
International Journal of Control and Automation

Vol.9, No.1 (2016), pp.347-358

http://dx.doi.org/10.14257/ijca.2016.9.1.30

ISSN: 2005-4297 IJCA

Copyright ⓒ 2016 SERSC

Development of Key Functions for Flight Simulator
1

ChungJae Lee
1
, SeokYoon Kang

1
, Seog Geun Kang

2
, Kyong Hoon Kim

1
 and

Ki-Il Kim
1*

1
Department of Informatics, Research Center for Aerospace Parts Technology

2
Department of Semiconductor Engineering

Gyeongsang National University

501 Jinju-Dearo, Korea, 52828

*kikim@gnu.ac.kr

Abstract

A flight simulator is usually developed to verify the operations of aircraft and train the

pilot through it. For this goal, it is necessary to include a variety of functions that work in

real-time way. However, due to a huge volume of terrain data, graphic rendering speed

becomes slow whenever additional computing processing is demanded. To address this

problem, in this paper, we propose two techniques to speed up rendering speed for new

flight simulator under our software architecture and module. Both hybrid cloud effect and

adaptive culling scheme are proposed and implemented by OpenSceneGraph(OSG)

library on Windows. Through diverse experimental results to verify their suitability, we

demonstrate that acceptable rendering speed is maintained or enhanced without regard

to additional computing overhead.

Keywords: flight simulator, OpenScenGraph, Open Source

1. Introduction

Recently, many simulation programs have been developed to verify new system and

make users understood it in advance. Furthermore, these systems are expanded to cover

entertainment system such as game as well as training system in order to prevent the risk

or accident virtually. Among them, flight simulator is used to train pilot by providing the

diverse situations including flying environment according to type of aircrafts. Without

this system, it is very hard to make specific situations such as encountering enemy

fighters as well as schedule many chances for actual flight due to high cost of operation.

By this reason, several simulators have been developed for general or specific purpose

and widely used in real world. In the point of operations, since the flight simulator is

greatly different from other simulators such as automobile and ship in that their operations

are usually accomplished at all possible spaces such as atmosphere and ground. In

addition, since flight simulator should support high and wide point of view in three

dimensional space, its computation complexity become higher than others at usual

scenarios. Furthermore, realistic scenarios are in accordance with high dynamics of

vehicle to increase immersion in flight simulator as indicated in [1].

Based on above needs, two types of flight simulator, commercial and open source,

have been developed and released to public users. Microsoft Flight Simulator X (FSX) is

good example of commercial one. But, even though they provide sufficient SDKs to

develop new function, source code is not open to public users. On the other hand, Flight

Gear, open source flight simulator, provides full source code for development. However,

it is hardly used to verify flight control because they do not provide external interface. So,

1 This paper is a revised and expanded version of a paper entitled "Software Architecture

for Open Source Based Flight Simulator" presented at MAS, Jeju, Nov. 2015.

International Journal of Control and Automation

Vol.9, No.1 (2016)

348 Copyright ⓒ 2016 SERSC

its main usage is limited to game or reference model to develop new one. In summary,

two types of simulator have advantage or disadvantage in terms of extensibility which is

to verify the operations and provide software platform.

Moreover, mentioned analysis for current flight simulator implies two major

requirements for new flight simulator. One is open source and the other is compatibility

with other systems. However, as described before, current existing simulators cannot meet

above requirements together yet. For this goal, in this paper, we develop a new flight

simulator based on OSG library as well as software architecture in which rendering and

flight control software are separately implemented. By using OSG[2][3], we are able to

recognize the possibility of open source library to generate graphical scene for flight

simulator. In addition, separate architecture that is compatible with other software such as

Matlab helps us to verify correctness of the several flight control algorithms.

In addition to addressed functional demands, rendering speed is the most important

measurable performance metric because flight simulator work in real-time way without

regardless of processing various functions and a huge volume of terrain data together.

Assume that the rendering speed is below than threshold, the users will not choose this

simulator because they are very sensitive to uncomfortable scene transition. To meet

above demands, in this paper, we propose two adaptive schemes to speed up rendering

speed without regards to terrain data as well as additional computing needs in it. They

include cloud effect and dynamic culling for weather effect. Since existing typical

solutions are not sufficient for fast rendering, we propose new schemes to increase the

rendering speed in software approach. And then, we present the experimental results for

each scheme in several scenarios. Through this results, we prove the suitability of the

proposed scheme in terms of the rendering speeds by providing measured values and

comparing it with comparative simulator.

