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Abstract 

Using ambient excited data under PMU measurements to identify the low frequency 

oscillation mode and oscillation modes parameter information corresponding, has good 

prospects in power system analysis and control. This article discusses the applicability by 

using the natural excitation technique (NExT) in conjunction with the eigensystem 

realization algorithm for low frequency oscillation modes identification, then introduced 

fuzzy C-means clustering algorithm to picked up the authenticity of the identified modal 

results automatically and improving the recognition accuracy. On the IEEE-11 and 

IEEE-68 bus test system numerical example shows that the proposed method has higher 

modal recognition ability and efficiency, and can meet the needs of online applications. 

 

Keywords: low frequency oscillation; modal analysis; ambient excited; Natural 

Excitation Technique; Eigensystem Realization Algorithm; fuzzy clustering. 

 

1. Introduction 

With the interconnection of the power grid region and the weakening of the damp, the 

instable increasing oscillation has been a frequent occurrence of the system. Therefore, it 

is of vital importance and more difficult for the online monitoring of the power grid and 

the damping control to rapidly obtains the low frequency oscillation models and 

parameters [1].  

With the all-around application of Phasor Measurement Unit (PMU) in the 

electrical power system and the gradual establishment of Wide Area Monitoring 

Systems (WAMS) based on PMU, the analysis of the system’s low frequency 

oscillation based on the actually-measured tracks enjoys a promising prospect. 

According to different disturbance intensity, there are two categories of 

identification methods, namely the identification method based on the large signal 

disturbance signal and the identification method based on the small disturbance 

signal [2]. Currently, Prony has been the widely-used one among the low frequency 

oscillation modal identification methods based on the large oscillation disturbance. 

However, since the large disturbance signal might not exit all the time and the 

actually-measured signal is seriously impacted by the environment noises, the limits 

of Prony and the defects of data collected by it have been increasingly obvious.  The 

modal identification methods based on the noise-like signal only adopt the real-time 

response signal in ambient excitation as the recognition input, and have no need to 

measure the input the drive signal. At the same time, it can avoid the complexity of 

manual excitation. Thus, methods of the kind are more applicable to the online 

monitoring and analysis of the low frequency oscillation model [3]. 

Based on the above findings, experts and scholars have made some explorations 

in the relevant fields. Literature [4] introduce Auto Regressive Moving Average 

(ARMA) to describe the random signal, and use the least square method to estimate 
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the parameters, but the identification accuracy has a poor robustness due to the huge 

impact of noises. Literature [5] replaces the frequency response function with the 

auto-cross power spectrum between the output of the measurement points to identity 

modal parameters, but there are defects, such as huge damping recognition error and 

low computation efficiency. Literature [6] introduces the random subspace method 

into the electrical power system. The method has certain anti -jamming capacity 

against output noises, and boasts unique advantages in terms of identifying modal 

information. However, in the practical system, the input noise excitation cannot 

strictly meet the requirement of the zero-mean. Thus, the false identification modal 

can be easily generated. Methods put forward in Literature [4] and [5] both conduct 

modal identification based on the measurement of the single signal and the system’s 

dynamic linear model, but, to achieve the optimal identification, the single signal 

measurement is inadequate. Literature [6] and [7] put forth the method of increasing 

the measurement channels and employing multiple variables to improve the 

identification effect of the system modal, but the complex computation is still a 

problem.  

This paper puts forward a NExT-ERA low frequency oscillation noise-like 

identification method based on the fuzzy clustering. The method obtains the 

system’s impulse response function through the NExT of the reference channel 

signals. Then, ERA identification is conducted of the system under different orders. 

At last, FCM is adopted to conduct the clustering analysis of the identification 

results to automatically collect he authentic modal. First, the feasibility of the 

method is expounded theoretically; second, the method’s validity is verified based 

on the analysis of the data gathered by the synchronic and asynchronous 

measurement. Besides, the method is proved to have a good noise resistant effect.  

