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Abstract 

In order to solve differential bome problem of traditional backstepping control method, 

this paper studies four different differential algorithms. An adaptive backstepping control 

method is designed for an uncertain second order system, then four kinds of different 

differential algorithms are integrated with the adaptive backstepping control strategy. 

Through comparing the control effect of four different differential algorithms, a 

conclusion can be made that the comprehensive effect of one order filtering differential 

algorithm is the best one among above four kinds of differential algorithms. 

 

Keywords: differential algorithm, backstepping control, second order system, 

uncertainty, adaptive control 

 

1. Introduction 

Many control methods can be used for a class of certain second-order systems, such as 

the classical state feedback control method and the poles placement control method. But 

for a class of uncertain second order systems, adaptive variable structure control methods 

and adaptive neural network control methods and adaptive backstepping control methods 

[1-9] are often used by researchers to cope with the system uncertainties. 

The adaptive algorithm is an effective solution to systems with uncertain parameters 

problem, the construction method of backstepping control algorithm has rigor of 

theoretical inferences and it can be designed by Lyapunov energy function method. So 

there is a great deal of literatures [10-15] that have had a full discussion on the adaptive 

backstepping control method. 

But most of backstepping control methods face a problem that the differential 

computing of the expectation state becomes very complicate with the increase of system 

order. It was called differentical bomb problem in some references [16-19]. In this paper, 

based on the theory of adaptive backstepping method, four kinds of differential methods 

were proposed for the computing of differential state, then a numerical simulation was 

done and the simulation result was analyzed for the four methods. Finally the conclusion 

can be made as follows: the comprehensive effect of one order filtering differential 
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algorithm is the best one, but how to choose a proper filter constant is the key of one 

order differential method. 

 

2. Problem Description 

The second-order system with a single control direction is a simple case in all of the 

second-order system. The control direction is the coefficient of the model input u  which 

is called control coefficient. The model can be written as: 

buAxx     （1） 

where 
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. The parameters of model is unknown, the 

goal of  

adaptive backstepping control is to design an adaptive backstepping controller such that the 

system state 1x
 can trace the expected value

dx1 . 

 

3. Assumption 

Assumption 1: 012 a , its direction is known, without loss of generality, assume 

012 a
. 

Assumption 2: the expected 
dx1  is a constant, then 01 dx . 

 

4. Design Adaptive Backstepping Control Law 

Consider the following the first order subsystem: 

2121111 xaxax      （2） 

Define a error variable as 
dxxe 111  , then: 

2121111 xaxae   （3） 

Based on assumption 1, use the backstepping design method to design the expected 
dx2  of 2x

 as following: 

2112 k̂ekxd   （4） 

where 2k̂
 is an adaptive term which mainly is used for closing 11a

. Define a error 

variable as 
dxxe 222  , then: 
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Define: 

112111 kaak   （6） 

Obviously, there exists a big 1k
 that can make 01 k 。 

Define: 

2121112
ˆ~
kaxak d   （7） 

Then: 

2122
ˆ~
kak


  （8） 

Choose: 
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ˆ ekk 
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Then: 
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 （12） 

Consider the second order subsystem, define a error variable as 

dxuxaxae 22221212
   （13） 

Design adaptive control law: 

dtekekxxaxau d

 24232222121
ˆˆ  （14） 

Define: 

212121
ˆ~ aaa   （15） 

222222
ˆ~ aaa   （16） 

Then: 

2121
ˆ~ aa    （17） 

2222
ˆ~ aa    （18） 

Then: 

dtekekxaxae  24232221212
~~  （19） 

Design unknown parameters weight turning law as following: 
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12521
ˆ xeka   （20） 

22622
ˆ xeka   （21） 

Choose: 
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~~ axeaxeV   （23） 

Choose: 

 2243
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dtekV   （24） 

Then: 

dteekV  2243
  （25） 

Choose: 
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Then: 

22114 eeeeV    （27） 

For the whole system, choose a big Lyapunov function as:  

4321 VVVVV   （28） 

Then: 

2
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Though the inequality transformation, it holds: 
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Obviously, by choosing large positive numbers 1k
 and 3k

, it is easy to get  

0V  （31） 

So the system is stable and synchronization can be fulfilled. 

 

5. Numerical Simulation 

Assume the model of the controlled system can be described as follows: 

2121111 xaxax   （32） 

uxaxax  2221212
  （33） 



International Journal of Control and Automation  

Vol.9, No.1 (2016) 

 

 

Copyright ⓒ 2016 SERSC  263 

Where unknown parameters are 3.011 a , 7.012 a , 3.521 a , 2.1522 a , use 

the above design method, design control law as bellows: 

dtekekxxaxau d

 24232222121
ˆˆ  （34） 

where 

12521
ˆ xeka 

 （35） 

22622
ˆ xeka 

 （36） 

dxxe 111   （37） 

dxxe 222   （38） 

2112 k̂ekxd   （39） 

122
ˆ ekk 


 （40） 

Assume the original state of the system is zero, define expected value 11 dx , 

write Matlab program,  choose control parameters as   

1,1,2.0,5,1,5 654321  kkkkkk  

And 
dx2


 is considered by four situations. 

First, consider using pure differential algorithm in the first situation:  

dx2d=(x2d-x2d0)/dt;    x2d0=x2d; 

Second, consider using a first-order filtering differential algorithm in the second 

situation: 

T=0.1; 

dy=(x2d-y)/T; 

y=y+dy*dt; 

The third situation is the same with the second situation, but chooses filtering 

constant in the third situation as bellows: 

T=0.01; 

In the fourth situation, the influence of 
dx2


 on the system is neglected. 

The simulation result for the first situation is as follows: 
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Figure 1 .Curve of State x1 
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Figure 2. Curve of digital differential 
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Figure 3. Curve of Filtering Differential（T=0.1） 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1000

0

1000

2000

3000

4000

5000

6000

t/s

u

 
Figure 4. Curve of Control u 

 

The simulation result for the second situation is as follows: 
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Figure 5. Curve of State X1 
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Figure 6. Curve of Digital Differential 
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Figure 7. Curve of Filtering Differential（T=0.1） 
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Figure 8. Curve of Control U 

The simulation result for the third situation is as follows: 
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Figure 9. Curve of State X1 
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Figure 10. Curve of Digital Differential 
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Figure 11. Curve of Filtering Differential（T=0.01） 
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Figure 12. Curve of Control U 

The simulation result for the fourth situation is as follows: 
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Figure 13. Curve of State X1 
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Figure 14. Curve of Digital Differential 
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Figure 15. Curve of Filtering Differential（T=0.1） 
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Figure 16. Curve of Control U 

By comparing the simulation result of the above four situations, we can make a 

conclusion as follows:  

First, if the numerical differentiation is used, the error of the first step is large, so 

the control u is large. 

Second, if the filtering differentiation is used, the smaller the filtering constant is, 

the larger the initial differential coefficient can be chosen. 

The last, if the differential coefficient is neglected, the overshoot of the system 

output response is very large. 
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So considering the above four situations, the conclusion can be made as follows: 

the comprehensive effect of one order filtering differential algorithm is the best and 

pure differential algorithm is the worst. And how to choose a proper filter constant is 

the key of one order differential method. 

 

6. Conclusion 

The differential bomb problem of traditional backstepping method is research in 

this paper and four kinds of differential methods are proposed to solve the derivative 

of expected state based on common adaptive backstepping design of a uncertain 

linear second order system. Also, detailed numerical simulations were done for four 

kinds methods respectively. At last, the conclusion points out that the one order 

filter differential method has best performance and the pure differential algorithm is 

the worst one. 
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