This paper is organized as follows. In section 2, we briefly review the current flight

simulators and their outstanding properties. And then, our new flight simulator is

explained in section 3. New schemes to improve rendering speed and experimental results

are presented in section 4 and 5, respectively. Finally, conclusion and further works are

given in section 5.

2. Review of Flight Simulator

Generally, the main objective of the flight simulator is to train the pilots by

accumulating their flight experience. In the initial stage, flight simulator was used for only

military purpose. But, as the airliner has been gradually included in it, it is widely used for

various purposes.

The good example of flight simulator is Microsoft Flight Simulator X (FSX), Lockheed

Martin Prepar3D, Laminar Research X-Plane, Lead Pursuit Falcon 4.0 and Flight-Gear

[4] Among them, FSX[5] is the most popular and well referred one. While starting as

game, it provides the most realistic graphics and abundant dynamic models for aircrafts.

In addition, joystick and rudder are available to fly a plane. Furthermore, formation flight

can be accomplished by multi-plays. Whereas, one of outstanding features of Prepar3D is

education scenarios directly created by user. Another flight simulator worthwhile

mentioning is Flight-Gear. It is developed as open source so its usage is free. Flight-Gear

is continually upgraded by the users worldwide who contribute to new functions or

enhancement of the existing ones. By this simulator, many researchers and developers get

the important information and shares their experience. To accelerate this collaboration,

Flight-Gear is designed to include software framework for further extension and

improvement.

However, even though many available flight simulators have been developed, its core

algorithms and development techniques are hidden from developers. By this reason, it is

very hard to use the existing scheme to verify the operations of new control algorithm

International Journal of Control and Automation

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 349

employed in dynamic model. Thus, when it comes to develop new type of aircraft, new

flight simulator is usually developed. However, due to expensive development cost, it is

desirable to take new software platform for flight simulator into account. This is

motivation of open source-based new platform for flight simulator which can be used to

verify the operation with the external interface for dynamic model of aircraft.

Figure 1. Definition of HAT and HOT

3. A New Flight Simulator

In this section, we describe proposed flight simulator in the point of software

architecture and implemented major functions. The proposed flight simulation is to

provide the realistic scenarios as well as main functions to help training. Also, it includes

the special effects which are required to increase sense of reality.

3.1. Two Key Components for Flight Simulator

A rendering software for flight simulation is largely affected by the computation

technique which is used to handle aircraft information, external weather environment and

objects such as other aircrafts and missiles. Thus, it is necessary to define how to compute

the essential information and meet requirement for rendering. Specially, prior to

implementation, core information such as Height Of Terrain(HOT), Height Above

Terrain(HAT), Line Of Sight(LOS) should be defined and computed in flight simulator as

defined in Figure 1. Also, it is demanded how to increase rendering speed without regard

to additional objects for external environments. In this section, we describe our

approaches for these two areas.

Figure 2. Core points

International Journal of Control and Automation

Vol.9, No.1 (2016)

350 Copyright ⓒ 2016 SERSC

Figure 3. System Architecture

First, the mentioned three parameters are related to terrain data. Usually, Digital

Terrain Elevation Data(DTED) [6] is generally used to create terrain data by

connecting altitude information measured by satellite and aircraft. And then, DTED

is mapped with satellite picture or ground texture. However, there are some

problems to use this ground on simulator in case of landing and takeoff. This

problem is caused by the altitude difference on DTED and created ground. Due to

this difference, despite the aircraft still flies in the air, it seems that the position of

aircraft is on the ground or below it. In order to solve this problem and provide the

appropriate altitude information in the user's view point, it is required to compute

HOT, HAT and LOS. So, these values are essential information to be obtained

according to current type of aircrafts. To compute these values, we propose new

technique to get LOS, HAT, and HOT together. Among them, both HAT and HOT

can be computed by Center of Gravity Point (CG), Nose Gear (NG) and two Main

Gears (MG) which is shown in Figure 2. The reason to consider nose gear and two

main gears is that these equipment are actual touching parts on the ground.