 

2. FCM-based NExT-ERA Modal Identification 
 

2.1. Natural Excitation Technique (NExT) 

Natural Excitation Technique or NExT [8] has been found successful applications in 

the civil engineering and machinery field [9,10], but it has not yet been widely used to 

recognize the modal parameters of the electrical power. After the electrical power system 

suffers little disturbance, the swaying equation of its generator set’s rotor is similar to the 

dynamic differential equation of the linear time-invariant vibration system with the degree 

of freedom of “n.” Besides, the generation of the low frequency oscillation is similar to 

that of general vibration mechanically. Therefore, to analyze the low frequency oscillation 

of the electrical power system can refer to the research findings of the modal analysis in 

the field of dynamics. In the following part, the feasibility of NExT in the modal 

identification of the low frequency oscillation will be first studied.  

To analyze the low frequency oscillation of the electrical power system, the 

following differential equation can be used to describe the oscillation motor 

equation of the single generator set’s rotor: 

2

2 M E

d d
M P P D

d t d t

 
                                           (1) 

Where, M stands for the inertia constant; PM for the turbine power; PE for the air 

gap power; D for the damping coefficient; and    for the rotor angle. The typical 

constant magneto model is adopted to conduct linearization around the operating 

points. The following equation can be obtained: 

2

2
0

d d
M D K

d t d t

 


 
                                                     (2) 
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Where, K stands for the constant of the synchronizing power, and  for the rotor’s 

angular displacement of the equilibrium point.  

The actual motion state of the electric power system is not in a full steady state. 

At any time, every generator set is subject to randomly-growing power excitation, 

namely ambient environment. The random variation of the load with the 

characteristic similar to that of the white noise is a major excitation . Besides, the 

subtranient will also be regarded as the system’s natural excitation, such as the 

subtle changes of the operation model, some switch events and some faults. 

Considering the natural excitation, the angular oscillation equation of the rotor wi th 

the degree of freedom of n will be expanded by Eq. (2) into the following one: 

 ( ) ( ) ( ) ( )M t D t K t F t                                               (3) 

Where, ( )F t  is the exiting force vector; M, D and K stand for the inertial matrix, 

damping matrix and synchronizing power matrix of the generator set, respectively, 

which are all “n×n” order symmetric matrix; (·) stands for the derivation of time; 

( )t , ( )t  and ( )t  stand for the “n” order displacement, speed and 

acceleration array of the rotor angle. Multiple Eq.(3) with a referential rotor ’s 

angular displace, ( )
r

s , on the right. Get the expected value of every part to 

obtain the following equation:  

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
r r r r

M E t s D E t s K E t s E F t s      
   
         

   
   

        (4) 

Where,  E  stands for the mathematical value of expectation. Eq. (4) can also be 

expressed as follows:  

 ( , ) ( , ) ( , ) ( , )
r r

r r

F
M R t s D R t s K R t s R t s

  
   

  
   

                                       (5) 

Where, ( )R  stands for the vector of the cross-correlation function.   

Suppose ( )A t  and ( )B t  are a stationary process, then  

 ( )

( )
( ) ( )m

m

A BA B
R R                                                          (6) 

Where, t s   ，
( )m

A  stands for the “m” (m=1
st
, 2

nd
, 3

rd
…) derivation of time 

by ( )A t  during the random process; and ( )m

A B
R  stands for the “m” (m=1

st
, 2

nd
, 3

rd
…) 

derivation of  by the cross-correlation function, ( )
A B

R  .  

When 0  , and the natural excitation of the system is the white noise, the 

referential angular displacement, ( )
r

s , is irrelevant to ( )F t . In other words, when 

0  , ( , ) 0
r

F
R t s


 . Besides, assuming that the rotor’s angular displacement is 

( )t ; speed , ( )t ; and acceleration; ( )t . All are in a stationary process, then 

Eq. (5) is: 

 ( ) ( ) ( ) 0 , 0
r r

r

M R D R K R     
      

 
                                  (7) 

Therefore, the cross-correlation function of different rotor’s angular 

displacement, ( )
r

R
 


 

, is similar to the oscillation differential equation of the 

generator set’s rotor, and ( )
r

R
 


 

 can replace the impulse response function to be 

used for the identification of the time domain modal parameters. Around the 

operation points, the angle of the generator set’s rotor and the other physical 
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variables of the system will generate linear coupling effect, such as power tide, 

voltage, etc. Therefore, the cross-correlation function of the output response of 

these physical variables can replace their impulse response function to conduct 

modal identification of the system.  

