sequential writes and cyclic write patterns. Inspired by LIRS, W-HCLOCKintroduces a 

new concept called Recent Rewrite Distance (RRD)to maintain the recorded history write 

information of each pages. RRD of a page refers to the number of other pages written 

between two recent write operations to the page, if a page has been written only once or 

never been written, the RRD of that page is set to infinite. 

W-HCLOCKclassifies pages either as write-hot pagesor write-cold pages based on the 

RRD and recency of pages.Note that, it is meaningless to classify a page with low RRDto 

write-hot group, which has not been written for a long time. Then we mark the status of 

pages as write-hot or write-cold. The goal of the proposal is trying to place all write-hot 

pages in DRAM, and write-cold pages in NVM. Therefore, the maximum number of 

write-hot pages is set to the number of pages that DRAM can hold. 

Table 1 shows an example of how a write-cold page becomesa write-hot one. Initially, 

the recency of write-hot page D is larger than a write-cold page E, but the RRD of page D 

is smaller than page E. Then, there is a write operation to page E, and the RRD of page E 

is changed from 8 to 2, which is smaller than page D. Obviously, the new RRD of page E 

is smaller than the recency of page D, which means even if page D is updated in the near 

future, the new RRD of page D is still larger than the one of page E. Therefore, it is 

believed thatpage E is warmer than page D in writing.W-HCLOCK records the write 

information of pages, but maintaining the write recency of write-cold pages which is 

larger than the one of write-hot pages is insignificantbecause these pages have no chance 

to become write-hot. Therefore, we give the write-cold pages a chance to compete with 

the write-hot pages.On the other hand, we also grant a write-cold page a test period. If a 

write-cold page is not accessed during the test period, it is discarded. But if it is accessed 

in the test period, the write-cold page can turn into write-hot. 

Table 1. An Example of Write Hotness Change 

Page id Before writing page E After writing page E 

Write hotness Recency RRD Write hotness Recency RRD 

A Write-hot 3 4 Write-hot 4 4 

B Write-hot 2 3 Write-hot 3 3 

C Write-hot 4 2 Write-hot 5 2 

D Write-hot 5 5 Write-cold 6 5 

E Write-cold 1 8 Write-hot 0 2 

W-HCLOCK inherits traditional CLOCK replacement policy to replace pages when 

page fault occurs. The difference is that W-HCLOCK maintains the write information of 

pages even if they are evicted from the memory. If there is a page fault incurred by a read 

operation, W-HCLOCK decides where to place the faulted page via the write hotness of 

that pageshownin the historical write information. If the page is a write-hot page, it is 

placed in DRAM. Otherwise, the page is placed in where the evicted page is. However, 

W-HCLOCK places all the faulted pages which are incurred by write operations to 

DRAM since there are two writes (one for loading to memory and one for write operation) 

when such page fault occurs. It is also possible that the evicted page releases a NVM 

frame, but the faulted page requires a DRAM frame. For such case, W-HCLOCK will 

moveaDRAM write-cold page to NVM. If we store a faulted page which is incurred by a 

write operation in NVM, there are two writes performed on NVM as mentioned above, 
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but if we store it in DRAM, there is only one write implemented on NVM at worse, which 

is incurred by a migration from DRAM to NVM.If a write operation hits on NVM and the 

historical write information of that hit page exists (the write information is in its test 

period), W-HCLOCK regards it as a write-hot page and migrate it to DRAM. 

 

3.1. Data Structure 

W-HCLOCK maintains three clock-aware lists: general clock,writing clock and 

DRAM swapping clock, as shown in Fig. 1. General clock maintains all the memory 

pages (NVM and DRAM pages) and performs page replacement like traditional CLOCK 

policy do (reference bit of a page is set or reset). Thus W-HCLOCK can ensure that there 

is no hit ratio decrease. The write clock records the most recent writes information, which 

is used to decide whether a page is write-hot or write-cold. In Fig. 1, shadowed circles 

represent write-hot pages and white circles represent write-cold pages.In the write clock, 

some of records belong to thepages stored in NVM or DRAM and the others belong to 

pages not in the memory, which are marked with “D”, “N” or blank.Additionally,W-

HCLOCK designs a DRAM swapping clock to manage all the DRAM pages discarded 

from write clock andthe totally clean DRAM pages. If a page in DRAM swapping clock 

is hit by a write operation, we move that hit page to writing clock. Note that the DRAM 

swapping clock may be empty if all the DRAM pages exist in writing clock, which means 

all the DRAM pages have been accessed recently or all of them are write-hot pages. 
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Figure 1. Data structure of W-HCLOCK 