Following three steps are taken to compute HOT and HAT. 1) Collect position

information including latitude, longitude, pitch, roll and yaw of aircraft. 2) Compute

the position information for three gears based on CG of the aircraft. Table 1 shows

the relative position information from the CG where each value represents the

distance from ground in meter. 3) Based on this information, we can first compute

the HAT value which is represented by AltitudeHAT in Equation 1. And then, HOT,

named AltitudeHOT, is finally determined.

Table 1. Position of points

Point Coordinate(X,Y,Z)

CG (0,0,0)

Nose (0.021, 4.698, -1.962)

Main1 (-0.973, -0.488, -1.909)

Main2 (0.973, -0.488, -1.909)

International Journal of Control and Automation

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 351

 (1)

Second, it is related to rendering technique for external environments surrounding

the aircraft such as weather. However, since their reality is mostly dependent on the

number of composing elements under the assumption that more computing resource

is required for more realistic scene than normal one, it is required to maintain

acceptable rendering speed despite additional processing. Among many objects,

particle system for cloud, rain, snow are one of great source for overhead. Even

though particle system has advantage in reality due to accurate description of

movement and appearance with large number of small elements, the overhead

become larger and larger as the number of elements increases. To prevent this

problem, two main algorithms such as Level of Detail (LOD) and culling [7][8]

have been already proposed. However, current static approach is not suitable for

flight simulator where various objectives form such a dynamic environment. So,

dynamic and adjustable approach is highly demanded.

3.2. Software Architecture

In this section, we describe our software architecture and modules to implement two

mentioned components. The system architecture for flight simulator consists of host and

image generator as shown in Figure 3. Host is responsible for configuration of simulators

including dynamics model of aircraft. This means that environment parameters, point of

view as well as configuration of the related parameters for each scenario is requested by

the host. Image generator is to render images in three dimensional space in order to

provide realistic flight situation. In case of image generator, it is required to visualize the

terrain data according to Field of View (FOV) through different channel on respective

system. In our system, we introduce three channels for FOV with 160 degree width and

40 degree height. The three separate channels are for system processing, image processing

and system control part. Image processing part is responsible for visualizing the computed

data in three dimensional space. For example, this part includes the processing for snow,

rain, special values such as HOT, HAT, LOS. Also, special effect for explosion is also

implemented in this one. In addition to these functions, most important component in it is

to maintain acceptable Frames Per Second (FPS), 60Hz in our work, by employing new

overhead processing module.

The host and image generator use UDP socket for bi-directional communications. The

transferred information includes the status of aircraft, simulation environments,

information such as HAT/HOT/LOS. In this architecture, software modules are shown in

Figure 4. Each module and its function are explained in next.

International Journal of Control and Automation

Vol.9, No.1 (2016)

352 Copyright ⓒ 2016 SERSC

Figure 4. Software Modules

- Terrain Loading: This module is to process terrain data which is created by

combining DTED and satellite image. In this paper, we use the terrain data

describing area around one of airports in Korea. It consists of 100km DTED

satellite and 10m resolution image. And, TerraVista software is used to create

terrain data.

- HAT/HOT/LOS Calculator: For the simulator, it is very important to maintain the

distance between aircraft and ground in case of landing, takeoff and bomb drop.

Thus, it is necessary to keep its accuracy and computation during flight. For the

continuous confirmation of this value, we check it through text box.

- Weather System : This module consists of three major weather effects, that is,

snow, rain and cloud. Specially, three different levels are employed to represent the

strength or density of each component according to the user input.

- Sky Dome and Time of Day : For the better reality, sky dome and date information

are required. The date and time is controlled by the host and different scenario is

implemented according to them. To achieve this, host sends the time information at

every second. Depending on this time, sunlight and location of sun are determined.

- Special Effect : In the case of military aircraft, the special effects such as launching

missile and explosion is demanded to provide user more realistic scene. They are

implemented by particle system of OSG.

- Channel Synchronization : In our system, the proposed simulation system consists

of three channels. Thus, each channel displays the identical scene or aircraft status

with different FOV in three channels. In our scheme, host sends data in 60Hz

frequency by multicast communication so image generator system adjusts the

rendering speed as 60Hz in order to accomplish synchronization.