NExT should choose the reference variables to obtain the cross-correlation 

function, such as the referential angular displacement, 
r

 , in Eq. (7). When the 

system suffers natural excitation, the referential variables measured by PMU have 

certain modal observation value and a high signal-to-noise ratio. 

 

2.2. Eigen Realization Algorithm (ERA) 

Eigen Realization Algorithms (ERA) [11] were put forward by Juang et al., of the 

Langley Research Center in the US in 1984. In essence, it employs the multiple-input-

multiple-output (MIMO) impulse response function to build the Hankle matrix, and the 

singular value decomposition (SVD) to decompose and seek a minimal realization of the 

system, (A, B, C) [12]. Based on that, the eigenvalue problem of the system’s matrix, A, 

can be solved. 

The state space model of the system’s discrete time is  

 ( 1) ( ) ( )x k A x k B u k                                                      (8) 

 ( ) ( )y k C x k                                                             (9) 

x(k) stands for the system’s time state vector at the moment of k t ; u(k) stands 

for the system’s excitation vector at the moment of k t ; y(k) stands for the system’s 

state output vector at the moment of k t ;  A, B and C are the state matrixes of the 

system.  

Use the pulse response matrix with the order of h(k) and m×r, respectively, to 

form the Hankle matrix:  

 

( ) ( 1) ( 1)

( 1) ( 2 ) ( )

( 1) ( 2 ) ( 3 ) ( 1)

( 1) ( ) ( 2 )

h k h k h k

h k h k k k

H k h k h k h k

h k h k h k







   

   

 
  

 

      

 

 

       

                              (10) 

The order of the matrix, H(k-1), is αm×βr; α and β stand for the observable index and 

the controllable index, respectively; and 2 2n m n  , 2 2n r n   . 

When k=1 , the SVD of the data matrix leads to the following results: 

 
T

(0 )H P Q                                                           (11) 

Where, P and Q stand for the orthonormal matrix; and Σ is the rectangular matrix.  

 
0

0 0

n
 

   
 

                                                            (12) 

1 2 1
( , , , , , , )

n i i n
d ia g     


  . 

i
  is the singular value of H(0). Choose the 

maximum integer, 2n, as the system’s order. Pn and Qn constitute of the former n 

rows of the matrix, P and Q. Therefore, the matrix, H(0), and its generalized 

inverse, H
+
, can be written as below: 

 
T

(0 )
n n n

H P Q  ， T T

n n n n n
P P I Q Q                                        (13)

 

 
1 T

n n n
H P Q

 
                                                          (14) 
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Observe Eq. (13) and Eq. (14). When k=1,  

 
1 / 2 1 / 2 T

(1)
n n n n

H P A Q P A Q
 

                                            (15) 

The system’s minimal realization can be obtained: 

 

1 / 2 T 1 / 2

1

1 / 2 T T

1

1 / 2

(1)

[ 0 ]

[ 0 ]

n n n n

n n

n n

A P H Q

B Q I

C I P

 





   


 


 



                                             (16) 

Assume the eigenvalue matrix of the matrix, A1, is Z, and the eigenvector matrix 

is  , both of which are of the order of  2n×2n, then 

 1
1 1

1

A t
A e Z   

 
                                                  (17) 

The eigenvalue of the system matrix, A1, is λi: 

 
R e Im

ln
i i i

Z
j

t
  

 
   

 

                                                (18) 

Then, the undamped inherent frequency and the damping ratio of different modals 

are shown below: 

 
R e 2 Im 21

( ) ( )
2

i i i
  


                                                 (19) 

 

R e

i

i

i





                                                                (20)

 
2.3. Selection of the Reference Channel 

ERA is a MIMO time-domain overall modal parameter identification algorithm. Its 

input is the cross-correlation function matrix build by the reference channel vectors 

(multiple reference points), which can thus improve the accuracy and reliability of the 

identification results.  