In W-HCLOCK, there are several hands that should be introduced. Hg in general clock 

points to the least recently used pages, which equivalent to the hand in CLOCK. Hhot 

points to the write-hot page with the largest write recency, which serves as a threshold of 

being a write-hot page. The page pointed by Hhotis the tail of write clock list. We move 

Hhot to turn a write-hot page into write-cold. Hcold points to the write-cold page which is 

the nearest one toHhot in the clockwise direction.The page pointed by Hcold is the least 

recently written cold page. We limit the number of write information to reduce space cost. 

When the number of pages in the write clock exceeds a predetermined upper limit, we 

sweepHcold to find a write-cold victim, and remove the victim from write clock, this also 

means that we terminate the removed victim’s test period.HDcold points to theDRAM page 

which is the nearest write-cold page from Hhot. This pointer is used to quickly locate a 

DRAM write-cold page when a migration performs. But HDcold may be null if there is no 

DRAM write-cold page.Hswappoints to the tail of DRAM swap clock, which is the least 

recently accessed (read) page. 
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In CLOCK, there are no operations for page hits, only reference bits of the accessed 

pages are set. Similarly,write clockalso introduces a write reference bit to approximate list 

operations when write operations hit on it, so the pages whose write reference bit is set are 

much warmer than the one whose write reference bit is not set, if their write hotness is the 

same.Once a page in write clock is written, its write reference bit is set (marked by “P” in 

Fig. 1), and page migration may happen if it is a NVM pages (this page is regarded as a 

write-hot page, although we do not change its write hotness immediately). As mentioned 

before, if a write-cold page is not accessed during the test period, it will be discarded from 

write clock (i.e., it is out of test period); but we give the write-cold page whose write 

reference bit is set a second chance to be discarded by using a test flag (set to “1”, the 

page is filled with lattice in Fig. 1) since it has been accessed before.Note that, if a page is 

not in the write clock or its test flag is set, that means it is out of its test period, and cannot 

be turned into write-hot page. DRAM swap clock also uses a read reference bit to 

distinguish hot pages from cold ones;if a page in DRAM swapping clock is read, its read 

reference bit is set (marked by “P” in Fig. 1). 

After inducing the test flag, we redefine Hcold as the nearest write-cold page to the list 

tail, whose test flag is unset, and HDcold as the nearest DRAM write-cold page to the list 

tail, whose write reference bit is unset or both write reference bit and test flag are set. 

When Hcold is triggered, we keep moving it until it finds a write-cold page eligible for 

discarding, and stop at the next write-cold page whose test flag is reset. During moving 

Hcold, if the write reference bit of the write-cold page pointed by Hcold is set, we set its test 

flag to mark this page out of test period. Otherwise, we found a write-cold page to discard. 

 

3.2. Page Migration 

Next we will describe how these hands are coordinated with each other to search a 

write-cold page for migration.  

If W-HCLOCK decides to put a page in DRAM, but there is no empty DRAM frame 

for it, a migration from DRAM to NVM should be performed. First, we examine whether 

the DRAM swap clock is empty. If it is not empty, the migrated victim is selected from 

DRAM swap clock. We start from the counterclockwisedirection of Hswapto look for a 

page whose read reference bit is set, since such page is more read intensive than others 

(all of them are write-cold) and such migration benefits more (i.e., the probability of 

migratingthe page back to DRAM is lower). If all the read reference bits in DRAM swap 

clock are unset, the page before Hswap in the clockwise direction is selected as a victim. 

Otherwise, if there is no page in DRAM swap clock, the migrated page is searched from 

write clock. The purpose is to find a DRAM write-cold page, so we first check whether 

HDcoldis null. If it is not null, the migrated victim is found and HDcold is moved to next 

DRAM page which meets the requirement. Note that, if the write reference bit and test 

flag of the victim are set, we reset them and move the victim to the head of the write clock 

(immediately beforeHhot in the clockwise direction). If HDcoldis null, which means all the 

pages in DRAM are write-hot or will soon be write-hot. At this moment, we start the 

cold-to-hot procedure thatis used to find a write-cold page to turn into write-hot. 