- Overload Processing : Usually, flight simulation has the required minimum

rendering speed. Thus, it is required to keep higher rendering speed than

requirement. But, due to additional processing overhead for weather system and

computing HAT, it is very hard to maintain minimum rendering speed without new

functions. They are included in overload processing module and executed when the

minimum rendering speed is not preserved.

- Network : The data communication between image generator and host is

implemented by windsock as UDP packet. Host sends aircraft status including

International Journal of Control and Automation

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 353

location as well as event data to trigger configuration changes in image generator

software.

3.3. Enhancing Rendering Speed and Implementation

In this section, we present the proposed schemes to increase and maintain rendering

speed and their implementation through dynamic culling and cloud effect.

Cloud Effect for the realistic flight environments, it is essential to provide a variety of

cloud effects in the simulator. Also, according to the fact that cloud effect is affected by

the volume and wind in its visuality, it is commonly known that there are many common

properties between cloud and fog. For cloud modeling, we make use of particle system in

a way of applying physical movement of vapor. But, this particle system incurs additional

overhead for rendering. Based on this analysis, in this paper, we propose new scheme

which is to dynamically adapt the fog effect and adjust compositional parameters

according to situation. The main task is to employ hierarchical cloud modeling in order to

maintain the acceptable rendering speed. More detailed, two approaches are taken to

increase the rendering speed for the cloud effect. One is to introduce texture mapping and

fog effect instead of particle system. The other is apply the texture mapping and particle

according to the situation. Since texture mapping has problem of degradation in realistic

visuality in near distance, we introduce two cloud layers and use fog effect to improve

visuality according to position of aircraft. Through two schemes, we can maintain the

rendering speed as well as enhance reality for cloud at the same time. To implement the

cloud, the following variables are defined in Table 2 where they are transferred from the

image generators.

Table 2. Variables for Cloud Effect

Variable name Meaning Variable Type

wZ Altitude of Aircraft Double

Density Density of fog effect Float

Bot Bottom position of cloud layer int

top Top position of cloud layer int

Cloud_outside Height of cloud entry layer int

The values in Table 2 are used to present fog effect according to the altitude.

Furthermore, we define new function, CloudsDensity, as shown below. to set density of

fog effect according to the altitude of aircraft. If current position of aircraft is between

two cloud layers, it implies that aircraft travels in the cloud. So, we increase density of fog

in order to implement foggy effect. Otherwise, when aircraft locates outside of cloud

layer, we differentiate the density value by referring to entry point of cloud and current

location. For example, if an aircraft is approaching cloud layer slowly, density of fog

gradually increases to display realistic scene.

International Journal of Control and Automation

Vol.9, No.1 (2016)

354 Copyright ⓒ 2016 SERSC

In addition to above adaptive control for density of fog, we adapt texture mapping and

particle system adaptively according to current locations. This is to increase reality by

replacing fog effect by the particle system. Since particle system provides more realistic

effect than texture mapping, we apply particle system partly in case when aircraft travels

in the cloud. To implement this function, we create clouds around the field of view to

produce natural effect. The flow chart for this approach is shown in Figure 5.

Figure 5. Flowchart of Cloud Effect

As illustrated in Figure 5, it is necessary to measure the current altitude of the aircraft.

Depending on current location, two different actions are taken. First, if the aircraft locates

in the cloud, we improve reality by creating the cloud by the particle system and

removing the texture mapping. Otherwise, we enhance rendering speed by removing

particle cloud and creating texture mapping. Furthermore, for the former case, we

repeatedly create clouds in a predetermined distance from the current aircraft. By this

way, if an aircraft approaches the nearest cloud, a new cloud is automatically ahead

position within the range. By this way, we prevent drastic view transition in the display.

Dynamic Culling in addition to cloud effect, it is required to implement the external

weather effect. For this effect, both customized and predefined module are the general

approach [9][10]. First, in customized approach, it is possible to set different size, color,

location of particle for the effect. But, this configurable property causes additional

overhead as the number of particle increases so rendering speed is greatly affected by this

overhead. Furthermore, weather effect disappears in the view due to no more available

computing resource. So, in order to allow weather effect as well as improve rendering

speed, we propose dynamic culling scheme depending on change in weather. In the

proposed scheme, following four steps are taken as an extension of our previous

work[11].