Under the environment excitation, the input drive signal of the electrical power 

system is similar to the white noise, and cannot be measured. In order to obtain the 

modal of a certain system, it is necessary to include all the signals measured by the 

electric generator’s PMUs into the system’s output column vectors. However, in 

fact, there is huge number of PMUs in the electric power system. It is extremely 

time-consuming to include the measured signals as the signals of the reference 

channels into h(k) (m×1) to form a Hankel matrix and conduct SVD. This might also 

hinders its online application. Therefore, it is an issue of great concern about how to 

quickly select signals with a high observability and representativeness from the 

mass data measured by PMUs as the signals of the reference channels.  

The selection of the reference channels is based on a preliminary understanding 

of the system. First, derive the estimation methods of the dominant oscillation 

models based on the system’s mathematical models; find the key fracture surfaces 

which might easily oscillate with the system through the analysis of the factors 

influencing the oscillation frequency; select the measured tracks on the fracture 

surface based on the oscillation increase amount of the state quantity [13]. After all 

these, the signals for the reference channels with a high observability towards the 

oscillation model can be confirmed.  

 

2.4. Identification Accuracy Indexes of the Modal Parameters 

Since the actually-measured signals might inevitably be influenced by the environment 

noises and the system’s nonlinear factors, there might be difficulties with the order 
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determination while conducting SVD of H(0). If the singular value decreases suddenly at 

certain order, the mutation is the system’s order; if there is no obvious mutation, the order 

cannot be directly decided. Therefore, Juang et al., [14] introduced Modal Amplitude 

Coherence (MAC), Extended Modal Amplitude Coefficient (EMAC) and Modal Phase 

Colinearity (MPC) and Consistent Modal Index (CMI) [15] to distinguish the real modal 

and the noise modal among the identification results. 

This paper employs NExT-ERA to identity modal parameters at different orders. 

The modal parameters with a high credibility is preliminarily selected out accord ing 

to the threshold value, “0％<damping ratio<10％ & CMI>70％,” and enter the next 

step of judgment. 

 

2.5. Selection of Physical Modals based on the FCM Algorithm 

The traditional authentic and false modal identification method is to draw every group 

of modal parameters recognized at different orders on the stability diagram, and manually 

choose the stable points from the diagram, the corresponding modal of which is the 

system’s authentic modal. However, rich practical experiences are called for the treatment 

of the stability diagram. Selection of improper stable points will influence the accuracy of 

the identification results, which will be unfavorable for the automatic pickup of the modal 

parameters. In response to the problem, this paper introduces FCM into the identification 

of authentic and false modals, adopt modal frequencies and damping ratios identified at 

different orders as samples and classify them. Choose the classification center as the final 

identification results of the system’s modal parameters. The basic principle for the 

authentic and false modal identification is that the identification results of the system at 

different orders contain the authentic modal information, and that the similar modal 

values can be easily gathered into a specific category. Then, choose the corresponding 

modal of the central point of the kind as the system’s most authentic physical modal.  

Fuzzy clustering has a wide application in the intelligent classification of the 

statistical pattern identification, of which FCM is the one with the most mature 

application and theoretical system. Its principle is as below [16]: define an objective 

function, J ; randomly select “c” initial cluster centers, ( 1, 2 , , )
i

i c  , from the 

sample set to be classified,  1 2
, , ,

p

n
X x x x R  ; divide the samples to the 

category through the calculation of the Euclidean distance, 
i j

d , from the calculation 

samples to the cluster centers; and update and calculate cluster centers of every 

category at last. The iteration is repeated until the objective function can reach the 

minimum. The objective function, J, is defined as below. 

 
2

1 2

1 1

( , , , , , )

c n

m

c ij i j

i j

J U X d   

 

                                           (21) 

It also meets the following limiting conditions:  

 
1

1, 1, 2 , , (1 )

c

ij

i

j n j n



                                            (22) 

Where, [0 ,1]
ij

   stands for the membership function of the “j” (j=1
st
, 2

nd
, 3

rd
…) 

category of samples towards the “i” (i=1
st
, 2

nd
, 3

rd
…) category, which constitutes the 

membership matrix, U; 1m   stands for the fuzzy parameter, which decides the 

fuzziness of the cluster. Under most conditions, m=2. Under the restriction of Eq. 