Cold-to-hot procedure enables a temporary hand, which starts from the position of 

Hcoldand moves in the clockwise direction,to find the target page. The temporary hand 

skips all the write-hot pages and the write-cold pages whose write reference bit is unset. If 

the write reference bit of the page pointed by the temporary hand is set and the page is in 

its test period (test flag is unset), we turn the page into write-hot page, reset its write 

reference bit and move it to the head of the write clock. Meanwhile, if the number of 

write-hot pages exceeds the size of DRAM memory, we ask Hhot for its actions and the 

procedure ends. However, if both of the write reference bit and test flag are set, there is no 

status change as well as Hhot actions, but the two bit are reset and we move the page to the 

head of the write clock. The temporary hand keeps moving until it turns a write-cold page 

into write-hot or meets with Hcoldagain. The situation that the temporary hand meets with 
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Hcoldmeans that no write-cold pages need to turn into write-hot (i.e., all the write-hot 

pages are DRAM pages). When the temporary hand meets Hcoldagain, we ask Hhot for its 

actions too. 

We trigger the movement of Hhot when a write-cold page turns into write-hot and the 

number of write-hot pages exceeds the determined upper limit. The duty of moving Hhot is 

to turns a write-hot page with the largest write recency into a write-cold one. If the write 

reference bit of the hot page swept by Hhot is unset, we simply change its write hotness to 

write-cold and stop Hhot at the next write-hot page. Otherwise, if its bit has been set before, 

we keep it as write-hot page, but reset the write reference bit. However, the test period of 

any write-cold pages swept by Hhot will be terminated, which means Hhotremoves the 

write-cold pages from write clock whose write reference bits are unset, or sets the test 

flags if their write reference bits are set, just like Hcold does. 

All of the actions described before are to find a DRAM write-cold page for migration. 

We trigger the cold-to-hot procedure and the movement of Hhot when all the pages in 

DRAM are write-hot or will soon be write-hot. Figure 2 shows an example of status 

change and page migration. Initially, the DRAM memory size and the maximize number 

of write-hot pages is 6;HDcold is null sinceall the pages in DRAM are write-hot or will 

soon be write-hot (shown in Fig. 2(a)); Hhot points to page B. Then a write request on page 

A is implemented (its write reference bit is set as shown in Fig. 2(b)). Since page A is 

accessed during its test period, we think it is a write-hot page and should be put into 

DRAM. However, there is no empty DRAM frame for it, so a DRAM write-cold page 

should be migrated to NVM. The cold-to-hot procedure changes the write-cold page C to 

write-hot, and put it after page B in the clockwise direction which is pointed by Hhotat that 

moment. But the number of write-hot pages exceeds 6, the movements of Hhot are 

triggered. As a result, page B turns to write-cold page and is pointed by HDcold, Hhot and 

Hcold stop at write-hot page F and write-cold page A, respectively, as shown in Fig. 2(b). 

Note that write-cold page E is discarded by Hhot because it is out of test period. Finally, 

we have found a DRAM write-cold page B(pointed by HDcold), and swap it with the NVM 

page A (shown in Fig. 2(c)). 

Since the page replacement of memory is controlled by the general clock, some of the 

write-hot pages may be evicted from the memory, thus the situation may takes place that 

Hhot turns a non-resident write-hot page into write-cold one. As shown in Fig. 2(d), the 

writing operation on page G triggers the cold-to-hot procedure and the movements of Hhot. 

So page A turns into write-hot page and is moved to the head of write clock (after page F 

in the clockwise direction),the non-resident page F pointed by Hhot before turns to write-

cold page. Unfortunately, we fail to find a DRAM write-cold page to swap with page G. 

The migration of page G is delayed until it is written again during its test period in the 

future. Figure 2(d) also shows that we set the test flag of page H, rather than discard this 

page like we did in Fig. 2(b), this is because page H has been written before during its test 

period, but have not had time to turns to write-hot. 