- Measuring rendering speed

- Establishing line of sight

- Determining maximum culling coverage

- Determining new culling ratio

International Journal of Control and Automation

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 355

Mentioned four steps are to maintain rendering speed by adjusting culling ratio without

regard to overhead of weather effect. First, if the new additional computing overhead such

as weather effect is caused, we measure how much rendering speed are reduced. Since the

rendering speed is affected by type of weather effect and density of it, we periodically

measure the rendering speed. Second step is to define temporary distance of the visuality

considering reality depending on effect type because it is dynamically changed. Next,

culling coverage is newly configured to complement the reduced rendering speed. At this

step, distance of the visuality usually becomes longer than it in second step so culling

starting point is fixed to the distance of the visuality. This culling starting point can be

represented as Equation 2.

 (2)

In Equation 2, Default_NearPlane_Distance represents the closest distance from

viewpoint in the camera while Customized_FarPlane_Distance does the configured

distance of the visuality. In the last step, if new culling ratio computed in third step is

greater than reduced rendering speed, it is required to maintain and improve the frame

rate. To achieve this, we increase Near_Far_Ratio in Equation 2 until the difference

between improved rendering speed and reduced one is bounded within the predetermined

threshold.

4. Implementation and Experimental Results

4.1. Development System

For actual implementation of flight simulator, we employ OpenSceneGraph (OSG)

which is open source graphic middleware as well as widely used in education, game,

medical and other visualization software. The simulator system consists of hardware

described in Table 3. For the comparison, we run FSX for several similar scenarios.

Table 3. Development System

Hardware Specification

CPU Intel i7-3770 3.40GHz

Memory 8GB

VGA NVDIA GeForce GTX 680

Terrain Data 3.17 GB

4.2. Experimental Results

First experimental results are shown in Figure 6 in the aspect of cloud effect. In Figure

6, texture mapping technique is used to render cloud while particle system is introduced

when an aircraft is entering into the cloud in Figure 7. In addition to their visual effect,

another parameter, FPS, are compared in the below Table 4.

International Journal of Control and Automation

Vol.9, No.1 (2016)

356 Copyright ⓒ 2016 SERSC

Figure 6. Cloud Rendering Before Entering Cloud, Left : Ours, Right : FSX

Table 4. Comparison of FPS

Test Number Particle System Texture Mapping Proposed

1 23.36 59.84 56.48

2 32.82 58.82 57.76

3 30.45 59.46 54.37

In Table 4, we run ten times experiments and get the average FPS for them. As

illustrated in Table 4, the worst FPS is observed in particle system while texture mapping

reveals the best one. The proposed scheme shows the acceptable FPS in that there is slight

difference between texture mapping and proposed scheme. But, in the point of reality,

there is great gap between two schemes. This result is brought from our core technology

that applies cloud effect according to current rendering speed.

Another experiment result is for dynamic culling. For this experiment, we use

high resolution terrain data and then rain effect additionally. We run the several

scenarios according to number of vertex as well as density of weather effect as

shown in Table 5 Example scene for ran effect is shown in Figure 8. The proposed

scheme shows the similar effect to the FSX. Moreover, the proposed scheme

improves the reality by implementing the situation that the rain is approach toward

the aircraft.

Figure 7. Cloud Rendering After Entering Cloud, Left: Ours, Right: FSX

International Journal of Control and Automation

Vol.9, No.1 (2016)

Copyright ⓒ 2016 SERSC 357

Figure 8. Rain Effect, Left : Ours, Right : FSX

Table 5. Comparison of FPS for Weather Effect

Vertex Density of Weather

Effect

Fixed Rate Culling Proposed

100,000

Default 60 60

Light 49 60

Medium 45 60

Heavy 43 60

120,000

Default 47 60

Light 42 60

Medium 38 60

Heavy 35 60

140,000

Default 44 60

Light 37 60

Medium 36 60

Heavy 34 60

Through Table 5, we can identify that the proposed scheme shows the better FPS

than fixed rated culling. This is because the culling ratio in the proposed scheme is

adjusted dynamically depending on the vertex and density while fixed rate culling

fails to work in varying condition. By the help of dynamic culling, weather effect is

clearly displayed without any problem. Also, its reality seems acceptable as

compared to FSX. One point worthwhile mentioning is that proposed scheme

maintains 60 Hz for all cases. This is because we fixed the maximum FPS as 60 Hz

in our hardware. Thus, even though the higher FPS is observed, the minimum value

between observed one and 60 Hz is reported.