(22), Eq. (21) is optimized into: 
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1

2

1

n

ij j

j

i n

ij

j

x















                                                          (23) 

 
2

1

1

1

i j

mc

ij

k k j

d

d









 

 
 
 


                                                     (24) 

The basic steps of FCM algorithm are shown below: 

Initialization of the membership matrix, U: choose the number of the cluster 

categories, c; set the iteration stop valve, ε, and the maximum iteration times, T; and 

make the current iteration times, t=1. 

Update the cluster center based on Eq. (23), and the following equation can be 

obtained:  

 

( 1 ) 2

1( )

( 1 ) 2

1

( )

( )

n

t

ij j

jt

i n

t

i j

j

x



















                                                   (25) 

Calculate the distance, 
ij

d , namely: 

 
2

2 ( ) T ( )
( ) ( )

t t

i j j i j i j i
d x x x                                             (26) 

Update the membership matrix based on Eq. (26):  

 

( )

2

1

1

1t

i j

mc
ij

k k j

d

d









 

 
 
 


                                                     (27) 

Preset the threshold value, ε. If ( 1 ) ( )t t
U U 


  , or the iteration times reach the 

maximum, the iteration will be stopped; otherwise, it will return to Eq. (25) for a 

new round of calculation. 

Thus, it can be seen that the algorithm can realize the automatic identification of 

the system’s modal parameters, and has a high calculation efficiency. Besides, the 

accuracy of the modal identification results is improved through the rectification of 

the authentic modal selection during the repetitive iteration process. The algorithm 

meets the requirements of online applications. 

 

3. Auto Pickup of Modal Parameters 

After the introduction of the algorithm basis and the analysis of the key techniques, this 

part will present the specific implementation procedures of the algorithm. (See Fig. 1) 

The automatic identification steps of the algorithm include the confirmation of 

the reference channels, the selection of the initial reference points, the pretreatment 

of the delayed signal cut-off, the modal identification of NExT-ERA of the system 

at different orders, the initial selection of CMI and other similar indexes and the 

FCM analysis of the screened results. At last, the final identification results of the 

system’s modal parameters can be obtained.  
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 Data response

Set the initial order n, then identify the 
modal parameters with ERA 

Similar indexesModal parameters

CMI>70％

0％<Damping ratio<10％
0.2Hz<f<0.8Hz

Set the reference point, I;
Get the impulse response 

matrix h (k) through NExT

Change the 

system’s order

Regard the M group of modal parameters which passes the threshold 
value as the modal reference group, Set (i), at the reference point of i, 
and change the reference point to enter the cycle of i+1

Regard all measurement points of the 
reference channels as the reference points

Regard the frequency and the damping 
ratio of the N group of modal parameters 

as the input samples to undergo FMC

Confirm the cluster 
center,Pick the physical 

modals

End

Reference 

point: i+1

 

Figure 1. The Flowchart of Automatic Identification Algorithm 

4. Example Analysis 

 
4.1 System with Four Generators and Four Areas 

Through the simulated data analysis of the two-area system of the IEEE 4 machine, the 

validity of FCM-based NExT-ERA in identifying modals put forward in this paper is 

verified. The system wiring diagram is shown in Fig. 2. Refer Literature [17] for specific 

parameters. Since the main concern of this paperis the low frequency oscillation between 

system areas, the eigenvalue calculation of the system’s mathematical model finds that the 

system has a section oscillation model whose frequency is 0.6357Hz and damping is 

0.0131.  

Build the simulation system based on the MATLAB platform. Impose a white 

noise excitation at the position of the system loading. Use PMUs to measure the 

response data of the angular velocity of various generator sets’ rotor. The sampling 

frequency is 100Hz and the sampling time is 10min. Fig.3 shows the synchronous 

and noise-free signals and power spectrum of the angular speed of the generator set 

G1’s rotor. It can be seen that around 0.6Hz the system has an oscillation frequency.  
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Figure 2.   IEEE Four-machine Two-area Test System 
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Figure 3.   (a)Rotor Angle Measurement of G1and (b) The Power Spectrum 
Density (PSD) of the Measurement 