 

3.3. Page Management 

This section we will introduce the page management policy in details, including when 

to migrate pages and how to change status bits. 
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Figure 2. An Example of Page Migration 

Algorithm 1: page hit policy 

Input: requested page p, operation type op 

1 p.reference_bit=1; 

2 if(op is read and p exists in DRAM swap clock)then 

3 p.read_reference_bit=1; 

4 else if (op is write)then 

5 if (p exists in write clock)then 

6 p.write_reference_bit =1; 

7 if(p is stored in NVM)then 

8 call the page migration procedure to find a DRAM write-cold page q; 

9 if (q≠null)then swap q and p; 

10 else/*p does not exist in write clock*/ 

11 if (p exists in DRAM swap clock) then remove p from DRAM swap clock; 

12 add p to the head of the write clock ; 

/*immediately before Hhot in the clockwise direction)*/ 

13 set p to write-cold; p.write_reference_bit=0; p.test_flag=0;Nwrite_clock++; 

14 if (Nwrite_clock>upper limit) then trigger the movements of Hcold; 

Algorithm 1 shows the processing procedure when a request hits on memory. When a 

page is accessed, W-HCLOCK first set its reference bit (line 1). If the operation type is 

read and the requested page exists in DRAM swap clock (it is a write-cold page), the read 

reference bit of that page is set (line 2-3), which indicates that the page is more read 

intensive than other write-cold pages. If a write operation hits on memory, W-HCLOCK 

first check whether the requested page p exists in write clock. If not, we add it to the head 

of write clock and initial its status bits (line 12-13). Before that, page p is removed from 

DRAM swap clock if it exists in DRAM swap clock (line 11). We keep track of the total 

number of pages in write clock (Nwrite_clock). Once it exceeds 2*m, where m is the memory 

size in the number of pages, the movements of Hcold are triggered and a page will be 

discarded from the write clock (line 14). If the discarded page is a DRAM page, we added 

it to the head of DRAM swap clock and its read reference bit is reset. If page p already 

exists in write clock, its write reference bit is set. W-HCLOCK regards such page as 
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write-hot page (although it may have not been changed to write-hot). If it is an NVM page, 

W-HCLOCK tries to find a DRAM write-cold pageqby activating the page migration 

procedure, and swap q with p if found (line 8-9). Since we may fail to find the DRAM 

write-cold page, the swapping may not be performed. 

Algorithm 2 describes how to manage pages when a page fault occurs. When a page 

fault occurs,first, W-HCLOCK selects a victim qfrom the general clock to replace based 

on traditional CLOCK algorithm (line 1). Second, W-HCLOCK decides where to place 

the faulted based on the write information in write clock.  

If it is a read operation and the requested page p is a write-hot page, we place it to 

DRAM, which can avoid unnecessary migration since there may be many write 

operations to page p in the future. However, if the evicted page q is a NVM page, W-

HCLOCK tries to call the page migration procedure to find a DRAM write-cold page r, 

and migratesr to q if found (line 4-6). Then we load the requested page p from disk to rif 

the migration from DRAM to q is performed successfully or to q if the migration fails 

(line 7). If the requested page is a write-cold page, we simply store it in where the evicted 

page is (line 9). 

 

Algorithm 2: page fault policy 

Input: requested page p, operation type op 

1 Replace a page q from general clock using CLOCK policy; 

2 if(op is read) then 

3 if (p exists in write clock and p is a write-hot page) then 

4 if (qbelongs to NVM) then 

5 call the page migration procedure to find a DRAM write-cold page r; 

6 if (r≠null) then migrate r from DRAM to q; 

7 load p to r or q; /*load to the frame where r or q is stored before*/ 

8 else 

9 load p to q; 

10 else /*write operation*/ 

11 if (p exists in write clock) then 

12 p.write_reference_bit =1; 

13 else 

14 add p to the head of the write clock;  

15 set p to write-cold; p.write_reference_bit=0; p.test_flag=0; Nwrite_clock++; 

16 if (Nwrite_clock>upper limit) then trigger the movements of Hcold; 

17 if (q belongs to NVM)then 

18 call the page migration procedure until W-HCLOCK finds a write-cold page r; 

19 migrate r from DRAM to q; 

20    load p to DRAM; 

21 add p to the head of general clock; p.reference_bit=1; 