The last experiment is to test accuracy of our method to compute HOT, HAT, and

LOS. Figure 9 shows the measured value in the rendering software. Through this

experiment, we can see the identical values between measured and given value.

Figure 9. Identifying HOT, HAT, and LOS, Left : Aircraft Position, Right :
Measured Values

International Journal of Control and Automation

Vol.9, No.1 (2016)

358 Copyright ⓒ 2016 SERSC

5. Conclusion

In this paper, we proposed how to develop flight simulator through open source

middleware, OSG and prove its possibility to make use of OSG for flight simulator. The

software architecture and their components are described and explained. During

development, we focused on rendering speed in flight simulator by including cloud effect

and dynamic culling. Each function is dynamically adjusted according to reality and

current situation. Finally, we presented the experimental results depending on a variety of

scenarios. Through them, we proved that the proposed simulator can meet general

requirements as well as improve rendering speed at the acceptable level.

Related to this work, we continue our work in two ways. First, we are going to extend

current simulator to include other functions such as lightening. Also, comparison with

other simulators will be accomplished. Second, in order to speed up the rendering speed,

other drawbacks will be identified and improved. This procedure will include how to use

current measured values to implement essential components.

Acknowledgments

This work was supported by research fund, Gyeongsang National University, 2015 and

the BK21 Plus Program (Research Team for Software Platform on Unmanned Aerial

Vehicle, 21A20131600012) through the National Research Foundation of Korea (NRF)

funded by the Ministry of Education.

References

[1] X. Hu, S. Bo, Z. Huiqin, X. Bing, W. Hao and H. Ge, “Visual Simulation System for Flight Simulation

based on OSG”, Proceedings of IEEE International Conference on Audio Language and Image

Processing, Shanghai, China, (2010) November 23-25.

[2] R. Wang, Editor, “OpenSceneGraph 3 Beginner’s Guide”, Packt Publishing Ltd., Birmingham, (2012).

[3] R. Wang Editor, “OpenSceneGraph 3 Cookbook”, Packt Publishing Ltd., Birmingham, (2010).

[4] I. Strachan, Editor, “Jane’s Simulation and Training Systems”, Janes Information Group, Alexandria,

(2010).

[5] Microsoft Flight Simulator, “http://www.microsoft.com/products/games/FSXInsider/fsxlauncher.aspx”

[6] G. Miliaresis and C. Paraschou, “Vertical Accuracy of the SRTM DTED Level 1 of Create”, Journal of

Applied Earth Observation and Geoinformation, vol. 7, no. 1, (2005), pp. 49-59.

[7] C. Wang, H. Xu, H. Zhang and D. Han, “A Fast 2D Frustum Culling Approach”, Proceedings of IEEE

International Conference on Computer Engineering and Technology, Chengdu, China, (2010) April 16-

18.

[8] R. Zhang, “Real-Time Optimization Technology and Its Application in Terrain Rendering”, Proceedings

of IEEE International Conference on Image and Signal Processing, Shanghai, China, (2011) October 15-

17.

[9] L. Li., W. Wan, X. Li and Z. Wang, “Weather Phenomenon Simulations in 3D Virtual Scenes based on

OSG Particle System”, International Communication Conference on Wireless Mobile and Computing,

Shanghai, China, (2011) November 14-16.

[10] H. Xining, L. Ning, Z. Dinghai and X. Renjie, “Design and Application of General Data Structure for

Particle System”, International Conference on Computer Science and Electronics Engineering,

Hangzhou, China, (2012) March 23-25.

[11] C. Lee, S. Kang, S. Kang and K. Kim, “Software Architecture for Open Source Based Flight Simulator”,

4th International Conference on Modeling and Simulation, Jeju, (2015) November 25-28.