Since the system model only has four generators, angular velocity response of the four 

generators’ rotor is introduced into the reference channel. In order to analyze the 

algorithm’s robustness, add 10dB, 5dB and infinitely small white Gaussian noise to every 

measurement channel. Then NExt-ERA modal identification is conducted of measured 

data whose time windown is 10min, 5min and 2.5min, respectively. Set the order of 
n

  

in Eq. (13) in 2.2 to increase progressively from 2 to 20 through ten calculations, and 

obtain the system’s modal parameters at different orders. Set the threshold value to meet 

requirements of “0％<damping ratio<10％＆CMI>70％ & 0.1Hz<f<0.8Hz.” Select the 

frequency and the damping ratio of the modal parameter swhich pass the threshold as the 

samples and conduct FCM of them. At last, the final identification results can be obtained 

according to the cluster center. 

By observing the cluster identification Fig. 4, it can be found that: when the 

data’s window time is 10min and 5min respectively, the modal parameter samples 

identified through the NExt-ERA algorithm are more concentrated than those 

identified when the window time is 2.5min, and the cluster effect of the former is 

also more obvious. When Gaussian white noises of different dBs are added, the 

concentration of the modal samples undergoes no dramatic changes. The major 

reason is that, when NExT is calculating the cross-correlation function, it eliminates 

partial noises among signals according to the cross-correlation of the similar noise 

serial to be zero. During the ERA process, SVD equals to a Winner filtering, which 

makes the noise resistant effect of the NExT-ERA algorithm more obvious.  

From the analysis results of Table 1, when the time window is 10min, 5min and 

2.5min, respectively, the average identification error of modal parameters under 

different noises is 1.42%, 2.32% and 4.19%, respectively. At the same time, the 

average identification error of the modal frequency is small than that of the modal 

damping rate.  



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

318  Copyright ⓒ 2016 SERSC 

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=10min SNR=inf

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=10min SNR=5

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=10min SNR=10

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=5min SNR=inf

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=5min SNR=5

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=5min SNR=10

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=2.5min SNR=inf

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio
F

re
q
u
e
n
c
y
(H

z
)

Windowlength=2.5min SNR=5

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.6

0.7

0.8

Damping ratio

F
re

q
u
e
n
c
y
(H

z
)

Windowlength=2.5min SNR=10

 

Figure 4. The Modal Analysis for the IEEE Four-machine Two-area Test 
System based on Clustering 

Table 1.  Synchronous Identification Results and Error Analysis 

SNR(dB) 

Frequency (Hz) Damping ratio (％) 

10min 
Error 

(％) 
5min 

Error 

(％) 
2.5min 

Error 

(％) 
10min 

Error 

(％) 
5min 

Error 

(％) 
2.5min 

Error 

(％) 

Inf 0.6358 0.016 0.6354 0.047 0.6562 3.22 0.0129 1.53 0.0128 2.29 0.0133 1.53 

10 0.6358 0.016 0.6354 0.047 0.6654 4.67 0.0129 1.53 0.0124 5.34 0.0124 5.34 

5 0.6362 0.079 0.6362 0.079 0.6677 5.02 0.0124 5.34 0.0123 6.10 0.0138 5.34 

From the above analysis, it can be seen that the FCM-based NExT-ERA algorithm is 

effective in identifying modals of data synchronously measured, and that its noise 

resistant effect is salient. Besides, the longer the data’s time window is, the more obvious 

the identification effect is. Compared with the identification effect of the modal’s 

damping ratio, the identification effect of the algorithm of the modal’s frequency is better. 

At the same time, only 0.635Hz of modal frequency exists in the identification results. 

This suggests that, under the environment excitation, the system with four generators and 

two areas has a section frequency of 0.6357Hz, which is the major modal for the system’s 

prevailing research. 