If the operation is a write request, we need to store it in DRAM since there are two 

operations as mentioned before. If the requested page q exists in the write clock, its write 

reference bit is set (line 11-12). Otherwise, W-HCLOCK adds it to the head of the write 

clock, reset the status flags and activated the movements of Hcold to discard a write-cold 

page from the write clock if needed (line 13-16). Here, we force to store page p in DRAM, 

which make us call the page migration procedure repeatedly until a DRAM write-cold 

page r is found, if the evicted page q belongs to NVM (line 18). After finding page r, we 

move it from DRAM to the NVM frame where page q was stored before (line 19). The 

requested page pis loaded to DRAM. Finally, we add page p to the head of general clock 

(immediately before Hg in the clockwise direction) and set its reference bit (line 21). 
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4. Experiments 

In this section, we present the evaluation results of our proposal described in Section 3. 

We first introduce the experimental setting on the workloads and competitive algorithms. 

Then we present the comparative results with these competitive algorithms.  

4.1. Experimental Setup 

We have implemented a simulated NVM based hybrid memory system, which adopts 

unified addressing mode, DRAM takesthe low-end addresses and PCM takes the high-end 

addresses. The page size is set to 4KB. We compare our proposal with four alternatives: 

CLOCK [11], CLOCK-DWF [9], and D-CLOCK [10]. Both CLOCK-DWF and D-

CLOCK are designed based on CLOCK 

Both synthetic and realistic traces in the following experiments are used, which have 

been shown in table 2. We use DiskSim [18] to generate two groups of traces, i.e., T5582 

and T5555, by setting different read/write ratio and locality. For the four ZIPF traces [19], 

the probability of accessing the i
th
 page among a totality of N pages, piis calculated based 

on the following formula: 

   
 

  
        

(1) 

            and   
    is the N

th
 harmonic number of order      . Whena is 0.6 

and b is 0.4, the distribution means that 60% of the references are located on the most 

active 40% of the pages. There are total 10000 different pages for each synthetic trace. 

The locality of 80%/20% means that 20% of pages absorb 80% of requests. The other 

group of trace, OLTP, is collected from a real bank database system, which has also been 

used in APP-LRU [8] and ADLRU [20]. This trace contains 607390 references to a 

CODASYL database with a total size of 20 Gigabytes. 

Table 1. Parameters of the Zipf and OLTP Traces 

Traces Footprints Read/write ratio Locality  Total Requests 

Zipf1982 10000 10%/90% 80%/20% 400000 

Zipf1955 10000 10%/90% 50%/50% 400000 

Zipf2873 10000 20%/80% 70%/30% 400000 

Zipf4682 10000 40%/60% 80%/20% 400000 

OLTP 10000 53%/47% ~ 607390 

4.2. NVM Write Count with Zipf Traces 

Figure 3 shows the effect of different NVM size ratio with a fixed memory size, to 

investigate the feasibility of different memory management policies, since NVM includes 

several new memory devices, which have different scalability. The y-axis denotes to the 

total write count on NVM and the x-axis shows the different proportion of DRAM and 

NVM. The total size of memory is set to 2000 pages, and the write count is induced by 

page faults, write operations of traces and migrations from DRAM to NVM. When 

increasing the size of DRAM, the write count on NVM increases for different traces and 

different policies, since NVM becomes larger than before. Figure 3 also shows that the 

write count on NVM is less when implementing the proposed W-HCLOCK in most cases, 

which means our proposal can adapt to a variety of hybrid memory configuration and 

perform well in reducing the NVM write count. However, when the ratio of DRAM 

becomes smaller (such as 1:5 and 1:6), the NVM write count of W-HCLOCK is larger 

than D-CLOCK for Zipf1982 and Zipf4682. Since W-HCLOCK sets the maximum 

number of write-hot pages as the size of DRAM memory, which is smaller than the actual 

number of write-hot pages, thus some of the write-hot pages are migrated between NVM 

and DRAM, frequently. 
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Figure 3. NVM write Count for Different DRAM/NVM Size Ratio 

 

 

Figure 4. NVM Write Count for Different Memory Size 

Reducing the total write count on NVM is one of the most important goal in NVM-

based hybrid memory management design. Figure 4 shows the total write count on NVM 

induced by page faults, write operations of traces and migrations from DRAM to NVM. 

In the experiment, the ratio of DRAM and NVM is kept to 1:4. We make two 

observations. First, a large memory size yields less NVM write count for the four memory 

management policies. This is because as the memory size increases, the DRAM size 

increases too, which serves more write operations than before. Second, the write count of 

our proposed W-HCLOCK is consistently smaller than the other three competitors over 

all traces and with different buffer sizes. Actually, the NVM write count of W-HCLOCK 

is only about 55%-66% of the one of CLOCK, while both D-CLOCK and CLOCK-DWF 
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incur more NVM write count than the proposal. This is because,in D-CLOCK and 

CLOCK-DWF, each time the write operation hits on NVM, page migration between 

NVM and DRAM will be performed, which can incur a large number of page migrations. 

However, W-HCLOCK decides whether to move pages from NVM to DRAM based on 

the write hotness (write-hot or write-cold) of the pages, so that unnecessary page 

migrations can be avoided. 

 

4.3. Page Faults with Zipf Traces 

Another goal of NVM-base hybrid memory management design is keeping or 

improving the hit ratio of memory. Figure 5 shows the number of page fault for the four 

memory management policies when varying the memory size. We make four observations. 

First, with a larger memory size, the page fault number decreases, as expected. Second, 

the page faults of W-HCLOCK keep the same with CLOCK. Third, CLOCK-DWF incurs 

more page faults when the references concentrate on a small number of pages (such as 

Zipf1982, Zipf4682 and Zipf2873). The reason is that, when CLOCK-DWF moves pages 

from DRAM to NVM and there is no empty frame for the migrated pages, CLOCK-DWF 

will call CLOCK policy to evited a NVM pages out of memory, which increase the page 

faults. Fourth,actually the experimental data also shows that, the page faults of D-CLOCK 

is nearly the same with other three policies in most cases, but D-CLOCK has a little more 

page faults than CLOCK in some cases. Since D-CLOCK will replace DRAM pages 

forcibly to store the pages loaded from disk and prevent these pages from writing NVM 

frequently, which may evict a warmer page from memory. 

 

 

Figure 5. Page Faults for Different Memory Size 

4.4. Experimental Result withthe OLTP trace 

This section describes the experimental comparative results with the OLTP trace. 

Figure 6(a) and Fig. 6(b) describe comparative results of NVM write count and page fault, 

separately. We make several observations. First, from Fig. 5(a), we can see that NVM 

write count of D-CLOCK is smaller than other three policies. This is because the memory 

size is not large enough to accommodate the total memory footprint of OLTP, thus there 

are a large number of page faults. Meanwhile, there are a lot of read requests, W-

HCLOCK will not place write-cold pages to DRAM forcibly, but in order to prevent new 
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pages loaded from disk being written to NVM too often, D-CLOCK will place them in 

DRAM by evicting DRAM pages forcibly, which will lower the hit ratio of memory. 

Therefore, the second observation is both D-CLOCK and CLOCK-DWF have higher 

page faults than other two policies, as shown in Fig. 6(b). When there is no empty frame 

in target memory medium, D-CLOCK and CLOCK-DWF will replace pages by forcibly. 

Since there are several order of magnitudes between memory and secondary storages, a 

larger number page faults will seriously hinder the system performance. 

 

Figure 6. Page Fault Count and NVM Write Count for the OLTP Trace 

5. Conclusions 

In this paper, we propose a CLOCK-based virtual memory management policy called 

W-HCLOCK for NVM-based hybrid memory system. W-HCLOCK introduces RRD to 

decide the write hotness(write-hot or write-cold) of pages, so that write-hot pages can be 

placed to DRAM in time and the writes on NVM can be reduced substantially. 

Meanwhile, when a page is evicted from memory, W-HCLOCK maintainsthe 

corresponding write information of that page for a while, which can be used to predict the 

page’s write hotness in case of it is accessed in the near future. Therefore, based on the 

predicted write hotness, W-HCLOCK determines to put pages in NVM or DRAM, and 

unnecessary page migration can be avoided. W-HCLOCK uses CLOCK policy to perform 

page replacement, thus NVM writes can be reduced without lowering the hit ratio of 

memory. Through comprehensive experiments on several traces, we demonstrate that W-

HCLOCK can reduce NVM write count without hit ratio degradation, by accurately 

predicting pages’ write hotness and moving them between NVM and DRAM. 
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