 

4.1 System with 16 Generators and 68 Nodes 

The IEEE New England—New York System featuring 16 generators and 68 nodes is 

shown in Fig. 5.[18] The system has 33 loads in total, of which seven are set as random 

ones, whose active power output accounts for about 67.6% of the total. Build the 

simulation system based on the MATLAB platform, and add the Gaussian white noise to 

seven random loads to obtain the output response of the angular velocity of the rotor of 

various generator sets. The data sampling frequency is 100Hz, and the time window 

length is 10min. Similarly, through the eigenvalue analysis of the system’s mathematical 

model, the frequency and the damping ration of the low frequency oscillation dominant 

models of the system are obtained. (See Table 2) 
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Figure 5. IEEE 16 Machine 68 Nodes Test System 

Table 2.  Dominant Modes for Low-frequency Oscillation 

Model  Frequency (Hz) Damping ratio(%) Participating generator set 

1 0.3881 0.0502 G1,G4,G15 

2 0.5217 0.0085 G5,G13,G16 

3 0.6768 0.0391 G1-G9,G12,G13 

4 0.7930 0.0353 G14,G15,G16 

Since the increase of the number of the system’s generator sets, if the cross-correlation 

function between the reference points and the angular velocity response of the rotor of all 

the other generator sets is first solved before ERA calculation is conducted, the 

calculation amount will be huge. This is also not beneficial for the identification of the 

dominant model. Based on the preliminary understanding of the system structure (See 

Table 2), it is found that the system’s dominant models exist in some generator sets. 

Therefore, this paper adopts measurement signals of the rotor’s angular velocity of ten 

generator sets (No. 1, 4, 5, 6, 11, 13, 14, 15 and 16) with the maximum observability 

among the area oscillation models as the signals of the reference channels. Then, the 

algorithm put forward in this paper is adopted to conduct modal identification.  
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Figure 6. Clustering of Modal Identification 

Table 3. Clustering Results of the Modal Identification and Error Analysis 

Modal Frequency (Hz) Error (％) Damping ratio(％) Error (％) 

1 0.3837 1.13 0.0525 4.58 

2 0.5215 0.04 0.0084 1.18 

3 0.6747 0.31 0.0386 1.28 

4 0.8021 1.45 0.0240 31.8 
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By observing the cluster identification Fig. 6, it can be found that: the number of 

modular parameter samples identified of Modal 1, Modal 2 and Modal 3 through the 

NExT-ERA algorithm is larger; moreover, the modal frequency samples are relatively 

concentrated while the damping ratio samples are relatively diverging. The analysis 

results of Table 3 show that the algorithm has a high overall identification accuracy of 

modal frequency, and that its identification error of the damping ratio of Modal 4 is far 

larger than that of the other three modals. 

From the above analysis, it can be learned that the FCM-based NExT-ERA algorithm 

is also applicable to the identification of multiple oscillation modals. When the system 

scale expands, the signals of the reference channels with a higher observability are 

adopted for modal identification, which can not only improve the calculation speed, but 

also realize high identification accuracy.  

 

5. Conclusions 

This paper puts forward the FCM-based NExT-ERA algorithm to conduct modal 

identification of low frequency oscillation noises. Under the environment excitation, the 

signals with a higher observability are selected from the data measured by PMUs as the 

signals of the reference channels. NExT is employed to obtain the cross-correlation 

function between signals so as to obtain the approximate pulse response function of the 

system. Then, ERA is adopted to conduct modal parameter identification of the pulse 

response at different orders. At last, the FCM algorithm is introduced to conduct 

automatic pickup of all identification results, which can not only identify the authenticity 

of modals, but also improve the parameter identification accuracy. The validity of the 

algorithm is verified through the simulation examples.  

Besides, the algorithm put forward in this paper has advantages in the following four 

aspects: 

1) The algorithm adopts the random loads generated by the electric power system as 

the natural excitation to avoid the complexity of the manual excitation. Besides, the 

parameters identified by it are more suitable for the operation conditions. Due to the 

limitation of algorithms, the modal identification in the previous literatures is mostly 

targeted at measurement signals based on large disturbance.  

2) The algorithm has a sound noise resistant performance. When the Gaussian white 

noise is added into the signal, with the decrease of the signal-noise ratio (SNR) added, the 

algorithm can more accurately identify the modal parameters.  

3) During the identification process of the authentic and false models, this paper 

introduces the FCM-based automatic identification algorithm, which improves the 

identification accuracy and the calculation efficiency. After setting some initial 

parameters, the algorithm put forward by this paper can achieve full automation and call 

for no manual intervention, so it boasts a promising online application prospect.  
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